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Abstract

Profiling is the most popular approach to diagnosing performance problems of com-
puter systems. Profiling records run-time system behavior by monitoring software
and hardware events either exhaustively or—because of high costs and strong ob-
server effects—periodically. Sampling rates thus determine visibility: the higher the
sample rates, the finer-grain behavior observable, and thus the better profilers can
help developers analyze and address performance problems.

Unfortunately, the sample rates of current profilers are extremely low because of
the perturbations generated by their sampling mechanisms. Consequently, current
profilers cannot observe insightful fine-grain system behavior. Despite the giga-
hertz speeds of modern processors, sampling frequencies have been at a standstill—
between 1 KHz and 100 KHz—to limit perturbation. This million-cycle gap between
two sequential samples blinds profilers to fine-grain behaviors, thus missing root
causes of performance problems and potential solutions.

My thesis is that by exploiting existing underutilized multicore hardware
the sample rates of profilers can be increased by orders of magnitude, lead-
ing to new profiling approaches, new discoveries of insightful behavior,
and new optimizations.

The insights and contributions of this thesis are: 1) We view computer systems as
high-frequency signal generators. The high-frequency hardware and software signals
that reflect fine-grain system behavior are observable in signal channels: performance
counters and shared memory locations. We introduce Shim, a new profiling ap-
proach that continuously samples signal channels at resolutions as fine as 15 cycles,
which is three to five orders of magnitude finer than current sampling approaches.
Shim automatically filters out noisy samples to produce high-fidelity signals. 2)
Shim’s high-frequency profiling enables a new approach to analyzing and controlling
fine-grain system behaviors. We design Tailor, a real-time latency controller for
latency-critical web services. Tailor uses a Shim-based high-frequency profiler and
an application-level network proxy to continuously monitor and promptly act on the
system behaviors that are hazardous to request latency. 3) Shim’s fine-grain control
of system components enables a new class of online profile-guided optimizations.
We introduce Elfen, a Shim-based job scheduler that borrows cycles in short idle
periods of latency-critical workloads for batch workloads. Elfen improves CPU uti-
lization significantly without interfering with latency-critical requests by monitoring
status changes of latency-critical requests with Shim, and taking real-time scheduling
actions.

The history of science shows that an order of magnitude or more improvement in
measurement fidelity leads to fundamental new discoveries. This thesis fundamen-
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tally alters which software and hardware signals are observable on existing systems,
and demonstrates that observing these signals stimulates new optimization opportu-
nities.
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Chapter 1

Introduction

In this dissertation, we focus on general purpose sampling-based profilers that observe
both software and hardware behavior by sampling hardware and software events on
existing hardware platforms.

Specifically, we addresse the challenge of designing new high-frequency high-
fidelity profilers on existing hardware platforms, discovering insightful fine-grain
system behaviors with new profilers, and designing a new class of profile-guided
optimizations.

1.1 Motivation

In computing, performance is measured by the amount of useful work accomplished
by computer systems in a fixed period, and functionality is measured by what kinds
of useful work computer systems can do. Since the first computer was invented,
performance improvements have been driving the development of new functionality.
Higher system performance enables engineers to explore new ways of designing and
using computer systems, new solutions to challenging problems, and more produc-
tive ways of crafting computer systems. For example, in the seventies, researchers
at Xero PARC made astonishing innovations—the graphical user interface (GUI),
Smalltalk, the What-You-See-Is-What-You-Get (WYSIWYG) editor, laser printing, and
Ethernet—that together laid the foundations of modern personal computers. Alan
Kay, the Smalltalk designer, attributed these innovations to the Xerox Alto, the highly
optimized computer they were using, saying “It (Xerox Alto) was a time machine to
allow individual researchers starting in 1973 to work about 12–15 years in the future
they were trying to invent.” [Kay, 2019]. Today, fast, small and energy efficient SoC
chips make it possible to build smart phones. Massive parallel computing power, pro-
vided by GPUs and datacenters, is the heart of AI and machine learning. To advance
the functionality of computer systems, we must keep optimizing performance.

Over decades, Moore’s law and Dennard scaling have been major forces pushing
system performance forward: faster and smaller transistors gave us more powerful
computer hardware every year. Today, as both of these forces are reaching their limits,
to get better performance, engineers must optimize the full system stack, including
the micro-architecture, operating systems, programing languages, core libraries, and
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2 Introduction

Figure 1.1: Leveraging rich abstractions makes it possible to craft a simple http server in a
few lines of JavaScript code.

applications.
Not only does the ending of Moore’s law and Dennard scaling force engineers

to do full-stack optimizations, but so do the diverse performance requirements of
modern computer systems. Today, in addition to latency and bandwidth, performance
has many other facets: tail latency, utilization, scalability, energy efficiency, and
availability. Many of these performance problems cannot be automatically solved with
faster computers, but require engineers to understand root performance problems
and design new optimizations.

However, discovering new optimizations is challenging. Just as with other ex-
perimental sciences, it requires a scientific discovery process: observing computer
systems, understanding system behavior, and designing new optimizations. None of
these steps is easy when facing complex computer systems. Butler Lampson quoted
Wheeler’s words in his Turing lecture, “Any problem in computer science can be
solved with another level of indirection.” We have been crafting computer systems
by leveraging and providing rich abstractions for decades. The result is a complex
system stack. The layers of abstractions improve developer productivity significantly.
As shown in Figure 1.1, a few lines of JavaScript can implement a simple HTTP server
by invoking layers upon layers of libraries, but it also poses the challenge of finding
performance problems and discovering optimizations because it is hard to understand
system behavior. For example, Dick Sites from Google [Sites, 2015] mentioned that
they spent three years on understanding the root causes of some mystery tail requests.
After investigating disk traces and analyzing full system stacks across datacenters,
they finally found that the root problem was from within the Linux kernel.

Facing complex computer systems, developers need powerful tools to help them
observe and analyze fine-grain system behaviors, especially fine-grain interactions
between system components. Hardware designers need to understand code patterns
of low instruction-per-cycle (IPC) periods before designing better hardware archi-
tectures. Operating system engineers need to understand how user-level programs
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Figure 1.2: IPC timeline for Lusearch. Sampling with 10 MHz exposes behavior unseen by
existing profilers (red, blue).

invoke kernel system calls before optimizing hot paths. Latency-critical application
developers, from virtual reality (VR) to web services, have to diagnose root causes of
tail latency before designing new optimizations.

General purpose profilers are the most popular and easy-to-use tools. They ob-
serve system behavior by periodically sampling software and hardware events. Un-
fortunately, due to low sample rates, popular state-of-the-art profilers, such as Linux
Perf [Linux, 2014a] and Intel Vtune [Intel, 2014], are only able to observe corse-grain
behavior. They are blind to the fine-grain behavior needed to explain many perfor-
mance problems. Despite the fact that modern computer systems are running on
gigahertz processors, the sample rates of current profilers have been fixed between
1 KHz and 100 KHz because of their disruptive sampling approach: they take an inter-
rupt and sample hardware performance counters and software states. The possibility
of overwhelming the operating system’s capacity to service interrupts places limits on
such profilers’ maximum resolution. Low-frequency sampling misses both invaluable
hardware events and software events. Figure 1.2 shows timelines of instructions per
second (IPC), one important metric that reflects how software utilizes CPU micro-
architectural resources, at different sample rates. Profilers sampling at 1 KHz and
100 KHz are not capable of showing fine-grain IPC variations.



4 Introduction

Figure 1.3: A simple web request crosses layers of complex systems in a few milliseconds.

Figure 1.3 shows that in a few milliseconds, a web request passes through multi-
ple system stacks across three machines. Current general-purpose profilers are not
able to analyze fine-grain interactions between system components when requests
travel through stacks. To observe fine-grain system behavior, engineers reluctantly
switch to other inconvenient and high-overhead approaches, such as microbench-
marks, simulation, direct measurement, tracing and exhaustively sampling. Because
of such limitations, these alternative approaches cannot directly observe the behavior
of online production systems.

1.2 Problem Statement

Understanding fine-grain system behavior is important for diagnosing performance
problems and designing new optimizations. However, current general purpose profil-
ers are not capable of observing the invaluable fine-grain system behaviors of online
production systems, which slows down performance improvements.

1.3 Insights and Contributions

This thesis presents three contributions: 1) To observe the fine-grain hardware and
software behavior of online production systems, we introduce Shim, a new contin-
uous profiling approach that samples at resolutions as fine as 15 cycles, presents
high-fidelity system signals, and automatically filters out noisy samples. 2) To ana-
lyze and control fine-grain interactions of complex system components in real time,
we design Tailor, a Shim-based real-time latency controller. Tailor continuously
samples signals of complex system components to identify system behaviors that
can delay latency-critical requests and to take real-time control actions to reduce
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the impact of these hazardous behaviors. 3) Shim’s real-time fine-grain control of
system components enables a new class of feedback-directed optimizations. Many
latency-critical workloads have low CPU utilization because they must consistently
deliver low responses in order to retain users. We introduce Elfen, a Shim-based job
scheduler that borrows the cycles in the idle periods of latency-critical workloads for
batch workloads. Elfen improves CPU utilization significantly without interfering
with latency-critical requests by monitoring status changes of latency-critical requests
with Shim, and taking real-time scheduling actions. We next describe each of these
contributions in more detail.

Shim The sample rates of current general purpose profilers are limited by their
inherently disruptive sampling approach: they fire an interrupt and sample events
in the interrupt handler. The overheads of taking interrupts in the kernel and the
possibility of overwhelming the kernel’s capacity to service interrupts place limits on
their maximum resolution [Linux, 2014b].

Shim views computer systems as high-frequency signal generators, and observes
fine-grain system behavior by sampling generated hardware and software signals in
a co-running observer thread at high frequencies on existing multicore hardware. A
Shim observer thread executes simultaneously with the application thread it observes,
but on a separate hardware context, exploiting unutilized hardware on a different
core or on the same core with simultaneous multithreading (SMT). Instead of us-
ing interrupts or inserting instrumentation, which substantially perturb applications,
Shim efficiently samples hardware and software signals by simply reading hardware
counters and memory locations. Shim improves its accuracy by automatically detect-
ing and discarding samples affected by measurement skew which it or other system
parts introduce. We measure Shim’s observer effects and show how to analyze them.
When on a separate core, Shim can continuously observe one software signal with
a 2% overhead at a ~1200 cycle resolution. At an overhead of 61%, Shim samples
one software signal on the same core with SMT at a ~15 cycle resolution. We vary
prefetching and DVFS policies in case studies that show the diagnostic power of
fine-grain IPC and memory bandwidth results. By repurposing existing hardware,
we deliver a practical tool for fine-grain performance microscopy for developers and
architects.

Tailor Faced with complex computer systems, it is a challenge for latency-critical
web services to consistently deliver low responses, because complex system compo-
nents can unexpectedly delay latency-critical requests by orders of magnitude larger
than their target latency. Shim’s high-frequency profiling enables a new approach to
identifying and addressing these hazardous system behaviors in real time.

Tailor is a Shim-based real-time latency controller that continuously monitors
and acts on hazardous system behaviors. Tailor identifies such behaviors by record-
ing and analyzing fine-grain interactions of system components. For unavoidable
hazardous system behaviors, Tailor uses local-server redundancy to mitigate their
impact. Tailor consists of two parts, a Shim-based high-frequency profiler and an
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application-level network proxy. The profiler continuously records request-related
events from system components that show how the system stack processes latency-
critical requests into a timeline stream. It also detects and takes real-time control
actions on hazardous behaviors. The proxy forwards requests and responses for the
active and backup servers. Whenever it detects a slow request, it searches and ana-
lyzes that request’s related events from the timeline stream, then presents a timeline
to developers showing how system behaviors affect the slow request. We evaluate Tai-
lor with a latency-critical Lucene workload whose client-side tail latency is 16 times
larger than the maximum server time. We show that Tailor identifies hazardous sys-
tem behaviors that are from the operating system and the JVM. By adjusting system
configurations to avoid the hazardous behaviors induced by the operating system
and mitigating the impact of unavoidable JVM pauses with local-node redundancy,
Tailor reduces tail latency nine-fold, from 46 ms to 5 ms.

Elfen Not only does profiling critical workloads with Shim show promising opti-
mization opportunities, but Shim’s real-time fine-grain control of system components
can help us implement a new class of real-time feedback-directed optimizations. For
instance, profiling Lucene, a popular open-source search engine, shows that interac-
tive web services have short idle periods and poor temporal locality between requests.
This profiling result presents a promising optimization opportunity: we can improve
datacenter utilization significantly without interfering with latency-critical requests
if we can fill many short idle periods with batch jobs. However, the challenge of im-
plementing the optimization is how we can accurately control batch jobs so that they
enter and leave the short idle periods in real time. Shim’s high-frequency profiling
and fine-grain control make it possible to detect short idle periods and take real time
scheduling actions.

Elfen is a Shim-based scheduler that can co-run batch jobs and latency-critical
requests on the same core but on different SMT contexts without interfering with
latency-critical requests. Elfen employs principled borrowing, a scheduling tech-
nique that dynamically identifies idle cycles and runs batch workloads by borrowing
hardware resources from latency-critical workloads without violating SLOs. We in-
strument batch threads with profiling instructions that continuously monitor paired
request lanes just as Shim samples system signals. Batch threads start to execute
only when their paired request lane is idle, quickly stepping out of the way when
a latency-critical request starts executing. We evaluate our approach for co-locating
batch workloads with latency-critical requests using the Apache Lucene search engine.
A conservative policy that executes batch threads only when a request lane is idle
improves utilization between 90% and 25% on one core, depending on load, without
compromising request service level objectives (SLOs). Our approach is straightfor-
ward, robust, and unobtrusive, opening the way to substantially improved resource
utilization in datacenters running latency-critical workloads.
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1.4 Thesis Structure

Designing optimizations is an experimental science. It follows three steps: observing
computer systems, developing insights, and designing new optimizations. The body
of this thesis is structured around this optimization discovery process.

Chapter 2 gives background and an overview of profilers. Chapter 3 explains
Shim, a new high-frequency sampling approach that can observe fine-grain system
behavior. Chapter 4 describes Tailor, a Shim-based real-time latency controller that
can analyze and control the fine-grain interactions of complex system components.
Chapter 5 discusses Elfen, a Shim-based job scheduler that controls fine-grain inter-
actions between latency-critical requests and batch jobs.

From more accurate microscopes that resulted in discovering bacteria to remark-
ably clear X-ray diffraction images of DNA that lead to identifying the DNA structure,
the history of science shows that improvements in critical measurement techniques
stimulate fundamental new discoveries. This thesis demonstrates that significant
improvements in sampling rates also lead to new insights and optimizations.
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Chapter 2

Background

Profilers help engineers observe the run-time behavior of systems, understand perfor-
mance problems, and design new optimizations. They record time-varying software
and hardware events, analyze these signals, and present profiling results. This chapter
gives an overview of profilers, structured as follows: Section 2.1 explains how profil-
ing works; Section 2.2 introduces the development of profiling techniques; Section 2.3
discusses the problem domain addressed by this thesis.

2.1 Profiling

Profilers observe the behavior of systems by recording and analyzing time-varying
software and hardware events. This section first explains what and where these
events are, then introduces how profilers read and analyze the events.

2.1.1 Software and Hardware Events

Computer systems continuously change software and hardware states. For example,
when executing the code in Figure 2.1(a), the software states of variables i and sum,
stored either in registers or memory, are updated at every loop iteration; hardware
states, such as the number of retired instructions, are updated at every CPU cycle.
If we view computer systems as signal generators, and places holding software and
hardware states as signal channels, whenever computer systems (signal generators)
mutate states, they generate events in signal channels. These time-varying software
events and hardware events are signals of system behavior, as shown in Figure 2.1(b)
and Figure 2.1(c). Thus, profilers are able to observe and analyze system behavior by
reading events from signal channels and analyzing sampled signals.

Software channels are storage locations holding the software state and interfaces
for accessing the state, such as registers, memory locations, files and APIs. Some
software channels are explicit about where and how to sample them. For example,
Linux maintains each process’s status and exports it via the /proc/[pid]/stat virtual
file. But there are many program-specific software channels whose location is not
explicitly exported, such as storage locations of variables i and sum, the loop and
method identifiers in Figure 2.1(b). To sample program-specific channels, profilers

9
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1 for (int i=0; i<10; i++)
2 sum += i;

(a) A simple loop

(b) Two Software signals (c) A hardware signal

Figure 2.1: Computer systems generate software and hardware signals.

need to locate them first. Figure 2.2 shows the process of locating channels of the
current-running-method event in a Java virtual machine on Linux. Profilers look up
running Java threads from channels of currently running tasks, then search for their
current frame pointer from channels of current frames, finally they read the method
IDs from channels in the stack.

Hardware channels are places holding hardware states. On modern processors,
the main software-accessible channels are performance counters and hardware profil-
ing buffers. Modern processors provide a few configurable performance counters for
each hardware thread (hardware context) to count architectural events. Each counter
has a control register with which software chooses the event to be monitored from a
rich set of architectural events such as the number of retired instructions, L1 data/in-
struction cache misses, and memory references. The control register also has flags
to control whether to generate an interrupt on counter overflow, to select hardware
domains (counting events from the current hardware thread or from the whole core),
and other conditions. Once a counter is started, the processor will increase its value
for matched events.

Figure 2.3 shows an Intel performance counter and its control register. On modern
Intel processors, software chooses one event to count from hundreds of architectural
events, and reads the counter value with the RDMSR instruction. In addition to coun-
ters, modern processors also provide hardware profiling buffers. For example, Intel
PEBS [Intel, 2019] and AMD IBS [AMD, 2019] store sampled instructions and associ-
ated architectural performance states such as memory-reference latency in profiling
buffers. Intel Processor Trace (Intel PT) [Strong, 2014] records full traces of instruc-
tions to trace buffers.

It is tedious to directly manage these hardware channels, thus operating systems
and other libraries provide more friendly interfaces. For example, Linux provides the
sys_perf_event_open() system call to manage performance counters and profiling
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Figure 2.2: Locating signal channels of current-method-id events.
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• IBUSQ Latency event — This event accumulates weighted cycle counts for latency measurement of transac-
tions in the iBUSQ unit. The count is enabled by setting MSR_IFSB_CTRL6[bit 26] to 1; the count freezes after 
software sets MSR_IFSB_CTRL6[bit 26] to 0. MSR_IFSB_CNTR7 acts as a 64-bit event counter for this event. 
See Figure 18-55.

18.6.7 Performance Monitoring on L3 and Caching Bus Controller Sub-Systems
The Intel Xeon processor 7400 series and Dual-Core Intel Xeon processor 7100 series employ a distinct L3/caching 
bus controller sub-system. These sub-system have a unique set of performance monitoring capability and 
programming interfaces that are largely common between these two processor families. 

Intel Xeon processor 7400 series are based on 45 nm enhanced Intel Core microarchitecture. The CPUID signature 
is indicated by DisplayFamily_DisplayModel value of 06_1DH (see CPUID instruction in Chapter 3, “Instruction Set 
Reference, A-L” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A). Intel Xeon 
processor 7400 series have six processor cores that share an L3 cache. 

Dual-Core Intel Xeon processor 7100 series are based on Intel NetBurst microarchitecture, have a CPUID signature 
of family [0FH], model [06H] and a unified L3 cache shared between two cores. Each core in an Intel Xeon 
processor 7100 series supports Intel Hyper-Threading Technology, providing two logical processors per core. 

Both Intel Xeon processor 7400 series and Intel Xeon processor 7100 series support multi-processor configurations 
using system bus interfaces. In Intel Xeon processor 7400 series, the L3/caching bus controller sub-system 
provides three Simple Direct Interface (SDI) to service transactions originated the XQ-replacement SDI logic in 
each dual-core modules. In Intel Xeon processor 7100 series, the IOQ logic in each processor core is replaced with 
a Simple Direct Interface (SDI) logic. The L3 cache is connected between the system bus and the SDI through 

Figure 18-54.  MSR_EFSB_DRDYx, Addresses: 107D0H and 107D1H

Figure 18-55.  MSR_IFSB_CTL6, Address: 107D2H; 
MSR_IFSB_CNTR7, Address: 107D3H
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(a) The counter register.
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See Figure 18-1 for the bit field layout of IA32_PERFEVTSELx MSRs. The bit fields are:

• Event select field (bits 0 through 7) — Selects the event logic unit used to detect microarchitectural 
conditions (see Table 18-1, for a list of architectural events and their 8-bit codes). The set of values for this field 
is defined architecturally; each value corresponds to an event logic unit for use with an architectural 
performance event. The number of architectural events is queried using CPUID.0AH:EAX. A processor may 
support only a subset of pre-defined values.

• Unit mask (UMASK) field (bits 8 through 15) — These bits qualify the condition that the selected event 
logic unit detects. Valid UMASK values for each event logic unit are specific to the unit. For each architectural 
performance event, its corresponding UMASK value defines a specific microarchitectural condition. 

A pre-defined microarchitectural condition associated with an architectural event may not be applicable to a 
given processor. The processor then reports only a subset of pre-defined architectural events. Pre-defined 
architectural events are listed in Table 18-1; support for pre-defined architectural events is enumerated using 
CPUID.0AH:EBX. Architectural performance events available in the initial implementation are listed in Table 
19-1.

• USR (user mode) flag (bit 16) — Specifies that the selected microarchitectural condition is counted when 
the logical processor is operating at privilege levels 1, 2 or 3. This flag can be used with the OS flag.

• OS (operating system mode) flag (bit 17) — Specifies that the selected microarchitectural condition is 
counted when the logical processor is operating at privilege level 0. This flag can be used with the USR flag.

• E (edge detect) flag (bit 18) — Enables (when set) edge detection of the selected microarchitectural 
condition. The logical processor counts the number of deasserted to asserted transitions for any condition that 
can be expressed by the other fields. The mechanism does not permit back-to-back assertions to be distin-
guished. 

This mechanism allows software to measure not only the fraction of time spent in a particular state, but also the 
average length of time spent in such a state (for example, the time spent waiting for an interrupt to be 
serviced).

• PC (pin control) flag (bit 19) — When set, the logical processor toggles the PMi pins and increments the 
counter when performance-monitoring events occur; when clear, the processor toggles the PMi pins when the 
counter overflows. The toggling of a pin is defined as assertion of the pin for a single bus clock followed by 
deassertion.

• INT (APIC interrupt enable) flag (bit 20) — When set, the logical processor generates an exception 
through its local APIC on counter overflow.

• EN (Enable Counters) Flag (bit 22) — When set, performance counting is enabled in the corresponding 
performance-monitoring counter; when clear, the corresponding counter is disabled. The event logic unit for a 
UMASK must be disabled by setting IA32_PERFEVTSELx[bit 22] = 0, before writing to IA32_PMCx.

• INV (invert) flag (bit 23) — When set, inverts the counter-mask (CMASK) comparison, so that both greater 
than or equal to and less than comparisons can be made (0: greater than or equal; 1: less than). Note if 
counter-mask is programmed to zero, INV flag is ignored.

Figure 18-1.  Layout of IA32_PERFEVTSELx MSRs
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Figure 2.3: The Intel performance counter specification [Intel, 2019].



12 Background

buffers. Libpfm provides library interfaces to translate human-readable event names
to hardware configurations.

2.1.2 Profiling Approaches

The quality of recorded signals determines the level of detail profilers can observe
and analyze. Current profilers mainly use two approaches to record system signals:
1) Instrumentation: profilers instrument target programs with code that reads and
analyzes hardware and software events. This approach is good at locating program-
specific software channels and recording full traces of target events, and thus is
adopted by many software profilers. 2) Interrupt-driven sampling: profilers send
interrupts and execute code that reads and analyzes events in the interrupt handler.
Because this approach can continuously sample the whole system at low frequencies
but with low overhead and correlate sampled coarse-grain signals, it is the default
profiling approach of current continuous system profilers.

Modern computer systems generate high-frequency signals. However, because
both of the above obtrusive approaches are not capable of recording high-frequency
signals, current profilers are not able to observe and analyze fine-grain system behav-
ior. This thesis introduces direct observation, a new non-obtrusive high-frequency
sampling approach that continuously polls remotely observable events of target con-
texts in a separate hardware context. This new approach enables Shim, Tailor, and
Elfen to observe, analyze, and control the fine-grain behavior of production systems.

Instrumentation Instrumentation code is added to programs to record hardware
and software events at run time. The code can be added at any stage: engineers
directly implement the code in the source code; compilers insert the code either
in offline ahead-of-time (AOT) compilation or online just-in-time (JIT) compilation;
binary modification tools insert the code to the final binary executable files.

Figure 2.4(a) shows an example of how the instrumentation approach collects
the call graph—important profiling statistics showing frequencies of invoking meth-
ods. The instrumentation code, inserted to the function prologue, reads the current
method ID and its caller method ID from signal channels in the stack and updates
the corresponding entry in the call graph.

The insertion of instrumentation code is normally done by tools that understand
target programs, thus this approach is good at locating program-specific channels.
As shown in the above example, since the compiler controls the stack layout, the
instrumentation code inserted by the compiler knows where to read the caller and
callee IDs. The instrumentation code is always invoked by the modified code, so
it is capable of recording full traces of modified-code-related events. However, the
instrumentation code is also only invoked by the modified code, which is likely to
produce biased samples due to poor sample-space coverage.

Instrumentation contributes direct overhead to target contexts. The overhead is
determined by the performance and execution frequencies of instrumentation code.
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(a) The instrumentation code reads the caller and the callee (software events) from the stack (signal
channel) to compute the call graph.
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Figure 2.5: Shared hardware resources can be shared channels.

Therefore recording high-frequency system signals with this approach not only incurs
unacceptable overhead, but also introduces significant observer effects.

Interrupt-driven Sampling The interrupt-driven sampling approach sends inter-
rupts to target hardware contexts, and executes profiling code in the interrupt han-
dler. Figure 2.4(b) shows how this approach associates hardware events of IPCs and
cycles with software events of the current method. Profilers send periodic interrupts
to the target CPU at low frequencies, between 1 KHz and 100 KHz. In the interrupt
handler, the profiling code computes the IPC and cycles of the last sampling period,
then associates them with the current method which is read from the current thread’s
stack.

Interrupt-driven sampling is the default profiling approach for current continuous
system profilers because: 1) it avoids inserting instrumentation code; 2) it can cover
a large set of system components by randomly adjusting sampling intervals over a
long time, and 3) it is able to control its sampling overhead by limiting sampling
frequencies. However, the possibility of overwhelming the operating system’s ca-
pacity to service interrupts plus the overhead of taking interrupts places limits on
sampling frequencies. As a result, this approach cannot observe fine-grain behaviors
and accurately analyze sampled signals. As shown in Figure 2.4(b), because millions
of cycles and thousands of methods can be executed in one sampling period, the aver-
age IPC of the sampling period neither shows high-frequency signals, nor accurately
represents the IPCs of associated methods.

Direct Observation Both the instrumentation approach and the interrupt-driven
approach execute the profiling code in target contexts, either by inserting the instru-
mentation code to target software or sending interrupts to target hardware threads to
execute the instrumentation code. The overhead of executing injected profiling code
prevents these approaches from observing fine-grain system behavior.

This thesis introduces direct observation, a non-obtrusive high-frequency sam-
pling approach, it uses observer threads to sample events generated by target hard-
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ware threads via channels hosted by shared resources on multicore processors as
shown in Figure 2.5. The observer thread samples software events of other threads
from remotely accessible software channels such as shared memory and shared files.
For hardware events, it configures its performance counters to count hardware events
of shared domains (e.g., a shared last level cache) and also can use hardware profiler
buffers to record hardware events from other hardware threads.

Figure 2.4(c) shows how the observer thread samples similar events to the example
in Figure 2.4(b). Two hardware threads, HT1 and HT2, share one simultaneous
multithreading (SMT) core. The observer thread running on HT2 remotely samples
events from HT1. It uses performance counters in its hardware context to compute
the IPC and cycles of HT1, then associates them with the current method ID of the
task running on HT1 which it reads from the task’s stack in shared memory.

The direct observation approach samples signal channels at extremely high fre-
quencies in a tight loop, and doing so does not introduce extra direct overhead to
target contexts because it is non-obtrusive, which makes this approach a good candi-
date for high-frequency full-stack continuous profiling.

2.2 Profiling Techniques

General-purpose profilers were developed at the same time as early high-level lan-
guages: ALGO, FORTRAN, and C. These high-level languages encouraged engineers
composing large complex programs with high-level abstractions such as FORTRAN
statements, C functions and libraries. To attribute performance to activities with high
levels of abstraction, compiler researchers and engineers started to build general-
purpose profilers. Knuth [1971] uses The FORTRAN Debugging Aid Program (FOR-
DAP) that can instrument source code of FORTRAN programs, to gather execution
frequencies of FORTRAN statements over a set of selected FORTRAN programs. Sat-
terthwaite [1972] implements an ALGOL W profiler by extending the ALGOL W
compiler. The profiler inserts instrumentation code when compiling ALGOL pro-
grams to collect run-time statistics and traces of statements. Graham et al. [1982]
designed gprof, a general-purpose profiler that records the run-time call graph and
attributes execution time with C functions. They developed gprof in response to their
efforts to improve their code generator [Graham, 1980]. Gprof adopts two profiling
approaches: inserting instrumentation code in the function prologue to gather the
call graph, and periodically sending timer interrupts to target programs to sample
execution-time statistics of functions.

For modern managed high-level languages that support JIT compilation, their
runtime normally has a built-in profiler for gathering program statistics which are
fed into dynamic compilation for generating better code. Arnold and Grove [2005]
design a low-overhead sampling-based profiler for Java virtual machines to gather
an accurate call graph. Dynamic compilation and its supportive profiling can be
implemented in hardware too. Transmeta’s Cursoe [Dehnert et al., 2003], which
dynamically translates x86 instructions to very-long-instruction-word (VLIW) code,
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collects profiling statistics on execution frequency, branch directions, and memory-
mapped I/O operations of source instructions.

Inserting instrumentation code into final binary executable files is more general
and independent. MIPS’s pixie, SUN’s Spix, and qp/qpt [Larus and Ball, 1994]
insert instrumentation code to binary executable files to gather run-time statistics
and traces. ATOM [Srivastava and Eustace, 1994] and PIN [Luk et al., 2005] provide
binary modification infrastructures, letting engineers customize their instrumentation
code to collect different profling results.

To avoid reloading modified operating system images, Dtrace [Cantrill et al., 2004],
Ftrace [Rostedt, 2019], and BCC [iovisor, 2019] reuse built-in instrumentation probes
added by OS developers to dynamically load instrumentation code. They also provide
script languages to help engineers develop customized instrumentation code.

Inserting instrumentation code is obtrusive and invoking the instrumentation code
in hot paths introduces high overhead. Conte et al. [1996] design a low-overhead
dedicated hardware buffer that is able to record statistics of conditional branches.
Chen et al. [2006] proposes Log-Based Architectures (LBA) that is capable of recording
and analyzing sofwate execution logs. commodity processors support hardware
profiling buffers too. Intel PEBS [Intel, 2019] and AMD IBS [AMD, 2019] store sampled
instructions and associated CPU states in profiling buffers. Intel Processor Trace
[Strong, 2014] and ARM CoreInsight [ARM, 2019] record full traces of instructions.

Continuous profiling the whole stack, including hardware, the operating system,
libraries and applications, can greatly help engineers understand system behavior,
but it must have low overhead. DCPI [Anderson et al., 1997] and Morph [Zhang
et al., 1997] are progenitors of today’s interrupt-driven continuous profilers such as
Vtune [Intel, 2014], Oprofile [OProfile, 2014], Linux Perf [Linux, 2014a], and Google
GWP [Ren et al., 2010]. They periodically send interrupts and sample software and
hardwaren events in the interrupt handler. To avoid overwhelming interrupt handling
and control overhead, they samples at low frequencies, between 1 KHz and 100 KHz.
Regular interval sampling produces biased samples [Mytkowicz et al., 2010; Bond
and McKinley, 2007], DCPI introduced random sampling intervals to avoid the bias.

Modern computer systems have a complex system stack. Correlating events of
components helps engineers find root causes of performance problems. Vertical
Profiling [Hauswirth et al., 2004] correlates hardware, operating system, library, JVM,
and application events. Ammons et al. [1997] attribute hardware events such as cache
misses with hot paths. Kanev et al. [2015] continuously profile more than 20,000
Google machines over three years and correlate stack traces with hardware events.

2.3 Problem Domain

Modern computer systems are composed of layers of components, so they have a
complex system stack even when the individual component seems simple. As shown
in Figure 1.1, although a few lines of JavaScript can implement the HTTP server, the
whole stack has millions of lines of code to support the application. Facing such
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complex systems, identifying optimization opportunities is challenging. For example,
Kanev et al. [2015] find that common components in the lower levels of the system
stack can take 30% of cycles across Google servers after continuously profiling 20,000
servers over three years.

In this dissertation, we focus on building full-stack continuous profilers to help
engineers continuously observe, analyze, and optimize production systems on exist-
ing hardware platforms, especially fine-grain complex interactions between system
components.

2.4 Summary

This chapter gives an overview of profilers. We view time-varying software and hard-
ware events as signals of system behavior. We compare three profiling approaches—
instrumentation profiling, interrupt-driven sampling, and direct observation. We
show the development of profiling techniques. Finally, we explain that this thesis fo-
cuses on designing profilers that enable engineers to observe, analyze, and control the
fine-grain behavior of production systems. In the next three chapters, we demonstrate
that Shim can continuously observe the hardware and software behavior of online
production systems at a much finer granularity than prior work. We then show that
this information is accurate and useful. We introduce Tailor, a Shim-based full-stack
profiler that analyzes fine-grain complex interactions between system components,
and Elfen, a Shim-based job scheduler, improves datacenter utilization by controlling
fine-grain interactions between latency-critical requests and batch jobs.
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Chapter 3

SHIM

Discovering performance optimizations is a challenging process: engineers observe
system behavior, understand root causes, and then propose new optimizations. Unfor-
tunately, the root causes of many problems occur at a finer granularity than existing
profilers can observe. Limited by their interrupt-driven sampling approach, current
profilers’ sample rates are too low to observe the fine-grain system behavior of online
production systems. In this chapter, we introduce Shim, a new sampling approach
that samples at resolutions three to five orders of magnitude finer than previous
profilers. Shim views computer systems as high-frequency signal generators, and
observes fine-grain system behavior by sampling generated hardware and software
signals at high frequencies in a profiling observer thread running on existing multi-
core hardware.

This chapter is structured as follows. Section 3.2 motivates fine-grain profiling
by comparing coarse-grain and fine-grain sampling for hot methods, instructions
per cycle (IPC), and IPC for hot methods. Section 3.3 introduces the design and
implementation of Shim. Section 3.4 examines Shim’s observer effects and shows
how Shim manages them to improve its accuracy. Section 3.5 describes our evaluation
methodologies and Section 3.6 evaluates the strengths, limitations, and overheads of
a variety of Shim configurations and sampling rates.

The work described in this chapter is published in “Computer Performance Mi-
croscopy with SHIM” [Yang et al., 2015a].

3.1 Introduction

Understanding the complex interactions of software and hardware remains a daunt-
ing challenge. Developers currently use two main profiling approaches: instrumenta-
tion and interrupt-driven sampling. They pose hypotheses and configure these tools
to instrument software events and read hardware performance counters. Next they
attempt to understand and improve programs by correlating code with performance
events, e.g., code to bandwidth consumption, low Instructions Per Cycle (IPC) to
branch behavior, and loops to data cache misses. State-of-the-art continuous profil-
ing tools, such as Intel VTune and Linux perf, take an interrupt and then sample
hardware performance counter events [Intel, 2014; Linux, 2014a]. The possibility of
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overwhelming the kernel’s capacity to service interrupts places practical limits on
their maximum resolution [Linux, 2014b]. Consequently, their default sample rate
is 1 KHz and their maximum sample rate is 100 KHz, giving profile resolutions of
around 30 K to 3 M cycles on a modern core.

Unfortunately, sampling at a period of 30 K cycles misses high frequency events.
Statistical analysis sometimes mitigates this problem, for example, when a single
small portion of the code dominates performance. However, even for simple rate-
based measures such as IPC, infrequent samples are inadequate because they report
the mean of the period, obscuring meaningful fine-grain variations such as those due
to small but ubiquitous code fragments, as we show in Section 3.2.

Consequently, developers must currently resort to microbenchmarks, simulation,
or direct measurement to examine these effects. However, microbenchmarks miss
interactions with the application context. Simulation is costly and hard to make
accurate with respect to real hardware. Industry builds proprietary hardware to
examine performance events at fine granularities at great expense and thus such
results are scarce.

The alternative approach directly measures code by adding instrumentation auto-
matically or by hand [Linux, 2014a; Demme and Sethumadhavan, 2011; Zhao et al.,
2008; Ha et al., 2009]. For instance, developers may insert instrumentation that di-
rectly reads hardware performance counters. Software profilers such as PiPA and
CAB instrument code automatically to record events such as path profiles. A con-
suming profiler thread analyzes the buffer offline or online, sampling or reading it
exhaustively. In principal, developers may perform direct measurement and fine-
grain analysis with these tools [Ammons et al., 1997]. However, inserting code and
the ~30 cycles it takes to read a single hardware performance counter both induce
observer effects. Observer effects are inherent to code instrumentation and are a func-
tion of the number of measurements—the finer the granularity and the greater the
coverage, the more observer effect. In summary, no current solution delivers accurate
continuous profiling of hardware and software events with low observer effects at
resolutions of 10s, 100s, or even 1000s of cycles.

This chapter introduces a new high resolution approach to performance analysis
and implements it in a tool called Shim.1 Shim efficiently observes events in a
separate thread by exploiting unutilized hardware on a different core or on the same
core using Simultaneous Multithreading (SMT) hardware. A Shim observer thread
executes simultaneously with the application thread it observes, but in a separate
hardware context.

Signals We view computer systems as high-frequency signal generators that gen-
erate high-frequency signals—time-varying software and hardware events—to signal
channels, the places that hold hardware and software states. A Shim observer thread
samples hardware signals from hardware channels such as performance counters, and

1A shim is a small piece of material that fills a space between two things to support, level, or adjust
them.
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software signals from software channels (e.g. memory locations that store method
and loop identifiers). A compiler or other tool configures software signals and com-
municates memory locations to Shim. Shim treats software and hardware data uni-
formly by reading (sampling) memory locations (software channels) and performance
counters (hardware channels) together at very high frequencies, e.g., 10s to 1000s of
cycles. The observer thread logs and aggregates signals. Then further online or offline
analysis acts on this data.

Measurement fidelity and observer effects The fidelity of continuous sampling is
subject to at least three threats: (i) skew in measurement of rate metrics, (ii) observer
effects, and (iii) low sample rates. Shim reduces these effects.

To improve the fidelity of rate metrics, we introduce double-time error correction
(DTE), which automatically identifies and discards noisy samples by taking redundant
timing measurements. DTE separately measures the period between the start of
two consecutive samples and the period between the end of the samples. If the
periods differ, the measurement was perturbed and DTE discards it. By only using
timing consistency, DTE correctly discards samples of rate measurements that seem
obviously wrong (e.g., IPC values of > 10), without explicitly testing the sample itself.

A minimal Shim configuration that only reads hardware performance counters or
software signals inherent to the code does not instrument the application, so has no
direct observer effect. Shim induces secondary effects by contending for hardware
resources with the application. This effect is largest when Shim shares a single
core with the application using Simultaneous Multithreading (SMT) and contends
for instruction decoding resources, local caches, etc. We find that the Shim observer
thread offers a constant load, which does not obscure application behavior and makes
it possible to reason about Shim’s effect on application measurements. When Shim
executes on a separate core, it interferes much less, but it still induces effects, such
as cache coherence traffic when it reads a memory location in the application’s local
cache. This effect is a function of sampling and memory mutation rates. Shim does
not address observer effects due to invasive instrumentation, such as path profiles.

Randomization of sample periods is essential to avoiding bias [Anderson et al.,
1997; Mytkowicz et al., 2010]. We show high frequency samples are subject to many
perturbations and their sample periods vary widely.

We measure a variety of configurations and show that Shim delivers continuous
profiles with a rich level of detail at very high sample rates. On one hand, Shim
delivers ~15 cycle resolution profiling of one software signal in memory on the same
core with SMT at a 61% overhead. Placing these results in context, popular Java
profilers, which add instrumentation to applications, incur typical overheads from
10% to 200% at 100 Hz [Mytkowicz et al., 2010], with sample periods six orders of
magnitude longer than Shim. Because Shim offers a constant load on SMT, Shim
observes application signals with reasonable accuracy despite its overhead. To fully
validate Shim’s fine-grain accuracy would require ground truth from proprietary
hardware-specific manufacturer tools, not available to us.

On a separate core, Shim delivers ~1200 cycle resolution when profiling the same
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software signal with just 2% overhead.

Case Studies The possibility of high fidelity, high frequency continuous profiling
invites hardware innovations such as ultra low latency control of dynamic voltage and
frequency scaling (DVFS) and prefetching to tune policies to fine-grained program
phases. We analyze the ILP and bandwidth effects of DVFS and turning off and on
prefetching on two examples of performance-sensitive code, showing that fine-grain
policies have the potential to improve efficiency.

Hardware to improve accuracy and capabilities Modest hardware changes could
significantly reduce Shim’s observer effects, improve its capabilities, and make
it a powerful tool for architects as well as developers. When Shim shares SMT
execution resources, a thread priority mechanism, such as in MIPS and IBM’s Power
series [Snavely et al., 2002; Boneti et al., 2008], would reduce its observer effect.
Executing Shim with low priority could limit the Shim thread to a single issue
slot and only issue instructions from it when the application thread has no ready
instruction. When Shim executes on a separate core, a no-caching read, such as
on ARM hardware [Stevens, 2013], would reduce observer effects when sampling
memory locations. A no caching read simply transfers the value without invoking
the cache coherence protocol. On a heterogeneous architecture, the simplicity of the
Shim observer thread is highly amenable to a small, low power core which would
reduce its impact. If hardware were to expose all performance counters to other cores,
such as in IBM’s Blue Gene/Q systems [Bertran et al., 2013], Shim could capture
all events while executing on a separate core. We show that Shim in this config-
uration would incur essentially no overhead and experience very few observer effects.
By repurposing existing hardware, Shim reports for the first time fine-grain contin-
uous sampling of hardware and software events for performance microscopy. We
make Shim publicly available [Yang et al., 2015b] to encourage this line of research
and development.

3.2 Motivation

This section motivates fine-grain profiling by comparing coarse-grain and fine-grain
sampling for hot methods, instructions per cycle (IPC), and IPC for hot methods.

Identifying hotspots Figure 3.1(a) lists the 100 most frequently executed (hot) meth-
ods of the Java application lusearch for three sampling rates, ranging from ⇠500 cycles
to ⇠50 K cycles to ⇠5 M cycles. The medium and low frequency data are subsam-
ples of the high frequency data. These results support the conventional wisdom
that sample rate is not a significant limitation when identifying hot methods. The
green curve is the cumulative frequency distribution of the number of samples taken
for the hottest 100 methods when sampling at the highest frequency. The leftmost
point of the green curve indicates that the most heavily sampled method accounts for



§3.2 Motivation 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

F
ra

ct
io

n
 o

f 
sa

m
p
le

s

Method ID

520 cycles (avg IPC 1.13)
50 K cycles (avg IPC 1.14)
4997 K cycles (avg IPC 1.14)

(a) Hot methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5
 1  1.5

 2  2.5
 3  3.5

F
ra

ct
io

n
 o

f 
sa

m
p
le

s

IPC

476 cycles (avg IPC 1.10)
45 K cycles (avg IPC 1.11)
4515 K cycles (avg IPC 1.11)

(b) Instructions Per Cycle (IPC)

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90 100

M
et
ho
d2
IP
C

1002hottest2methods

7802Hz2(avg2IPC21.142std20.05)
782KHz2(avg2IPC21.142std20.22)
SHIM27.52MHz2(avg2IPC21.132std20.34)

(c) IPC of hot methods

Figure 3.1: The impact of sample rate on lusearch. (a) Varying the sample rates identifies
similar hot methods. The green curve is the cumulative frequency distribution of samples at
high frequency. Medium (red) and low (blue) frequency sampling cumulative frequency his-
tograms are permuted to align with the green. (b) Sample rate significantly affects measures
such as IPC. (c) Sample rate significantly affects IPC of hot methods. Each bar shows average
IPC for a given hot method at one of three sample rates.
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36% of all samples, while the rightmost point of the curve reveals that the 100 most
sampled methods account for 97% of all samples. The blue and red bars are the cu-
mulative frequency histograms for medium and low frequency sampling respectively,
reordered to align with the green high frequency curve. A gap appears in the blue
and red histograms whenever a method in the green hottest 100 does not appear in
their top 100 method histogram. The red histogram is noisy because many methods
attract only two samples. However, the blue histogram is very well sampled, with
the least sampled method attracting 142 samples. Most bars fall below the green line,
indicating that they are relatively under sampled at lower frequencies, although a
few are over sampled. While sample rate does not greatly affect which methods fall
in the top 50 hottest methods, Mytkowicz et al. [2010] show that randomization of
samples is important to accurately identifying hot methods.

Revealing high frequency behavior On the other hand, Figures 3.1(b) and 3.1(c)
show that sampling at lower frequencies masks key information for metrics that vary
at high frequencies, using IPC as the example. Figure 3.1(b) presents IPC for retired
instructions. We measure cycles and instructions retired since the last sample to
calculate IPC. The figure shows the cumulative frequency distribution for IPC over all
samples. The green curve shows that when the sample rate is higher, Shim observes
a wider range of IPCs. About 10% of samples observe IPCs of less than 0.93 and
10% observe IPCs of over 1.45, with IPC values as low as 0.04 and as high as 3.5. By
contrast, when the sample period grows, observed IPCs fall in a very narrow band
between 1.0 and 1.3, with most at 1.11. As the sample period grows, each observation
asymptotically approaches the mean for the program.

Figure 3.1(c) illustrates a second source of error due to coarse-grain sampling of
rate-based metrics. In Figure 3.1(c), we calculate IPC, attribute it to the executing
method, and then plot the average for each of the hottest 100 methods. Lowest fre-
quency sampling (red) suggests that IPC is very uniform, at around 1.14, whereas
high frequency sampling (green) shows large variations in average IPC among meth-
ods, from 0.04 (#4), to 2.39 (#59). The lower IPC variation at lower sample rates is
largely due to the fact that IPC is measured over a period. As that period grows, the
IPC reflects an average over an increasingly large part of the running program. This
period is typically much larger than the method to which it is attributed. When the
period is orders of magnitude longer than the method’s execution, sampling loses an
enormous amount of information, quantified by the standard deviations at the top of
Figure 3.1(c). This problem occurs whenever a rate-based measure is determined by
the period of the sample.

Direct measurement avoids this problem [Ammons et al., 1997; Pettersson, 2003;
Linux, 2014a; Demme and Sethumadhavan, 2011], but requires instrumenting the
begin and end of each method in this example. When just a few methods are in-
strumented, this method can work well, but when many methods are instrumented,
methods are highly recursive, or methods execute only for a few hundred cycles,
taking measurements (the observer effect) will dominate, obscuring the context in
which the method executes.
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3.3 Design and Implementation

Viewing time-varying events as signals motivates our design. A Shim observer thread
executes continuously in a separate hardware context, observing events from an
application thread executing on neighbor hardware. The observer samples hardware
and software signals from signal channels at extremely high frequencies, logging
or analyzing samples depending on the configuration. Shim samples signals that
the hardware automatically generates in performance counters (hardware channels)
and memory locations (software channels) that the application either explicitly or
implicitly generates in software. Shim consists of three subsystems: a coordinator, a
sampling system, and a software signal generating system.

Signals Shim observes signals from either hardware or software for three kinds of
events: tags, counters, and rates. An event tag is an arbitrary value, such as a method
identifier, program counter, or stack pointer. An event counter increments a value
each time the event occurs. Hardware counters can choose events to be monitored
from a rich set of performance events supported by the processor, including cycles,
instructions retired, cache misses, prefetches, and branches taken. Software similarly
may count some events, such as allocations, method invocations, and loop iterations.
Software signals may be implicit in the code already (e.g., a method identifier or
parameter on the stack) or a tool may explicitly add them. For example, the compiler
may insert path profiling code. Shim computes rates by reading a given counter
X and the clock, C, at the start and end of a sample period and then computing
the change in X over change in C for that period. Section 3.4 describes how Shim
correctly reports rates by detecting and eliminating noise in this process.

Coordinator The coordinator configures the hardware and software signals, sam-
pling frequency, analysis, and the observer thread(s) and the location(s) on a different
core on a Chip Multiprocessor (CMP) or the same core with Simultaneous Multi-
threading (SMT) as the application thread(s). The coordinator configures hardware
performance counters by invoking the appropriate OS system calls. It invokes the
software signal generation system to determine memory addresses of software signal
channels. The coordinator communicates the type (counter or tag) of each signal,
hardware performance counters, and memory locations for software signal channels
to the observer thread. The coordinator binds each Shim observer thread to a single
hardware context. For each observer thread, we assign a paired neighbor hardware
context for application thread(s). The coordinator executes one or more application
threads on this paired neighbor. The coordinator starts the application and observer
execution. We add to the OS a software signal channel that identifies application
threads, such that Shim can differentiate multiple threads executing on its paired
neighbor, attributing each sample correctly. Shim thus observes multithreaded appli-
cations that time-share cores.
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Sampling system The Shim observer thread implements the sampling system. It
observes some number of hardware and software signals at a given sampling rate, as
configured by the coordinator. The sampling system observes hardware signals by
reading performance counters and the software signals by reading memory locations.
The coordinator initializes the sampling system by creating a buffer for samples. The
observer thread reads the values of the performance counters and software addresses
in a busy loop and writes them in this buffer, as shown in Figure 3.2.

We divide the observer into two parts, one for counters (lines 4 to 9) and another
for tags (lines 13 to 16). Software or hardware may generate counters, rates, or tag
signals. Recording counters and rates requires high fidelity in-order measurements.
We use the rdtscp() instruction, which returns the number of cycles since it has been
reset. It forces a synchronization point, such that no read or write may issue out of
order with it. It requires about 20 cycles to execute.

Each time Shim takes one or more counter samples, it first stores the current
clock (line 4 in Figure 3.2). It then synchronously reads every counter event from
either hardware performance counters or a software specified memory location and
then stores the clock again (line 9). We can measure rates by comparing values read
at one period to those read at the previous one. The difference in the clock tells
us the period precisely. If the time to read the counters (lines 4 to 9) varies from
period to period, the validity of the rate calculation may be jeopardized. As we
explain in Section 3.4, we can precisely quantify such variation and filter out affected
measurements. Because it is correct to sample any tag value within the period, we do
not read tags synchronously (lines 13 to 16).

The simple observer in Figure 3.2 stores samples in a buffer. Realistic observers
will use bounded buffers which are periodically consumed or written to disk, or they
may perform lightweight online analysis such as incrementing a histogram counter.
Chapter 4 shows one example of realistic observers, Tailor that correlates samples
from different system components online. Real-time feedback directed optimizers
can process and act on such data, Chapter 5 shows Elfen, a Shim-based scheduler,
continuously monitors the status of latency-critical requests, and makes real-time
scheduler decision based on the status.

Signal system The signal system generates software signals and selects hardware
and software signals.

For hardware signals, we choose and configure hardware performance counter
events. These configurations depend on the analysis and on which core the observer
executes. For example, when observing the number of cycles the application thread
executes, we only need the elapsed cycles event counter, when all hardware threads
execute at the same frequency. To measure how many instructions the application
executes, we need two counters on a two-way SMT processors to derive what happens
on the neighbor thread. One counter counts instructions retired by the whole core
and another one counts instructions retired by the Shim thread. The difference is due
to the application thread.

For software signals, we record the address of software channels where the appli-
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1 void shimObserver() {
2 while(1) {
3 index = 0;
4 buf[index++] = rdtscp(); // counters start marker
5 foreach counter (counters){ // hardware or software counter
6 rdtscp(); //serializing instruction
7 buf[index++] = rdpmc(counter) or read_signal(counter);
8 }
9 buf[index++] = rdtscp(); // counters end marker
10 // which application thread is executing the paired neighbor?
11 pid_and_ttid = *pidsignal;
12 buf[index++] = pid_and_ttid;
13 if (tags){
14 foreach tag (tags) // hardware or software tag
15 buf[index++] = rdpmc(tag) or read_signal(tag);
16 }
17 // online analysis here, if any
18 }
19 }

Figure 3.2: Shim observer loop.

cation writes the software signal. Applications and runtimes already generate many
interesting software signals automatically. For example, consider recording the mem-
ory allocation throughput to correlate it with cache misses. Many runtimes use bump
pointers which are a software signal reflecting memory allocation. As we explain in
Section 3.6.1, some JVMs also naturally produce a signal that reflects execution state
at a 15-150 cycle resolution. Of course if the address of a software channel changes, it
needs to be communicated to Shim. Note that updating a memory address after say,
every garbage collection, will be less intrusive than instrumenting every write of this
address for frequently written variables.

For software signals that require instrumentation, we modify the Jikes RVM com-
piler. For each signal, the program simply writes the value in the same memory
address (software channel) repeatedly. We experiment below with method and loop
identifier signals and show that even though they occur frequently, they incur very
low overheads on CMP. Because software signals write the same location, they exhibit
good locality. Furthermore, most modern architectures use write-back polices, which
coalesce and buffer writes, executing them in very few cycles.

Adding the instrumentation for software signals for highly mutating values in
the Shim framework incurs less observer effect than the instrumentation approach,
which both mutates the value and then typically writes it to a distinct buffer location,
rather than overwriting a single memory location.

This same software instrumentation mechanism may communicate hardware reg-
ister state that is only architecturally visible to the application thread, e.g., the pro-
gram counter and stack pointer could be written to memory as a software signal, but
we leave that exploration to future work.
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Figure 3.3: Four clock readings ensure fidelity of rate measurements. Grey regions depict
two measurements, tmmt

n and tmmt
n�1, in which Shim reads all counters. The sample period is,

Cs (red) to Ce (blue). If the ratio of red and blue periods is one, then tmmt
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does not induce noise. DTE discards noisy measurements of rate metrics based on this ratio.

3.4 Observation Fidelity

This section examines Shim’s observer effects and shows how Shim manages them to
improve its accuracy. This section describes and illustrates Shim’s (i) double-time error
correction (DTE) of samples of rate metrics; (ii) sample period randomization; and (iii)
some of its observer effects.

3.4.1 Sampling Correction for Rate Metrics

Many performance events are rate-based. For example, IPC relates retired instructions
and clock ticks with respect to a time interval. The two major considerations for rate
metrics are: (1) attributing a rate to one tag in the interval from possibly many tags
for discrete semantic events, and (2) ensuring fidelity of the measure in the face of
noise and timing skew.

Attribution of Tags to Sample Periods Although tags, such as method identifiers,
occur at discrete moments in time, counting metrics are calculated with respect to a
period (e.g., Ctn �Ctn�1 in Figure 3.3 explained below). Shim reads each tag signal once
during a sample period, and then attributes it to counters in that same period. Tags
correspond to the correct period, but not to any particular point within that period.
Shim reads all hardware and software tags immediately after it has completed reading
each counter value (i.e., after tn�1 + e0).
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Rate Metrics Rates depend on four measurements. For example, IPC requires two
instructions retired (IR) and two clock (C) measurements: IRtn � IRtn�1 /Ctn � Ctn�1 ,
ostensibly at times tn and tn�1. Since hardware can not read both simultaneously,
Shim takes each measurement at a slightly different time, tn and tn + e, resulting in:
IRtn+e � IRtn�1+e0/Ctn � Ctn�1 , at times tn, tn + e, tn�1, and tn�1 + e0. Figure 3.3 shows
two overlapping intervals in red and blue. For accurate rate-based measurements, we
must bound the skew between the intervals [tn, tn�1] and [tn + e, tn�1 + e0].

The time to take the measurements, tmmt plus the time spent idle, tidle defines the
sample period. Variance in tidle is not problematic, in fact, it helps remove bias. The
intervals [tn, tn�1] and [tn + e, tn�1 + e0] both cover a single tidle, so variation in tidle

cannot introduce skew between [tn, tn�1] and [tn + e, tn�1 + e0]. On the other hand, the
intervals [tn, tn�1] and [tn + e, tn�1 + e0] encompass two measurement periods, tmmt

n
and tmmt

n�1 of the exact same measurements, so variation in either measurement period
introduces skew. When the sample rate is high tidle becomes small, and variation in
tmmt may dominate. Variation in tmmt will thus be exposed as tidle approaches tmmt

and can introduce skew, which as we show next undermines the fidelity of rate-based
measures.

DTE Filtering of Rate Metrics We introduce double-time error correction (DTE) to
correct skew in rate metrics. DTE takes the two clock measures, Cs and Ce for
each measurement period tm, one at the start, and one at the end (lines 4 and 9
of Figure 3.2). The rate-based measure Ce

tn+e � Ce
tn�1+e0/Cs

tn
� Cs

tn�1
precisely identifies

measurement skew.

Note that CPC=Ce
tn+e �Ce

tn�1+e0/Cs
tn
�Cs

tn�1
will be 1.0 when the two clock readings

are not distorted. Since they measure the same idle period, if CPC=1 the time to take
the two distinct measurements tmmt is the same. DTE uses this measure to identify
statistically significant variation in tmmt and discards affected samples. DTE therefore
automatically discards noisy samples with significant variations in e and e0 since they
cannot correctly compute rate metrics. Figures 3.4(a) and (b) show the effect of DTE.
(Section 3.5 describes methodology.) The graphs plot on log scales IPC in green and
cycles-per-cycles (CPC) in orange. CPC=1 is ground truth. Figure 3.4(a) shows that
before filtering values are clearly distorted—CPC is as high as 175 and IPC is 37 on
a 4-way superscalar processor. Figure 3.4(b) shows IPC samples after DTE discards
all samples with CPC values outside a ±1% error margin. DTE filtering transforms
CPC to an impulse at 1.0 (by design) and eliminates all IPC values greater than 4
(which we know are wrong without explicitly testing). All these wrong rates were
introduced by sampling skew, which DTE detects and eliminates.

Figure 3.4(c) shows the fraction of good samples with DTE. At the highest fre-
quency, DTE discards over 50% of samples, but at periods of �2500, 90% or more of
samples are valid.
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superscalar processor.
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Figure 3.4: DTE filtering on SMT keeps samples for which ground truth CPC is 1.±0.01,
eliminating impossible IPC values. At small sample periods, DTE discards over half the
samples. At sample periods >2000, DTE discards 10% or fewer samples.



§3.5 Methodology 31

3.4.2 Randomizing Sample Periods

Prior work shows regular sample intervals in performance profiling, compared to
random intervals, introduces observation bias [Anderson et al., 1997; Mytkowicz et al.,
2010]. Figure 3.5 plots Shim’s variation in sample period and gap on a log/log scale
for SMT. We plot lusearch, but the results are similar for the other DaCapo benchmarks.
The figure plots the frequency distribution histogram of sample periods (Cs

tn
� Cs

tn�1
)

in green and the gap between samples in red. Figure 3.5 shows that there is enormous
variation in sample period and the gap. The most common sample period, ~500 cycles,
reflects only one percent of samples, and the gap between samples ranges from ~350
to ~49,000 cycles. Both SMT and CMP show a wide degree of variation, although
different. This result gives us confidence that the hardware is naturally inducing large
amounts of randomness in Shim’s sampling, and thus Shim avoids the sampling bias
problem due to regular intervals.

3.4.3 Other Observer Effects

The sampling thread has observer effects because it executes instructions, competing
and sharing hardware resources with the application. Many of Shim’s effects depend
on how many and often Shim samples memory locations and counters, and the
hardware configuration (SMT or CMP). Section 5.5 systematically quantifies many of
these effects.

This section examines the behavior of the sampling thread itself to determine
whether we can reason about it more directly. Figure 3.6 plots the SMT effect of Shim
on IPC, on a log scale. The blue curve shows IPC for the whole core while the red
curve shows the IPC just for Shim. The IPC of the Shim thread is extremely stable.
The underlying data reveals that when operating with a 476 cycle period, 67% of all
Shim samples are attributed to IPCs of 0.48 to 0.51 and 99% to IPCs of 0.54 to 0.43. By
contrast, the IPC of the workload is broadly spread. The uniformity of Shim’s time-
varying effect on the core’s resources makes it easier to factor out Shim’s contribution
to whole core measurements by simply subtracting its private counter value. For each
hardware metric, developers can plot Shim, the total, and the difference to reason
about observer effects.

Summary Shim corrects skewed samples of rates, randomizes sample periods, and
offers a constant instruction execution observer effect on SMT. These features reduce,
especially when compared to interrupt-driven and instrumentation profiling, but do
not eliminate, observer effects.

3.5 Methodology

The evaluation in this chapter uses the following methodologies.
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Software implementation We implement Shim in Jikes RVM [Alpern et al., 2005],
release 3.1.3 + hg r10718, a Java-in-Java high performance Virtual Machine. We
implement all of the functionality described in Section 5.3 by adding coordinator
functionality, by modifying the VM scheduler, and by inserting signals with the
compiler and VM. All measurements follow Blackburn et al.’s best practices for Java
performance analysis [Blackburn et al., 2006a]. We use the default generational Immix
collector [Blackburn and McKinley, 2008] with a heap size of six times the minimum
for each benchmark and a 32 MB fixed size nursery to limit full heap collections
to focus on application code in this chapter. We measure an optimized version of
the code using replay compilation. Jikes RVM does not have an interpreter: it uses
a baseline compiler to JIT code upon first execution and then recompiles at higher
levels of optimization when a cost model predicts the optimized code will amortize
compilation cost in the future [Arnold et al., 2000]. We record the best performing
optimization plan, replay it, execute the resulting code once to warm up caches, then
we iterate and only report measurements from this third iteration. We run each
experiment 20 times and report the 95% confidence interval.

Benchmarks We draw benchmarks from DaCapo [Blackburn et al., 2006a],
SPECjvm98 [SPEC, 1999], and pjbb2005 [Blackburn et al., 2006b] (a fixed workload
version of SPECjbb2005 [SPEC, 2006] with 8 warehouses and 10,000 transactions per
warehouse.) The DaCapo and pjbb2005 benchmarks are non-trivial real-world open
source Java programs under active development [Blackburn et al., 2006a]. In Sec-
tions 3.4 and 3.7, we use lusearch, a search application from the industrial-strength
Lucene framework. The lusearch benchmark behaves similar to commercial web
search engines [Haque et al., 2015]. We confirmed that profiling findings for lusearch
generalize to other DaCapo benchmarks.

Hardware & OS We use a 3.4 GHz Intel i7-4700 Haswell processor [Intel, 2013a] with
4 Chip Multiprocessor (CMP) cores, each with 2 way Simultaneous Multithreading
(SMT) for 8 hardware contexts; Turbo Boost maximum frequency is 3.9 Ghz, 84 W
TDP; 8 GB memory, 8 MB shared L3, four 256 KB shared L2s, and four private 32 KB
L1 data caches, 32 KB L1 instruction caches, and 1.5 K µop caches for each core.

We use Linux kernel version 3.17.0 with the perf subsystem to access the hardware
performance counters. We add to Linux a software signal that identifies threads,
allowing thread switches to be identified by Shim on SMT.

3.6 Evaluation

This section evaluates the strengths, limitations, and overheads of a variety of Shim
configurations and sampling rates. We start with simple, but realistic profiling sce-
narios, and build up more sophisticated ones that correlate software and hardware
events. (1) We first compare Shim sampling a highly mutating software signal that
stores loop and method identifiers in a single memory location on the same core in
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an SMT context and on a different CMP core. Both exhibit high overheads at very
fine (<30 cycle) resolutions due to execution resource competition on SMT (~60%)
and caching effects on CMP (~100%). However, CMP overheads are negligible for
coarser (~1200 cycle) resolutions. (2) When Shim computes IPC, a rate metric, on
SMT with hardware performance counters (the relevant counters are not accessible
on another CMP core), high frequency sampling overheads are 47%, similar to sam-
pling a software signal on SMT. (3) We then configure Shim to correlate method and
loop identifiers with IPC on SMT and show that the overheads remain similar. (4)
Finally, we show that if hardware vendors made local performance counters visible
to the other cores, Shim overhead on CMP for correlating IPC with a highly mutating
software signal would drop to essentially nothing at a resolution of ~1200 cycles.

3.6.1 Observing Software Signals

This section evaluates Shim overheads in configurations on the same core in an
SMT hardware context and on a separate core in a CMP hardware context when it
samples a software signal by simply reading a memory location. Comparing these
configurations shows the effects of sharing execution resources with SMT versus
inducing cache traffic with CMP. We control sample rate and contention by idling the
Shim thread.

Method and loop identifiers We repurpose yield points to identify methods and
loops as a fine-grain software signal. JVMs use yield points to synchronize threads
for activities such as garbage collection and locking. The compiler injects yield points
into every method prologue, epilogue, and loop back edge. A very efficient yield
point implementation performs a single write to a guard page [Lin et al., 2015]. When
the VM needs to synchronize threads, it protects the guard page, causing all threads
to yield as they fault on their next write to the protected page. Jikes RVM implements
yield points with an explicit test rather than a guard page, so for this experiment we
simply add to each yield point a write of its method or loop identifier, adding an
average of 1% execution time overhead. We measure yield point frequency and find
that the average period ranges from 14 (jython) to 140 (avrora) cycles. The evaluation
uses a JVM configuration with the additional store, but without Shim, as the baseline.
Shim increments a bucket in a method-and-loop-identifier histogram. We pre-size this
histogram based on an earlier profile execution. These changes produce a low-cost,
high-frequency software signal that identifies the fine-grain execution state.

Overheads Figures 3.7(a) and (b) show Shim sampling yield points with three sam-
pling periods from 15 cycles to 184 K cycles on CMP and SMT hardware. A period
of 184 K cycles (18.5 KHz) approximates the sample rate of tools such as VTune and
Linux perf (1-100 KHz). We throttle Shim to slow its sampling rate using nop instruc-
tions or by calling clock_nanosleep(), depending on the rate. The error bars on these
and other figures report 95% confidence interval.
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The green bars in Figure 3.7(a) show Shim in a CMP configuration sampling
a memory location as fast as it can, resulting in an average sample period of 30
cycles over all the benchmarks, incurring an overhead of around 100%. This sam-
pling frequency imposes a high overhead on applications because each application
frequently writes the yield point value, which dirties the line. Every time Shim’s
observer thread reads it, the subsequent write by the application must invalidate the
line in the observer’s cache. This invalidation stalls the application frequently at high
sample rates. Section 3.6.2 examines this effect in more detail. Decreasing the sample
period to ~1200 cycles reduces these invalidations sufficiently to eliminate most of
the performance overhead.

The cost of observing software signals would be substantially reduced by a special
read instruction that returns the value without installing the line in the local cache and
where the cache coherence protocol is modified to ignore the read, as implemented
in some ARM processors [Stevens, 2013].

Figure 3.7(b) shows the cost of observing a single software signal on the same
core with SMT as a function of sampling rate. On the same core, Shim can sample
memory locations at a higher rate compared to sampling from another core (every 15
vs 30 cycles). The rate on SMT compared to CMP is faster because Shim on SMT is
not limited by cache coherence traffic, only by competition for execution resources.
Note that restricting the observer thread to fewer CPU resources, for example one
issue slot, using priorities (such as those on MIPS and the IBM Power series [Snavely
et al., 2002; Boneti et al., 2008]) or some other mechanism, could significantly reduce
this overhead.

Comparing the two, note that because the memory location mutates frequently, it
is cheaper to sample on SMT than CMP at the highest sampling rates, but SMT is still
relatively expensive for a ~15 cycle period, at 61%. However, with sample periods as
low as ~1500 cycles, SMT overheads remain high, whereas CMP sampling overhead
drops to a negligible amount. The next section studies these effects in more detail.

3.6.2 Software Signal Breakdown Analysis

Software signal overhead has two components: (1) application instrumentation, and
(2) the Shim observer thread competing either for the cache line on a separate CMP
core or for hardware resources on the same SMT core.

We use the microbenchmark in Figure 3.8 to understand how the rates of pro-
ducing software signals and consuming them impacts overheads. The producer on
the left generates events by writing into one memory location. The write to the local
variable dummy forces the machine to make the write to flag architecturally visible.
On the right, the consumer reads the flag memory location and increments a counter.

The inner for loops control producer and consumer rates, which we adjust by
varying the number of rdtscp instructions. In Figure 3.9(a), the blue line (increasing p-
wait) shows the consumer observing as fast as it can, while the producer slows its rate
of event production on the x-axis. Conversely, the red line shows the producer writing
as fast as possible, while the consumer slows its rate of consumption on the x-axis.
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1 extern int flag;
2 void producer() {
3 int dummy;
4 for(j=0; j<100000; j++){
5 for (i=0; i < p_wait; i++){
6 rdtsc();
7 }
8 write flag;
9 // force visibility of
10 // write to flag
11 write dummy;
12 } }

(a) Producer

1 extern int flag;
2 extern int counter;
3

4 void consumer() {
5 while(1){
6 for(i=0; i< c_wait; i++){
7 rdtsc();
8 }
9 read flag;
10 counter++;
11 }
12 }

(b) Consumer

Figure 3.8: Microbenchmarks explore software overheads.

Except when both operate at their highest rate, both rates impact overhead similarly.
Figure 3.9(b) reports the number of write-invalidations as a function of consumer
(read) sample rate when the producer writes most frequently. More samples induce
more invalidations. With highest frequency production and consumption rates, write-
invalidation traffic dominates overhead, inducing observer effects. Increasing the
sampling or production period drops overheads to less than 5%.

Figure 3.10 shows the same experiment on SMT hardware where overhead is dom-
inated by the consumer because the critical CPU core resources are shared between
two active SMT contexts. The more often the consumer reads the tag, the more it
interferes with the producer. When the consumer is sampling as fast as it can, and
the producer is writing at a high rate (the blue line in Figure 3.10(a)), they compete
for shared execution resources. When the producer and the consumer increase the
sampling or production period, the overhead drops to 10%, but much higher than the
same CMP case (5%). The reason is that some critical CPU resources of the shared
core are equally partitioned between two active SMT contexts, thus even the consumer
samples at low frequencies, the producer is not able to use resources in the other
partition.

3.6.3 Observing Hardware Signals

Figure 3.11 illustrates the overheads of Shim observing IPC, a rate-based hardware
signal, on SMT at three sample rates. IPC cannot be evaluated directly on CMP
because the instructions retired performance counter is not visible to other cores. In
this experiment, Shim reads two retired instruction counters (one for the core, one for
Shim itself), reads the cycle counter, computes application IPC and CPC, performs
DTE, and builds an IPC histogram with 500 buckets for IPC values from 0 to 4.
Because Shim consumes execution resources, it incurs overhead of around 47% at
sample periods of ~400 and ~1900 cycles. Sampling every 185 K cycles incurs a penalty
of 6.3%. Although overhead is relatively high, because we discard perturbed samples
and the Shim observer thread offers a constant load, we believe that the signals
are not obscured (recall the analysis in Section 3.4.3 and of Figure 3.6). Hardware
manufacturers could validate our results with ground truth using their proprietary
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hardware measurement tools.

3.6.4 Correlating Hardware and Software Signals

This experiment measures overheads when we configure Shim to correlate method
and loop identifiers with IPC and with data cache misses. These are practical con-
figurations that will help developers identify poorly performing low IPC loops and
methods, and whether cache misses are responsible. Because Shim needs two per-
formance counters to correctly compute rate metrics, the cache miss configuration
consumes five hardware performance counters.

Figure 3.12 compares Shim sampling as fast as it can when it samples method
and loop identifiers and IPC, with sampling them plus cache misses. Adding another
performance counter makes Shim sample more slowly (729 versus 495 cycles) because
it must read both core and Shim counters and it is limited by the 30 to 40 cycle latency
of reading each counter and executing a rdtscp instruction. However, slowing Shim
to gather more hardware information incurs less overhead because it stalls more
often consuming less shared CPU resources, inducing fewer observer effects on the
application. Section 3.7 shows two detailed case studies on critical methods using
similar configurations that reveal how this fine-grain information generates hardware
and software insights that prior work cannot and that suggest future directions for
optimizations and mechanisms.

3.6.5 Negligible Overhead Fine-Grain Profiling

This section shows that if all profiling work could be performed on the separate CMP
core, overheads and observer effects would be extremely low. Figure 3.13 shows Shim
reading three hardware performance counters on a separate CMP core, sampling
as fast as it can, which results in a period of ~300 cycles on average. We use three
counters because this is the minimum required to compute a rate. The time to read
one performance counter ranges from 30 to 40 cycles, limiting the sample rate. Shim
executes the reads in sequence with the synchronous rdtscp() instruction (line 6 of
Figure 3.2), because all reads must be performed in order to correctly correlate and
count events. This analysis shows that Shim can operate at a high sample rate with no
statistically significant overhead when reading hardware signals from another core.
This result motivates increasing the visibility of core-private hardware performance
counters to other cores.

3.7 Case Studies

This section shows examples of the diagnostic power of fine-grain program observa-
tions and compares it to the average results (reported in the top of each figure in this
section) that previous tools must report for these same metrics because their sampling
period is much longer.
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We consider two phases of performance-critical garbage collection in Jikes RVM.
We first examine the response of the two phases when using DVFS to change the
frequency from 3.4 to 0.8 GHz. Then we examine their response to turning on and
off the hardware prefetcher. We instrument the collector with software signals that
identify the phases. Shim reads the software and hardware signals to compute IPC
and memory bandwidth and attributes them to the appropriate phase.

We choose two phases on the critical path of garbage collection: (1) stack scanning
(stacks), where the collector walks the stacks of each executing thread, identifying
all references and placing them in a buffer for later processing, and (2) global scan-
ning (globals), where the collector walks a large table that contains all global (static)
variables, identifies references and places each reference in a buffer. Superficially, the
phases are similar: the collector walks large pieces of contiguous memory identifying
and buffering references which it processes in a later phase. In the case of globals, a
single contiguous byte map straightforwardly identifies the location of each reference.
Global scanning performs a simple linear scan of the map. On the other hand, stack
scanning requires unwinding each stack one frame at a time and dereferencing a
context-specific stack map for every frame to find the references within it. This highly
irregular behavior leads to poor locality.

In a modern generational garbage collector, these phases can dominate the critical
path of frequent ‘nursery’ collections, particularly in the frequent case where object
survival is low. Therefore, VM developers are concerned with their performance. The
good and poor locality of these two phases also serves as a pedagogical convenience
for our analysis of DVFS and prefetching.

3.7.1 DVFS of Garbage Collection Phases

This section evaluates IPC and memory bandwidth at two clock speeds: 3.4 GHz
(default) and 0.8 GHz on the Haswell processor. Figure 3.14 plots IPC and memory
bandwidth for the stack phase (poor locality) and Figure 3.15 plots the global phase
(good locality). Figure 3.14(a) plots the distribution of sampled IPC values at 3.4 GHz
(purple) and 0.8 GHz (orange). The slower clock improves the IPC from 0.59 to 0.83,
which is unsurprising for a memory-bound workload because memory accesses are
relatively lower latency at lower clock rates. The purple line shows a large spike
where many samples observe an IPC of ~0.10 at 3.4 GHz. This spike disappears when
at 0.8 GHz (orange line), instead the IPC distribution is quite uniform. However, the
slower clock speed has almost no affect on the distribution of samples above 1.3,
which presumably reflect program points that are not memory bound.

Figure 3.14(b) shows the difference in memory bandwidth consumption between
the two clock rates on the stacks phase. The histograms bucket samples according to
IPC (x-axis) and for each bucket plots the average number of memory requests per
100 cycles for 3.4 GHz (purple) and 0.8GHz (orange). The lower clock rate increases
memory bandwidth by 20% from 0.91 to 1.09 memory requests per 100 cycles. When
IPC is low, the memory bandwidth increases by a factor of two from about 1.4 requests
per 100 cycles to about 3.
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The memory-bound stack phase may benefit from a DVFS-reduced clock rate be-
cause the relatively more effective use of memory bandwidth leads to a 40% improve-
ment in IPC. This fine-grained analysis also shows that the phase is not homogenous,
and many samples show little response to DVFS.

Figure 3.15(a) plots the distribution of sampled IPC values for the globals phase
(good locality) at 3.4 GHz (purple) and 0.8 GHz (orange). The graph shows a strikingly
more focussed and homogenous distribution than the stacks phase. Interestingly,
we see a counter-intuitive IPC reduction for the lower clock speed. Figure 3.15(b)
shows that there is no clear change in memory bandwidth. The data to the left of
Figure 3.15(b) is very noisy, but this noise is due to a paucity of samples—95% of all
DRAM requests are due to samples with IPCs greater than 1.2. A slightly lower IPC
at a slower clock is non-intuitive, but we hypothesized that the hardware prefetcher
was responsible and examine this hypothesis next.

Before we continue, note that fine-grain sampling reveals the unique behavior
of global scanning in the context of the entire garbage collection, which is memory
bound on average and thus more resembles stack scanning. As the granularity of
sampling increases it will tend toward the average for the whole of garbage collection,
obscuring the distinct behavior of globals and stacks. Even if the two behaviors were
equally representative of garbage collection, coarse-grain sampling may still miss the
drop in IPC, because the magnitude of the response to DVFS is so much higher for
the stacks.

This section compares the effect of enabling and disabling the hardware prefetcher
on IPC and memory bandwidth on the two phases. Figure 3.16 plots the stacks (poor
locality). Figure 3.16(a) plots the distribution of sampled IPC values with (purple)
and without (orange) prefetching. The differences are modest; on average turning
off the prefetcher reduces IPC from 0.60 to 0.57; a 5% reduction. On the other hand,
Figure 3.16(b) shows a more substantial reduction in memory bandwidth, from 0.91
requests per 100 cycles to 0.68; a 25% reduction. Together these graphs suggest that
the hardware prefetcher is not effective at compensating for poor locality since the
reduction in memory traffic outstrips the IPC decrease by a factor of 5.

Figure 3.17 considers the hardware prefetcher and the globals phase (good lo-
cality). Figure 3.17(a) shows a very clear reduction in IPC when the prefetcher is
disabled, from 1.48 to 1.15. Figure 3.17(b) shows that unlike the stack roots phase, the
average memory bandwidth is unaffected (values less than 1.2 IPC with prefetching
on contribute only 5% of traffic and are noisy due to a paucity of samples).

3.7.2 Hardware Prefetching of Garbage Collection Phases

In the stack phase (poor locality), the prefetcher is not effective and it consumes
additional memory bandwidth compared to not prefetching at all, reshaping the
data in the caches, and to no effect. Whereas the prefetcher for the globals (good
spatial locality) is so accurate that it not only delivers the correct data in a timely
fashion, it actually reduces memory bandwidth. These results suggest that if hard-
ware vendors provide low latency ways to adjust DVFS and prefetching, a dynamic
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Figure 3.18: DVFS effect on IPC for globals with prefetching off.

optimization could improve efficiency and perhaps performance by adjusting DVFS
and prefetching at a fine granularity.

Figure 3.18 reconsiders the effect of DVFS on globals, this time with prefetch-
ing disabled. We find that IPC increases from 1.15 to 1.29, matching intuition and
confirming our hypothesis (compare to Figure 3.15(a)).

Figure 3.19 plots time line series for IPC and memory bandwidth. These figures
further illustrate the different IPC behaviors of the two phases and that memory
bandwidth consumption is highly correlated with low IPC, explaining their behaviors.
Note that simply examining the averages in these results that coarse-grain tools would
produce does not lend itself to these insights.

3.8 Related Work

Four themes in profiling and performance analysis are most related to our work:
profilers that sample application behavior using interrupts, instrumentation, direct
performance measurement, simulators and emulators, and feedback-directed opti-
mization.

Interrupt-Driven Sampling Interrupt-driven samplers have proved invaluable at
helping systems builders and application writers by performing low overhead sam-
pling, identifying software hotspots, and attributing performance pathologies to code
locations. DCPI [Anderson et al., 1997] and Morph [Zhang et al., 1997] are progen-
itors of today’s profiling tools such as VTune, OProfile, Linux perf, and top-down
analysis [Intel, 2014; Linux, 2014a; OProfile, 2014; Strong, 2014; Yasin, 2014]. These
systems use interrupts to sample system state and build a profile of software/hard-
ware interactions. DCPI introduced random sample intervals to avoid the sampling
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bias suffered by prior timer-based systems [Anderson et al., 1997]. Elapsed time or
a count of hardware events may define the sample period. Nowak and Bitzes [2014]
overview and thoroughly evaluate Linux perf on contemporary hardware. New hard-
ware and software support, such as Yasin’s top-down analysis [Yasin, 2014], PEBS,
and Processor Tracing [Strong, 2014] add rich information about the hardware and
software context at each sample, but are still limited by sample rate.

Because the OS services interrupts on critical code paths within the kernel, inter-
rupt driven systems must throttle their sample rate to avoid system lockup [Anderson
et al., 1997; Intel, 2014; Linux, 2014b]. The dependence on interrupts limits these
tools’ ability to resolve performance behavior to events visible at sampling periods
of around 30 K cycles. In contrast, Shim exploits unutilized hardware contexts to
continuously monitor performance, instead of using interrupts, and thus operates at
resolutions as fine as 15 cycles. At a period of around 1 K cycles, many configurations
have very low overhead. Shim avoids sample bias as a result of its natural variation
in sample period.

Direct Measurement Directly reading hardware performance counters is also a
widely used approach [Ammons et al., 1997; Pettersson, 2003; Linux, 2014a; Demme
and Sethumadhavan, 2011; Zhao et al., 2008; Ha et al., 2009]. Unfortunately perturbing
the code with performance counter reads that take ~30 to 40 cycles each induces
observer effects–shorter periods increase coverage, but increase observer effects. In
contrast, Shim reads hardware counters without perturbing the application code
itself.

Instrumentation Profilers Instrumentation profiling tools such as PiPA and CAB
insert code into applications that records software events of interest in a buffer, such
as paths and method identifiers, for online or offline processing [Ha et al., 2009; Zhao
et al., 2008]. They however did not correlate hardware and software events, although
their frameworks could support it. Ammons et al. [1997] combine path profiling
with hardware events, but suffer substantial performance overheads. Shim profiles
software events at very low overhead, either by injecting code that emits software
signals, or by observing existing software signals. Instrumentation profilers such as
PiPA and CAB can produce complete traces or samples. Sampling profilers such
as Shim cannot guarantee a complete trace, so are unsuitable when completeness
is a requirement. Mytkowicz et al. show that despite the problem being identified
a decade earlier [Anderson et al., 1997], many instrumentation profilers still suffer
bias [Mytkowicz et al., 2010].

Simulators and Emulators Simulators and emulators profile software at instruction
and even cycle resolution. Shade [Cmelik and Keppel, 1994], Valgrind [Nethercote and
Seward, 2007], and PIN [Luk et al., 2005; Wallace and Hazelwood, 2007] are examples
of popular tools that use binary re-writing and/or interpretation to instrument and
profile application code. Although they profile at an instruction level and emulate
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unimplemented hardware features, these tools are heavyweight. Instead of measuring
hardware performance counters, they instrument code and emulate hardware. They
are therefore unsuitable for correlating fine-grain hardware and software events.

Feedback-Directed Optimization Feedback-directed optimization is an essential el-
ement of systems that dynamically compile, including managed language runtimes
and dynamic code translation software such as Transmeta’s code morphing soft-
ware [Dehnert et al., 2003]. These systems use periodic sampling to identify and then
target hot code for aggressive dynamic optimization. Shim provides a high resolution,
low overhead profiling mechanism that lends itself to feedback directed optimization.

3.9 Summary

Performance analysis is a critical part of computer system design and use. To op-
timize systems, we need tools that observe systems at granularities that can reveal
their behavior. Shim views computer systems as hardware and software signal gen-
erators. It repurposes existing hardware to execute a profiling observer thread that
simply reads performance counters and memory locations to sample hardware and
software signals. We show that configurations of Shim offer a range of overheads,
sampling frequencies, and observer effects. We show how to correct for noise and
control for some observer effects. We propose modest hardware changes that would
further reduce Shim’s overheads and observer effects. We present case studies that
demonstrate how this performance microscope delivers a new level of analysis and
potential optimizations.

Engineers can observe the fine-grain behavior of online production systems with
Shim. However, to design new optimizations, having the power of seeing behavior
is not enough, they need to analyze and control system behavior such as fine-grain
interactions between system components. The next chapter introduces a Shim-based
real-time latency controller, Tailor, that continuously monitors hazardous system
behaviors and takes real-time control actions to reduce their impact.



Chapter 4

Tailor

Engineers craft computer systems by using and providing rich abstractions. The
result is a complex system stack. This approach improves engineer productivity
significantly, but also poses a challenge to latency-critical web services since these
services have to consistently deliver fast responses. This is in part because behaviors
of system components such as slow wake-ups and garbage collections can delay
latency-critical requests by orders of magnitude longer than their target latency. It
is hard to identify and address such hazardous behaviors because they are rare,
unpredictable, invisible, and may even be unavoidable.

The previous chapter introduced Shim, a new profiling approach, that can observe
fine-grain system behavior. Shim’s high-frequency, high-fidelity profiling enables a
new approach to monitoring and controlling hazardous system behaviors for latency-
critical web services. This chapter introduces Tailor, a real-time latency controller
that uses a Shim-based high-frequency profiler and an application-level network
proxy to continuously monitor and act on hazardous system behaviors. Tailor
identifies such behaviors by recording and analyzing fine-grain interactions of system
components. For web services that support local-node redundancy, Tailor uses a
backup server on the same machine to mitigate the impact of unavoidable random
hazardous behaviors.

This chapter is structured as follows. Section 4.2 describes the design and im-
plementation of Tailor. Section 4.3 shows our experimental setup, and Section 4.4
demonstrates how Tailor identifies and addresses hazardous system behaviors.

4.1 Introduction

Developers of modern latency-critical web services, from search to key-value store ser-
vices to server-side rendering, leverage the power of high-level abstractions, exploiting
managed languages, third-party libraries, application frameworks, and operating sys-
tem services. The result is a complex system stack. For example, Hypernova [Airbnb,
2018], AirBnB’s server-side rendering service implemented in JavaScript and running
on the Node.js run-time system, relies on the React library [Facebook, 2018] to render
web pages. ElasticSearch [Elastic, 2019], a Java distributed search engine, delegates
core indexing and searching work to Apache Lucene [Apache Lucene, 2014], a Java
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(bottom) is very different to the server-observed latency (top).

open-source information retrieval software library. And beneath this stack must sit
an operating system with built-in network support and all the complexity it brings.

At the same time, to meet user performance requirements, interactive web services
have strict service-level objectives (SLOs) on tail latency, for example, a 99th percentile
latency of 10 ms. It is a challenge to consistently deliver low-latency responses on a
complex system stack, in part, because system components can delay latency-critical
requests by orders of magnitude larger than the target latency.

Figure 4.1 shows the life of a simple request. While the request travels through the
system stack, many system behaviors can be hazardous to the request latency, for ex-
ample, the kernel can delay scheduling to the application server after the wake-up (the
red bar between the wakeup event and the schedule event); and the operating system
network stack can delay data transmission (the red bar between the finish-request
event and the TCP/IP-xmit event). Many of these delays caused by the operating
system may occur before or after the application actually processes the request, thus
compared with client-observed latency, the server-observed latency may differ greatly.

It is hard to identify such hazardous system behaviors because they are rare,
unpredictable, and typically beyond the applications’ control. Unfortunately, it is
even harder to address these behaviors. One typical example is garbage collection,
which provides a convenient memory usage abstraction to applications and runs
periodically to recycle memory. Collections are rare and unpredictable. When they
happen, they may take a significant portion of computation resources for a while.
Some collections may even stop all application threads for a long period.

Shim’s high-frequency profiling enables a new approach to identifying and ad-
dressing these hazardous system behaviors in real time. This chapter introduces
Tailor, a real-time latency controller that uses a Shim-based high-frequency profiler
and an application-level network proxy to monitor and act on hazardous system be-
haviors. Tailor continuously identifies hazardous system behaviors for slow requests
by recording and analyzing request-related events generated by system components.
It presents timelines showing how hazardous system behaviors affect slow requests
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to help engineers understand and address root causes. For unavoidable random
hazardous system behaviors, such as garbage collections, Tailor uses local-node
redundancy to mitigate their impact.

To identify hazardous behaviors, Tailor creates software channels and a set of
request-related events, such as wake-ups and scheduling in the OS, garbage collec-
tions in the JVM, and starting and finishing requests in the application server. Signals
of these events show how the system stack processes requests at a fine granularity.
Tailor instruments system components to generate these request-related events into
the software channels. While the proxy forwards requests and responses for the
active and backup servers, Tailor uses the high-frequency profiler to continuously
record the events from the software channels to a timeline stream and also index the
stream with the request identifier for speeding up analyzing. Whenever the proxy
detects a slow request, it searches related events from the timeline stream, analyzes
how system behaviors affect the request latency, and then presents a timeline view to
help developers understand and address hazardous system behaviors.

However, some hazardous system behaviors are unavoidable, such as garbage
collections. For web services that support local-node redundancy, Tailor uses a local
redundant server to mitigate the impact of rare, random but unavoidable behaviors.
The Shim profiler continuously detects pre-programed hazardous events. As soon as
it detects one, it immediately takes real-time actions to reduce the event’s impact. For
example, to act on garbage collections that occur on the active server, Tailor switches
the backup server with the active server, and then re-sends all on-going requests to
the new active server which is unlikely to be doing a garbage collection.

In this chapter, we use a Lucene-based search server from the Lucene regression
performance framework [McCandless, 2019] as our latency-critical service. We con-
figure a set of search requests that demand less than 2.5 ms server time. We show
that when sending these requests to the search server under light load on Linux, the
requests can be delayed by as much as 46 ms. We demonstrate that Tailor identifies
major root causes of the long tail: TCP buffering, slow page faults after the deep
sleep, and unavoidable JVM pauses caused by class loading and garbage collections.
We adjust system configurations to address the avoidable ones. For unavoidable JVM
pauses, Tailor reduces their impact by scheduling in-flight requests to the backup
server. We show that with these optimizations, Tailor reduces the maximum client
latency by nine times from 41-46 ms to 3-5 ms.

In summary, contributions of this chapter include:

• Tailor, a real-time latency controller that continuously monitors and acts on
hazardous system behaviors.

• A set of Shim events for tracking latency-critical network requests.

• The use of the local-node redundancy to mitigate the impact of random un-
avoidable hazardous behaviors.
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4.2 Tailor Design and Implementation

This section describes the design and implementation of Tailor, in which a Shim pro-
filer and an application-level network proxy are combined together to continuously
monitor and act on hazardous system behaviors for latency-critical web services. Tai-
lor instruments system components to generate TaleChain events that show how
the system stack processes latency-critical requests into software channels with low
overhead. Inside the Tailor process, a Shim observer thread continuously samples
TaleChain signals at high frequencies on a separate hardware context, recording
TaleChain events into a timeline stream and promptly taking preprogrammed ac-
tions on hazardous TaleChain events. Another proxy thread also runs on a separate
hardware context, forwarding requests and responses for both active and backup
servers, analyzing and presenting how system behaviors affect the latency of slow
requests. On hardware with SMT support, Tailor binds the profiler and the proxy
threads on the same CPU core but different hardware threads, saving hardware
resources.

This section first explains TaleChain events, then describes the Tailor profiler
and proxy, and finally shows how Tailor uses local-node redundancy to mitigate the
impact of unavoidable JVM pauses by taking real-time control actions on JVM events.

4.2.1 TaleChain Events

As discussed in Section 2.1.1, we view computer systems as signal generators whose
behavior can be observed from their software and hardware events. Tailor observes
the behavior of latency-critical web services with TaleChain events.

Table 4.1 lists TaleChain events used for analyzing the behavior of Lucene search
requests, covering four major components of the system stack: Linux, the JVM, Lucene
servers, and Tailor. All events have shared fields indicating what the event is (the
type field) , when the event is generated (the timestamp field), and who generates
the event (the tid and pid fields). Events may also have other fields representing
event-specific semantics, for example to_tid and to_gid of the wakeup event identify
the target task that was woken up by the event generator.

TaleChain events have strong semantic connections. For example, a timeline of
sequential events ranked by the timestamp reflects the behavior of system components
in a period. The timestamp distance between a wakeup event and the following
schedule event with the same to_tid and to_gid fields indicates how long the task
waits in the scheduling queue. The timestamp distance between a Systemcall event
and the following successful TCP-xmit event with the same buffer address shows how
long the request response was buffered by the network stack.

Semantic connections between events enable Tailor to analyze how system behav-
iors affect requests. Figure 4.2 shows a timeline of sequential TaleChain events. The
timestamp distance between the proxy-start event (yellow color) and the proxy-end
event (yellow color) is the server-observable latency, and events in the period reflect
how system components behave when processing the request. Following semantic
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Figure 4.2: A timeline of TaleChain events shows the behavior of requests.

links between TaleChain events, Tailor is able to trace the request flow, as shown in
Figure 4.2 where the blue arrows chain the proxy-start event, then the Lucene-receive
event, the Lucene-start event, the Lucene-end, and finally the proxy-end event.

As discussed before, the server-observed latency can be wildly different from the
client-observed latency since hazardous system behaviors may happen outside of the
server-observable period. With TaleChain events, Tailor is able to trace from the
proxy-start event back to the event corresponding to reading requests from ethernet
card (softirq), and from the proxy-end event forward to the events corresponding
to sending out the response to the ethernet card, presenting an end-to-end timeline
view of requests. The black arrows in Figure 4.2 show the process of expanding the
period by following semantic links: The proxy-start event is linked to the previous
schedule event as the two events are generated by the same task, then back to the
wakeup event that shows which task wakes up the proxy thread, finally back to the
softirq event indicating when the operating system network stack processes the
incoming TCP segments of the request; The proxy-end event is linked forward to the
TCP/IP-xmit event showing when the network stack transmits the response to the
ethernet card.

Tailor instruments system components to generate TaleChain events into soft-
ware channels (memory locations). We express the type of TaleChain events as
structures in C (line 9 in Figure 4.3), and the type of software channels as a union
of event structures (line 1 in Figure 4.4). Software channels can be viewed as single-
entry buffers where generating a new event to the same channel overwrites the old
one, it is the profiler’s job to record high-fidelity, high-frequency signals with the
right set of counters. For example, for the generators that concurrently generate
high-frequency events, the profiler can use per-CPU or per-task channels to reduce
cache contention between the generators. For generators that mix high-frequency
events with important low-frequency events, to avoid signal aliasing, the profiler can
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1 struct shared_fields
2 {
3 u64 timestamp;
4 u32 type;
5 u32 seqid;
6 u32 tid;
7 u32 pid;
8 }
9 struct wakeup_event
10 {
11 struct shared_fields fields;
12 int to_tid;
13 int to_pid;
14 };
15

16 /******* signal generator ******/
17 core.c::try_to_wake_up(struct task_struct *target)
18 {
19 struct wakeup_event *channel;
20 ......
21 channel = __this_cpu_read(kernel_2nd_channel);
22 // shared fields
23 channel->type = WAKEUP_SIGNAL_TYPE;
24 channel->tid = current_tid;
25 channel->pid = current_pid
26 c->seqid += 1;
27 // wake-up specific fields
28 c->wakeup.to_tid = task_pid_nr(target);
29 c->wakeup.to_pid = task_tgid_nr(target);
30 // do this last
31 channel->timestamp = rdtsc();
32 .....
33 }

Figure 4.3: Tailor instruments Linux to generate the kernel wakeup event into the software
channel.

create different channels for the two types of events. Figure 4.4 lists the channels
Tailor creates for the Lucene workload. There are two per-CPU software channels,
kernel_1st_channel for syscall and pagefault events and kernel_2nd_channel for
other OS signals, one per-task software channel for a Lucene server, one channel for
the proxy, and one channel for a JVM.

Figure 4.3 shows an example of the wakeup event. Tailor instruments Linux’s
try_to_wake_up function to generate the wakeup event into the current CPU’s
kernel_2nd_channel. Next, we discuss how the Shim profiler records TaleChain
events from software channels into the timeline stream.

4.2.2 Tailor Profiler and Proxy

Figure 4.5(a) shows the architecture of Tailor, which consists of two parts: a single-
thread Shim profiler and a single-thread event-driven application-level network proxy.
For web services that support local-node redundancy, Tailor uses a local redundant
backup server to mitigate the impact of unavoidable hazardous system behaviors.
To avoid interference between Tailor components, Tailor binds them to different
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1 union software_channel {
2 //The kernel events
3 struct wakeup_event wakeup;
4 struct scheduler_event scheduler;
5 struct softirq_event softirq;
6 struct tcp_event tcp;
7 ...
8 //The JVM events
9 struct JVM_event jvm;
10 ...
11 //The application events
12 struct app_events request;
13 }
14 };
15 // Per-CPU channels for high-frequency syscall and pagefault events.
16 DEFINE_PER_CPU(union software_channel *, kernel_1st_channel);
17 // Per-CPU channels for other kernel events.
18 DEFINE_PER_CPU(union software_channel *, kernel_2nd_channel);
19 // Per-Task channels for Lucene servers
20 union software_channel * lucene_server;
21 union software_channel * lucene_redundant_server;
22 // Per-JVM channels
23 union software_channels * JVM_channels;
24 // The Tailor proxy channel
25 union software_channels * proxy_channel;

Figure 4.4: Tailor creates software channels for the operating system, the JVMs, the proxy,
and Lucene search servers.

hardware contexts with setaffinity(). On Intel multicore hardware with two SMT
threads per core, Tailor binds the proxy and the profiler to different SMT hardware
threads of a dedicated core, then pins the active server and the backup server to differ-
ent sets of SMT threads of other cores. While Shim continuously records TaleChain
events from software channels to the timeline stream, the proxy maintains a request
table that records the information of in-flight requests and the last N finished re-
quests such as the start and the end of the server-observable period, as shown in
Figure 4.5(b).

The Shim Profiler Figure 4.6 shows the pseudocode of the Shim profiler that contin-
uously checks whether software channels have new events, and records new events
into the timeline stream. The timeline stream (line 8) is a ring buffer, in which
each slot (line 2) has the recorded event and two other fields, read_timestamp and
channel_id, indicating when and where the profiler reads this event (from).

The profiler detects new events by checking whether the timestamp of the current
event in the channel is different from the last event, thus it uses an event cache (line
11) storing the last events from all software channels. When reading events from
channels, since there is no synchronization between event generators and the profiler,
also as shown in Figure 4.3, generating an event requires multiple writes which are
not atomic, thus it is possible to read corrupted events.

Tailor uses two approaches to reduce the time window in which corrupted events
may be read: 1) When sampling channels, the profiler copies current events to the
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1 /******** Timeline Stream *****/
2 struct timeline_stream_slot
3 {
4 u64 read_timestamp;
5 u32 channel_id;
6 union software_channel event;
7 };
8 struct timeline_stream_slot *stream;
9

10 /****** SHIM Profiler ****/
11 struct events_cache {
12 union software_channel *last;
13 union software_channel *current;
14 };
15

16 struct event_cache * caches;
17 union software_channel * source_channels;
18

19 while(true)
20 {
21 for (i=0; i<nr_channel; i++)
22 {
23 current_cache = caches[i].current;
24 last_cache = cache[i].last;
25 copy_event(source_channels[i], current_cache)
26 if (current_cache->timestamp != last_cache->timestamp)
27 {
28 new_event = current_cache;
29 copy_cache_event_to_stream(current_cache, stream);
30 swap_current_and_last_cache(caches + i);
31 if (new_event has pre-programed actions)
32 take_actions_for_event(new_event);
33 }
34 }
35 }

Figure 4.6: The Shim profiler continuously records new TaleChain events from software
channels into the timeline stream and takes preprogrammed actions for certain events.

event cache (line 25 in Figure 4.6); 2) When generating events, the generator updates
the event timestamp last so that if the profiler detects a timestamp change (line 31
in Figure 4.3), it is guaranteed to see other changes on processors that support Total
Store Ordering, such as x86.

After comparing timestamps, if the current event is a new one, the profiler swaps
the current and the last cache event, records the new event into the timeline stream,
then takes preprogrammed actions if there are any (line 26-33 in Figure 4.6).

The Tailor Proxy The Tailor proxy is an event-driven application-level proxy. As
shown in the pseudocode of Figure 4.7, the proxy listens on three types of events:
incoming server requests from clients, outgoing server responses from the active
and backup servers, and TaleChain requests from clients for analyzing the requests
with slow client-observed latency. The profiler may send duplicated requests (will be
discussed in the next section) to both servers at the same time, thus when forwarding
server responses, the proxy checks whether the request is already finished to avoid
sending duplicated responses (line 29). The checking involves looking up the request
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status from the request table that keeps the information of both in-flight requests and
the last N finished requests such as the processing time, the server-observable period
in the timeline stream, as well as the status of the request (lines 2-9).

The proxy analyzes TaleChain events for slow requests and presents a timeline
view showing how system behaviors affect the request latency. It detects slow requests
in two places: 1) When forwarding responses, it checks whether the proxy-observed
latency is longer than the target latency (line 35). 2) The proxy also accepts TaleChain
requests from clients asking the proxy to analyze a request with a long client-observed
latency (line 38). When analyzing a slow request, the proxy chains the TaleChain
events of a request and presents a timeline graph. Figure 4.8 shows the timeline
view of a normal Lucene request which finished in 450 µs. Each bar represents one
TaleChain event in the period. The red bars mark the five stages of processing
requests: the proxy receives the request, then the Lucene coordinator task receives
the request, the Lucene worker starts to process the request, the Lucene worker
finishes the request, and finally the proxy finishes the request. The blue arrows show
the request flow of these five stages, while the green arrows show wake-up chains
pointing from wakeup events to their corresponding schedule events.

4.2.3 Local-Node Redundancy

Using redundancy to mitigate the latency impact of random events is a well-known
technique, but currently only used in distributed systems in which the redundancy is
already provided by replicas. Dean and Barroso [2013] use hedged requests to reduce
the tail-latency variability of large-scale web services, whereby clients send out the
same request to multiple replica machines and use the fastest response.

We use hedged requests to reduce the impact of random unavoidable hazardous
behaviors on a local machine. For web services that support distributed redundancy,
it is straightforward to set up local-node redundancy. Tailor starts another backup
server on the same machine and binds it to a different set of SMT threads. Whenever
the profiler detects hazardous systems events, it immediately swaps the active and the
backup server, then resends all in-flight requests to the new active server. The proxy
uses the first response of hedged requests and rejects later ones when forwarding
responses.

The major unavoidable hazardous behaviors for the Lucene search workload are
JVM pauses caused by JVM restarts and garbage collections. Figure 4.9 shows how
the profiler takes real-time actions, in the event of JVM restart and garbage collections.
For the JVM-restart event, after sending out hedged requests to the new active server,
the profiler also sends warmup requests to the restarted server in order to avoid
hitting delays on the next switch.

The key difference between our approach and the hedged requests used in dis-
tributed systems is the decision accuracy. Tailor only sends hedged requests after
detecting hazardous system behaviors, while as shown in Dean and Barroso [2013],
hedged requests are unconditionally sent out after some brief delay because it is
not possible to monitor fine-grain server behaviors from remote clients. If extra de-
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1 /****** Tailor Proxy ****/
2 struct request {
3 u64 start_timestamp;
4 u64 finish_timestamp;
5 struct timeline_stream_slot *stream_start;
6 struct timeline_stream_slot *stream_end;
7 u32 rid;
8 u32 flag;
9 };
10

11 struct request *request_table;
12

13 while(true)
14 {
15 fds = epoll_wait();
16 ...
17 if (client request)
18 {
19 rid = parse(request);
20 gen_proxy_receive_signal(rid);
21 request_table[rid]->start_timestamp = now;
22 request_table[rid]->stream_start = stream_pos;
23 ...
24 forward_request();
25 }
26 if (server response)
27 {
28 rid = parse(response);
29 if (request rid is already finished)
30 continue;
31 gen_proxy_finish_signal(rid);
32 request_table[rid]->start_timestamp = now;
33 request_table[rid]->stream_end = stream_pos;
34 forward_response();
35 if (request rid is slow)
36 analyze_slow_request(request_table[rid]);
37 }
38 if (TaleChain request)
39 {
40 rid = parse(request);
41 analyze_slow_request(request_table[rid]);
42 }
43 }

Figure 4.7: The proxy forwards requests and responses between clients and the active and
backup servers, maintains the request table, and analyzes slow requests.
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Figure 4.8: Tailor presents a timeline view of a Lucene request. Each bar represents one
TaleChain event. The red bars mark the five stages of processing requests: the proxy receives
the request, then the Lucene coordinator task receives the request, the Lucene worker starts to
process the request, the Lucene worker finishes the request, and finally the proxy finishes the
request. The blue arrows show the request flow of these five stages, while the green arrows
show wake-up chains pointing from wakeup events to their corresponding schedule events.
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1 while(true)
2 {
3 for (i=0; i<nr_channel; i++)
4 {
5 current_cache = caches[i].current;
6 last_cache = cache[i].last;
7 copy_event(source_channels[i], current_cache)
8 if (current_cache->timestamp != last_cache->timestamp)
9 {
10 new_event = current_cache;
11 copy_cache_event_to_stream(current_cache, stream);
12 swap_current_and_last_cache(caches + i);
13 if (new_event is JVM_restart or JVM_garbage_collection)
14 {
15 swap_active_backup_server();
16 for (r in flight requests)
17 send_request_to_the_active_server(r)
18 }
19 }
20 }
21 }

Figure 4.9: The Shim profiler mitigates the impact of JVM pauses by sending hedged requests
after detecting hazardous events.

lays are acceptable, instead of directing delayed requests to a backup server on the
local machine, Tailor can also dispatch the requests to backup servers on remote
machines.

4.3 System Setup

Platform We use a 2.1 GHz Intel Xeon-D 1541 Broadwell [Intel, 2015] processor with
eight two-way SMT cores, a 12 MB shared L3. Each core has a private 256 KB L2, a
32 KB L1D and a 32 KB L1I. The TurboBoost maximum frequency is 2.7 GHz, but we
disable it to control the variability. TDP is 45 W. The machine has 32 GB of memory
and two Gigabit Ethernet ports. We set the package-level deep-sleep state to C6.

We use Ubuntu 16.04, Linux version 4.18.0. We expose a memory buffer to user
space hosting operating system software channels. User-space channels are exposed
as shared files that can be mapped to memory.

We execute the Lucene search server in the OpenJDK9 JVM (build jdk-9+181). The
JVM runs in server mode with a 2 GB heap, 7 parallel GC threads, the G1 garbage
collector, and the C1 compiler. We use the Lucene search server from the Lucene
performance regression framework, which uses the Lucene library (LUCENE-8324).
The Lucene search server has one coordinator and six workers bound to CPU cores
0-6. When we use local-node redundancy, we create another Lucene search server and
bind two servers on the same set of cores but different SMT threads. We implement
the Tailor proxy and the Shim profiler in C, and bind them to core 7 but on different
SMT threads.
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The Search Workload We use the Lucene performance regression framework to
build indexes of the first 10 K files from Wikipedia’s English XML, then create 1000
search queries that have the server-execution time less than 2.5 ms as shown in Fig-
ure 4.10(a). We send the search requests from another machine that has the same
specifications as the server. The two machines are connected via an isolated Gigabit
switch. For each experiment, we perform 2 invocations, one warmup iteration and
another experimental iteration. For each invocation, the client loads 1000 requests
and sends requests 20 times (iterations). The client issues search requests at random
intervals following an exponential distribution around the 1000 queries per second
(QPS) mean rate. We report the tail latency of the 20 iterations of the second invoca-
tion. Figure 4.10(b) shows both the server-observed and the client-observed 99%ile
latency and the maximum tail latency (the slowest request) with one Lucene search
server under the 1000 QPS light load (no Tailor and the backup server). The client-
observed maximum tail latency is consistently much higher than the server-observed
latency, 40-46 ms verses 2-36 ms.

Summarizing, our queries are chosen for a maximum server time of 2.5 ms, but
we see server-observed tail latencies of 2-36 ms and client-observed tail latencies of
40-46 ms. The next section shows how Tailor identifies hazardous system behaviors
and reduces the client-observed maximum latency to 3-5 ms.

4.4 Hazardous System Behaviors and Optimizations

This section describes four major hazardous system behaviors identified by Tailor
and their solutions. For each behavior, we present a TaleChain timeline view show-
ing how the behavior affects request latency and a tail-latency result, demonstrating
the progress of reducing the impact of the hazardous behaviors step by step.

TCP Buffering The maximum client-observed tail latency for our workload is con-
sistently above 40 ms across all 20 iterations (Section 4.3). We run this workload with
Tailor, which detects the request and presents a TaleChain timeline view shown in
Figure 4.11.

The request illustrated in Figure 4.11 quickly finished the first four steps in less
than 1 ms. However, after the Lucene server wrote the query response to the socket,
a 40 ms delay occurred before the network stack transmitted the socket buffer to the
ethernet card (the purple arrow). There are two TCP-xmit events in the period trying
to transmit the data, but the first try failed. The status field of the first TCP-xmit event
explains the reasons: the operating system was waiting for a TCP acknowledgment
from the client before transmitting the response.

This hazardous behavior is a combination of The TCP Nagle algorithm and de-
layed TCP ACKs. On our experimental machines, by default, the TCP socket uses
the Nagle algorithm to automatically concatenate small TCP segments in order to
avoid sending out a large number of small packets. It delays sending out new TCP
segments until receiving the acknowledgment for the previous ones. However, TCP
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does not send an ACK immediately after receiving a segment, but waits for a period
which can be up to 500 ms, expecting to piggyback the ACK on the next out-going
segment.

In this case, the Lucene server was waiting for the client’s ACK, but the client
delayed sending the ACK since it was waiting for the next out-going data. Unfortu-
nately, this request was the last one in the iteration, thus there was no out-going data
for the client to piggyback on. After the timeout, the client sent out the ACK, then the
server transmitted the response immediately, which is also why the client-observed
tail latency of the request is much longer than the server-observed one.

After identifying this hazardous behavior, we add a TCP-NODELAY flag when cre-
ating the TCP socket to disable the Nagle algorithm. Figure 4.11(b) shows that this
simple action reduces the client-side tail latency from 40-46 ms to 3-40 ms.

Slow Page Faults After The Deep Sleep Figure 4.12(a) presents another hard-to-
find hazardous system behavior: long page faults taking about 5 ms (purple bars).
The page faults happened while the Lucene workers processed the search requests.

We analyzed TaleChain events preceding the request period, and also used the
ftrace profiler to get the traces of Linux’s page fault handler handle_mm_fault()
finding that: 1) The long page faults spend most of the time in the function
do_huge_pmd_anonymous_page() on zeroing newly allocated huge pages. 2) Long
page faults only happen when more than three page faults are triggered at the same
time on three different Lucene workers after a long idle period.

The information suggests that the root cause of slow page faults is extremely poor
memory performance after a deep CPU sleep. Linux puts idle CPU cores into a sleep
state. The longer the idle period is, the deeper sleep state the CPU enters. We enable
the package-level C6 deep-sleep state on our machines, in which the CPU saves
the architectural state to memory, flushes caches, and turns off on-chip components.
Schöne et al. [2015] show that it takes modern Intel processors about 0.3 ms to leave
the C6 deep-sleep state. Our result indicates that the latency of exiting from the deep
sleep contributes little to the long page faults, but the majority of the overhead is
from poor performance of memory operations after exiting from the deep-sleep state.
The slow memory operations can be caused by strong contention between cores when
multiple Lucene workers zero huge pages concurrently.

Instead of disabling the deep-sleep state which would increase energy consump-
tion, we address the slow page faults by turning on the AlwaysPreTouch JVM option.
When the option is on, the HotSpot JVM pre-touches the Java heap during JVM
initialization so that subsequent allocations from the Java heap do not trigger page
faults. As shown in Figure 4.12(b), the second-highest client-side tail latency in the
4th iteration is reduced from 10 ms to 2.5 ms. Notice that after 10 iterations, turning
on the option does not reduce the tail latency further. This is because we run 20
iterations in the same JVM, thus after many iterations, the Java heap may have been
touched already. Note that the tail latency of the first iteration is still 40 ms, after
addressing the first two hazardous behaviors.
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(a) The TaleChain timeline view of the slow request affected by the TCP Nagle
algorithm. The green arrows show wake-up chains, the blue arrows represent the
flow of the search request, and the purple arrow shows the TCP buffering caused
by the TCP Nagle algorithm.
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Figure 4.11: The operating system buffers the request response. Disabling the TCP Nagle
algorithm avoids the hazardous behavior.
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(a) The TaleChain timeline view of slow requests affected by long page faults
(purple bars).
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Figure 4.12: Extremely long page faults after the deep sleep slow down requests. Pre-touching
the JVM heap avoids triggering the hazardous behavior, reducing the client-side tail latencies
of iterations 3-8 under 3 ms consistently. Notice that other peaks caused by JVM pauses have
not been addressed yet.
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JVM Pauses The long tail of the first iteration is not caused by loading the Lucene
index data from the storage system into memory, because as discussed in the last
section, we execute one warmup invocation with 20 iterations before the experiment
to load the index data into memory.

The root cause actually is a large number of short pauses caused by loading Java
classes when the JVM executes the first few requests after a restart. Loading and
compiling Java classes is a complex and non-scalable process, involving many JVM
components. Figure 4.13(a) shows this chaotic process. Each green arrow represents
one wake-up chain pointing from the wakeup event to the corresponding schedule
event. Most of the wake-up chains in the graph are caused by the lock-related
interaction between JVM threads. The figure shows that Lucene workers (CPU cores
0-7) continuously wake up each other, indicating complex interactions and strong
lock contention between them.

The other two peaks of the client tail latency (the red line in Figure 4.14) are
caused by another type of JVM pauses, the HotSpot JVM’s nursery garbage collection
that stops all JVM threads when performing the collection. Figure 4.13(b) shows a
timeline view of the request paused by the collection (the purple bar).

Tailor reduces the impact of unavoidable JVM pauses by using local-node re-
dundancy. It creates a backup Lucene search server and binds it to a different set
of SMT threads. Whenever Tailor’s profiler detects JVM-restart events and garbage
collection events, it switches the active server and the backup server, then re-sends
all in-flight requests to the new active server. Figure 4.14 shows that the approach
successfully hides the impact of garbage collection, reducing the second and the third
peaks of client-side tail latency from 7 ms to under 3 ms, and reduces the impact of
class loading significantly, decreasing the tail latency of the first iteration from 41 ms
to 4 ms. The reason why the tail latency of the first iteration is still 1 ms longer than
other iterations after addressing the JVM pauses is that after Tailor switches the
active and the backup server, Tailor immediately sends out warmup requests to the
restarted server. As shown in Figure 4.13(a), class loading is a long and resource
consuming process. Because the active and the backup server share core resources,
the class loading caused by the warmup requests on the restarted server may affect
the performance of the active server. The next chapter discusses a mechanism to
control such interference between same-core SMT threads.

After addressing the four hazardous system behaviors, the client-side maximum
tail latency is reduced nine-fold, from 41-46 ms to 3-5 ms.

4.5 Related Work

Unlike general-purpose profilers, Tailor focuses on profiling, analyzing, and acting
on long latency requests. The most related work on diagnosing and fixing tail latency
sources in application and system software [Li et al., 2014; Zhang et al., 2016; Leverich
and Kozyrakis, 2014] and hardware and its configuration [Li et al., 2015] offer deep
insights to causes and one-time fixes, but do not propose a tool that systematically
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(a) The TaleChain timeline view of the slow request delayed by the class loading. A
massive number of wake-up events (the green arrows) show the chaotic interactions
between Lucene workers (CPU cores 0-7).

(b) The TaleChain timeline view of the slow request delayed by the JVM garbage
collection (the purple bar).

Figure 4.13: JVM pauses caused by class loading and garbage collection affect request latency.
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Figure 4.14: Tailor reduces the maximum client-side tail latency by mitigating the impact of
JVM pauses with the local-node redundancy.

exposes problems and counter acts unavoidable latencies as they emerge in real time.
Our work is largely orthogonal to work that improves application scheduling of

multiple requests [Kannan et al., 2019] and network packets [Kaffes et al., 2019] by
prioritizing requests that are delayed, regardless of the reason, to manage latency and
throughput. Work that detects long latency requests and then accelerates them using
DVFS, heterogeneous hardware, or parallelism are most effective when the source of
latency is request work, rather than hardware or software unresponsiveness [Haque
et al., 2017, 2015; Hsu et al., 2015; Lo et al., 2015; Ren et al., 2013; Kasture et al., 2015].
Our approach targets this later problem — latency due to factors other than request
work.

Gray introduced software redundancy as an effective approach to building soft-
ware fault-tolerant computer systems [Gray, 1985]. This redundancy can be deployed
both on the same or different nodes. The Tandem NonStop System deployed a pair
of processes on the same machine to tolerate software faults [Bartlett, 1981]. If the
active process failed to respond a request before the deadline, the waiting request
was re-sent to the backup process. Today, latency-critical large-scale cloud and other
services routinely deploy replicas across multiple machines for fault tolerance and
scaling. Furthermore, they use the replicas to tolerate random slow requests: a mid-
tier monitors the latency of running requests and duplicates slow requests to another
replica [Dean and Barroso, 2013; Kaler et al., 2017].

Today, service deployment frameworks, such as Kubernets, provide abstractions
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for deploying and scaling replicas, blur the boundary between the same-machine re-
dundancy and multi-machine redundancy, so services could adopt both redundancy
approaches [What is Kubernetes?, 2019]. Tailor exploits local redundancy to handle
unavoidable sources of latency, which is complementary to the multi-server latency-
tolerance approach and eliminates the need for a duplicated request at the mid-tier,
reducing service resource requirements.

4.6 Summary

This chapter introduces Tailor, a real-time latency controller for latency-critical web
services, in which a Shim-based high-frequency profiler and an application-level
network proxy are combined to continuously monitor and act on hazardous system
behaviors. We show that Tailor identifies such behaviors by continuously recording
and analyzing signals of system components, and uses local-node redundancy to
mitigate the impact of unavoidable random hazardous behaviors. We present a case
study demonstrating the diagnostic power of Tailor and the effectiveness of Tailor’s
real-time control actions. After adjusting system configurations to avoid operating
system hazardous behaviors and mitigating the impact of unavoidable JVM pauses,
Tailor reduces the tail latency of the latency-critical workload by nine-fold from
46 ms to 5 ms.

This chapter shows that Shim’s high-frequency profiling enables new ways to
analyze and control the fine-grain behavior of complex computer systems in real
time, which can be used for optimizing tail latency of latency-critical web services.
The next chapter demonstrates that fine-grain control of system components leads to
a new class of online profile-guided optimizations that improves CPU utilization of
the servers that run latency-critical web services. It introduces Elfen, a Shim-based
job scheduler that borrows idle cycles from underutilized CPU cores of latency-critical
workloads for batch workloads.
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Chapter 5

Elfen

Latency-critical web applications from search to games to stock trading interact with
humans or other latency-sensitive services. To retain users, they are carefully en-
gineered to meet latency requirements and impose strict Service Level Objectives
(SLOs) on tail latency. Meeting these objectives is challenging. Consequently, many
servers run at low utilization (10 to 45%), which indicates a promising feedback-
directed optimization opportunity: filling wasted idle periods with useful batch jobs
can significantly increase server utilization without interfering with latency-critical
requests.

We introduce Elfen, a job scheduler that co-runs batch jobs with latency-critical
web services on the same core but on different simultaneous multithreading (SMT)
contexts. Elfen instruments batch threads to monitor the status of latency-critical
requests with Shim. Once batch threads detect latency-critical requests, they step
out of the way and promptly return the computation resources. The scheduler is
configurable such that it can also use an interference budget, stepping out of the way
after some periods of time.

This chapter is structured as follows. Section 5.2 motivates Elfen using workload
characteristics of Lucene. Section 5.3 describes the design and implementation of
Elfen. Section 5.4 shows our evaluation methodology, and Section 5.5 evaluates
Elfen.

The work described in this chapter is published in “Elfen Scheduling: Fine-Grain
Principled Borrowing from Latency-Critical Workloads Using Simultaneous Multi-
threading” [Yang et al., 2016a].

5.1 Introduction

Latency-critical web services, such as search, trading, games, and social media, must
consistently deliver low-latency responses to attract and satisfy users. This require-
ment translates into Service Level Objectives (SLOs) governing latency. For example,
an SLO may include an average latency constraint and a tail constraint, such as that
99% of requests must complete within 100 ms [Dean and Barroso, 2013; DeCandia
et al., 2007; He et al., 2012; Yi et al., 2008]. Many such services, such as Google Search
and Twitter [Kanev et al., 2015; Dean and Barroso, 2013; Delimitrou and Kozyrakis,
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2014], systematically underutilize the available hardware to meet SLOs. Furthermore,
servers often execute only one service to ensure that latency-critical requests are
free from interference. The result is that server utilizations are as low as 10 to 45%.
Since these services are widely deployed in large numbers of datacenters, their poor
utilization incurs enormous commensurate capital and operating costs. Even small
improvements substantially improve profitability.

Meeting SLOs in these highly engineered systems is challenging because: (1)
requests often have variable computational demands and (2) load is unpredictable
and bursty. Since computation demands of requests may differ by factors of ten or
more and load bursts induce queuing delay, overloading a server results in highly
non-linear increases in tail-latency. The conservative solution providers often take is
to significantly over-provision.

Interference arises in chip multiprocessors (CMPs) and in simultaneous multi-
threading (SMT) cores when contending for shared resources. A spate of recent
research explores how to predict and model interference between different workloads
executing on distinct CMP cores [Novaković et al., 2013; Mars et al., 2011; Lo et al.,
2015; Delimitrou and Kozyrakis, 2014], but these approaches target and exploit large
scale diurnal patterns of utilization, e.g., co-locating batch workloads at night when
load is low. Lo et al. [2015] explicitly rule out SMT because of the highly unpre-
dictable and non-linear impact on tail latency (which we confirm) and the inadequacy
of high-latency OS scheduling. Zhang et al. [2014] do not attempt to reduce SMT-
induced overheads, but rather they accommodate them using a model of interference
for co-running workloads. Their approach requires ahead-of-time profiling of all co-
located workloads and over-provisioning. Prior work lacks dynamic mechanisms to
monitor and control fine-grain behavior of batch workloads on SMT with low latency.

This research exploits SMT resources to increase utilization without compro-
mising SLOs. We introduce principled borrowing, which dynamically identifies idle
cycles and borrows these resources. We implement borrowing in the Elfen1 sched-
uler, which co-runs batch threads and latency-critical requests, and meets request
SLOs. Our work is complementary to managing shared cache and memory resources.
We first show that latency-critical workloads impose many idle periods and they
are short. This result confirms that scheduling at OS granularities is inadequate,
motivating fine-grain mechanisms.

Elfen introduces mechanisms to control thread execution and a runtime that
monitors and schedules threads on distinct hardware contexts (lanes) of an SMT core.
Elfen pins latency-critical requests to one SMT lane and batch threads to N � 1 part-
ner SMT lanes on a N-way SMT core. A batch thread monitors a paired lane reserved
for executing latency-critical requests. (We use ‘requests’ for concision.) The simplest
borrow idle policy in Elfen ensures mutual exclusion—requests execute without inter-
ference. Batch threads monitor the request lane and when the request lane is occupied,
they release their resources. When the request lane is idle, batch threads execute. We
introduce nanonap, a new system call, that disables preemption and invokes mwait to

1In the Grimm fairy tale, Die Wichtelmänner, elves borrow a cobbler’s tools while he sleeps, making
him beautiful shoes.
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release hardware resources quickly—within ~3 000 cycles. This mechanism provides
semantics that neither yielding, busy-waiting, nor futex offer. After calling nanonap,
the batch thread stays in this new kernel state without consuming microarchitecture
resources until the next interrupt arrives or the request lane becomes idle. These
semantics ensure that requests incur no interference from batch threads and pose
no new security risks. Since the batch thread is never out of the control of the OS,
the OS may preempt it as needed. The shared system state that Elfen exploits is
already available to applications on the same core, and Elfen reveals no additional
information about co-runners to each other.

We inject scheduling and Shim profiling mechanisms into batch applications at
compile-time. A binary re-writer could also implement this functionality. The in-
strumentation frequently checks for a request running on the paired SMT lane by
examining a shared memory location. When the batch thread observes a request, it
immediately invokes nanonap to release hardware resources. This policy ensures that
the core is always busy, but it only utilizes one SMT lane on a two-way SMT core at a
time.

More aggressive borrowing policies use both lanes at once by giving batch threads
a budget that limits overheads imposed on requests, ensuring that SLOs are met. The
budget is shaped by the SLO, the batch workload’s impact on the latency-critical
workload, and the length of the request queue. These policies monitor the request in
various ways, via high-frequency Shim profiling [Yang et al., 2015a].

We implement Elfen in the Linux kernel and in compile-time instrumentation
that self-schedules batch workloads, using both C and Java applications, demon-
strating generality. For our latency-sensitive workload, we use the widely deployed
Apache Lucene open-source search engine [Apache Lucene, 2014]. Prior work shows
Lucene can be configured to have performance characteristics and request demand
distributions similar to the Bing search engine [Haque et al., 2015]. We evaluate Elfen
co-executing a range of large complex batch workloads on two-way SMT hardware.
On one core, Elfen’s borrow idle policy achieves peak utilization with essentially
no impact on Lucene’s 99th percentile latency SLO. Elfen improves core utilization
by 90% at low load and 25% at high loads compared to a core dedicated only to
Lucene requests. It consistently achieves close to 100% core utilization, the peak for
this policy — one of the two hardware contexts always busy. On an eight core CMP,
the borrow idle policy usually has no impact or slightly improves 99th percentile
latency because cores never go to sleep. Occasional high overheads at high load may
require additional interference detecting techniques. Improvements in CMP utiliza-
tion are more substantial than for one core because at low load, many cores may be
idle. Elfen consistently achieves close to 100% of the no-SMT peak, which is also the
borrow idle policy’s peak utilization.

Choosing a policy depends on provider workloads, capacity, and server economics,
including penalties for missed SLOs and costs for provisioning servers. Providers
currently provide excess capacity for load bursts and SLOs slack for each request.
Our approach handles both. Our most conservative borrow idle policy steps out of
the way during load bursts and suits a setting where the penalties for missed SLOs
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are very high. Our more agressive policies can soak up slack and handle load bursts.
They offer as much as two times better utilization but at the cost of higher median
latencies and higher probability of SLO violations. For server providers with latency-
critical and batch workloads, the main benefit of our work is to substantially reduce
the required number of servers for batch workloads.

In summary, contributions of this chapter include:
• analysis of why latency-critical workloads systematically underutilize hardware

and the opportunities afforded by idle periods;
• nanonap, a system call for fine-grain thread control;
• Elfen, a scheduler that borrows idle cycles from underutilized SMT cores for

batch workloads without interfering with latency-critical requests;
• a range of scheduling policies;
• an evaluation that shows Elfen can substantially increase processor utilization

by co-executing batch threads, yet still meet request SLOs; and
• an open-source implementation on github [Yang et al., 2016b].

Our approach requires only a modest change to the kernel and no changes to appli-
cation source code, making it easy to adopt in diverse systems and workloads.

5.2 Background and Motivation

We motivate our work with workload characteristics of latency-critical services; the
non-linear effects on latency from uncontrolled interference with SMT; the opportu-
nity to improve utilization availed by idle resources; and requirements on respon-
siveness dictated by idle periods. Section 5.4 describes our evaluation methodologies.

Processing demand The popular industrial-strength Apache Lucene enterprise
search engine is our representative service [Apache Lucene, 2014]. Prior work shows
that services such as Bing search, Google search, financial transactions, and personal
assistants have similar computational characteristics [Dean and Barroso, 2013; Delim-
itrou and Kozyrakis, 2014; Ren et al., 2013; Haque et al., 2015; Hauswald et al., 2015].
Figure 5.1 plots the distribution of request processing times for Lucene executing
in isolation on a single hardware context. The bars (left y-axis) show that most re-
quests are short, but a few are very long. This high variance of one to two orders of
magnitude is common in such systems.

Load sensitivity This experiment shows that high load induces non-linear increases
on latency. We assume a 100 ms service level objective (SLO) on 99th percentile latency
for requests. A front end on separate hardware issues search requests at random
intervals following an exponential distribution around the prescribed requests per
second (RPS) mean rate. As soon as Lucene completes a request, it processes the next
request in the queue. If no requests are pending, it idles. We show results for a single
Lucene worker thread running on one core.
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Figure 5.1: Highly variable demand is typical for latency-critical workloads. Lucene
demand distribution with request processing time on x-axis in 1 ms buckets, fraction of total
on left y-axis, and cumulative distribution red line on right y-axis.

Figure 5.2 shows Lucene percentile latencies and utilization as a function of RPS
only on one lane of a two-way SMT core using one Lucene task. The two graphs
share the same x-axis. The top graph shows median, 95th, and 99th percentile latency
for requests, the bottom graph shows CPU utilization which is the sum of the fraction
of time the lanes are busy normalized to the theoretical peak for a system with SMT
disabled. The maximum utilization is 2.0, but the utilization in Figure 5.2 never
exceeds 1.0 because only one thread handles requests, so only one lane is used. As
RPS increases, median, 95th, and 99th percentile latencies first climb slowly and then
quickly accelerate. The 99th percentile hits a wall when RPS rise above 120 RPS,
while the request lane utilization is only 70% at 120 RPS, leaving the two-way SMT
core substantially underutilized when operating at a practical load for a 100 ms 99th
percentile tail latency target.

Random request arrival times and the high variability of processing times combine
to produce high variability in queuing times and non-linear increases in latencies at
high RPS. As we show next, adding a co-runner on the same core using SMT has
the effect of throttling the latency-critical workload, effectively moving to the right in
Figure 5.2. Movements to the right lead to increasingly unpredictable latencies, and
likely violations of the SLO.

Simultaneous Multithreading (SMT) This section gives SMT background and
shows that simultaneously executing requests on one lane of a 2-way SMT core
and a batch thread on the other lane degrades request latencies. This result confirms
prior work [Zhang et al., 2014; Delimitrou and Kozyrakis, 2014; Lo et al., 2015] and
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Figure 5.2: Overloading causes non-linear increases in latency. Lucene percentile latencies
and utilization on one core. Highly variable demand induces queuing delay, which results in
non-linear increases in latency.
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Figure 5.3: Simultaneous Multithreading (SMT) A single thread often underutilizes core
resources. SMT dynamically shares the resources among threads.

explains why service providers often disable SMT. We measure core idle cycles to
show that the opportunity for improvement is large, if the system can exploit short
idle periods.

We illustrate the design and motivation of SMT in Figure 5.3. Figure 5.3(a) shows
that when only one thread executes on a core at a time, hardware resources such as
the issue queue and functional units are underutilized (white). Figure 5.3(b) shows
two threads sharing an SMT-enabled core. The hardware implements different shar-
ing policies for various resources. For example, instruction issue may be performed
round-robin unless one thread is unable to issue, and the load-store queue parti-
tioned in half, statically, while other functional units are shared fully dynamically.
It is important to note that such policies mean that a co-running thread consumes
considerable core resources even when that thread has low IPC.

To measure lower bounds on SMT interference, we consider two microbenchmarks
as batch workloads executing on an Intel 2-way SMT core. The first uses a non-
temporal store and memory fence to continuously block on memory, giving an IPC of
0.01. For instance, the Intel PAUSE instruction has a similar IPC. The other performs
a tight loop doing nothing (IPC=1) when running alone. Neither consume cache
or memory resources. Figure 5.4 shows the impact of co-running batch workloads
on the 99% percentile latency of requests and lane utilization. Utilization improves
over no co-runner significantly since the batch thread keeps the batch lane busy, but
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Figure 5.4: Unfettered SMT sharing substantially degrades tail latency. Lucene 99th per-
centile latency and lane utilization with IPC 1 and IPC 0.01 batch workloads.
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Figure 5.5: Lucene Inter-request idle times are highly variable and are frequently short.
Histogram (left y-axis) shows the distribution of request idle times. The line (right y-axis)
shows the cumulative time between completing one request and arrival of the next request at
0.71 lane utilization on one core at RPS = 120.

request latency degrades substantially, even when the batch thread has very low
resource requirements (IPC = 0.01). For instance, at 100 RPS without a co-runner, 99th
percentile latency is 76 ms. RPS must fall to around 40 RPS to meet the same 99th
percentile latency with a low IPC co-runner.

Co-running moves latencies to the right on RPS curves, into the steep exponential,
with devastating effect on SLOs. Because SMT hardware shares resources such as
issue logic, the load store queue (LSQ), and store buffers, tail latency suffers even
when the batch workload has an IPC as low as 0.01 causing the latency-critical service
to violate SLOs even when the utilization of the latency-critical lane is as low as 30%.
If a request is short, a co-runner may substantially slow it down without breaching
SLOs. Unfortunately request demand is not known a priori. Moreover, request
demand is hard to predict [Lorch and Smith, 2001; Hsu et al., 2015; Jalaparti et al.,
2013; Kim et al., 2015] and the prediction is never free or perfect, thus we do not
consider request prediction further.

Utilization cannot be increased by using multiple SMT lanes simultaneously
without degrading latency-critical requests. However existing mechanisms can not
deliver such semantic. For example, giving real-time scheduling priority to threads
running a latency-critical service does not prevent multiple SMT lanes of same cores
being used simultaneously since batch jobs can be scheduled on the paired SMT lanes.
The strategies we explore are thus (1) to enforce mutual exclusion, executing a batch
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thread only when the partner lane is idle (borrow idle), and (2) to give the batch thread
a budget for how much it may overlap execution with requests. These strategies
require observing requests, detecting idle periods, and controlling batch threads.

Idle cycle opportunities Now we explore the frequency and length of idle periods to
understand the requirements on the granularity of observing requests and controlling
batch threads. Figure 5.5 shows the fraction of all idle time (y-axis) due to periods of
a given length (x-axis). The histogram (blue) indicates the fraction of all idle time due
to idle times of a specific period, while the line (red) shows a cumulative distribution
function. For example, this shows that 2.3% of idle time is contributed by idle times
of 15 ms in length (blue), and 53% of total idle time is due to idle times of 15 ms or
less (red). Highly variable and short idle periods dictate low-latency observation
and control mechanisms.

5.3 Elfen Design and Implementation

This section describes the design and implementation of Elfen, in which latency-
critical requests and batch threads execute in distinct SMT hardware contexts (lanes)
on the same core to improve server utilization. Given an N-way SMT, N � 1 SMT
lanes execute batch threads, batch lanes, and one SMT lane executes latency-critical
requests, the request lane. We restrict our exposition below to 2-way SMT for simplicity
and because our evaluation Intel hardware is 2-way SMT.

As Figure 5.4 shows, unfettered interference on SMT hardware quickly leads to
SLO violations. Elfen controls batch threads to limit their impact on tail latency. We
explore borrowing policies applying the principle of either eliminating interference or
limiting it based on some budget. The simplest policy enforces mutual exclusion by
forcing batch threads to relinquish their lane resources whenever the request lane is
executing a request. More aggressive borrowing policies add overlaping the execution
of batch threads and requests, governed by a budget.

The Elfen design uses two key ideas: (1) high-frequency, low-overhead monitor-
ing to identify opportunities, and (2) low-latency scheduling to exploit these opportu-
nities. The implementation instruments batch workloads at compile time with code
that performs both monitoring and self-scheduling. The simple borrow-idle policy
requires no change to the latency-critical workload. More aggressive policies require
the latency-critical framework to expose the request queue length and a current re-
quest identifier via shared memory. Batch threads use nanonap to release hardware
resources rapidly without relinquishing their SMT hardware context.

Our current design assumes an environment consisting of a single latency-critical
workload, and any number of instrumented batch workloads. (Scheduling two or
more distinct latency-critical services simultaneously on one server is a different and
interesting problem that is beyond our scope.) Our instrumentation binds threads to
cores with setaffinity() to force all request threads onto the identifiable request
lane and batch threads onto partner batch lane(s). The underlying OS is free to sched-
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ule batch threads on batch lanes. Each batch thread will then fall into a monitoring
and self-scheduling rhythm.

5.3.1 Nanonap

This section introduces the system call nanonap to monitor and schedule threads at a
fine granularity. The key semantics nanonap delivers is to put the hardware context
to sleep without releasing the hardware to the OS scheduler. We first explain why
existing mechanisms, such as mwait, WRLOS, and hotplug do not directly deliver the
necessary semantics.

The mwait instruction releases the resources of a hardware context with low la-
tency. This instruction is available in user-space on SPARC and is privileged on x86.
The IBM PowerEN user-level WRLOS instruction has similar semantics [Meneghin et al.,
2012]. Calls to mwait are normally paired with a monitor instruction that specifies
a memory location that mwait monitors. The OS or another thread wakes up the
sleeping thread by writing to the monitored location or sending it an interrupt. The
Linux scheduler uses mwait to save energy. It assigns each core a privileged idle task
when there are no ready tasks. Idle tasks call mwait to release resources, putting
the hardware in to a low-power state. Unfortunately, simply building upon any of
these mechanisms in user space is insufficient because the OS may, and is likely to,
schedule other ready threads to the released hardware context. In contrast, because it
disables preemption, nanonap ensures that no other thread runs on the lane, releasing
all hardware resources to its partner lane.

Another mechanism that seems appealing, but does not work, is hotplug, which
prohibits any task from executing in specified SMT lanes. The OS first disables
interrupts, moves all threads in the lane(s), including the thread that invoked hotplug,
to other cores, and switches the lane(s) to the idle task which then calls the mwait
instruction. While hotplug moves threads off a lane to other cores, user-space calls
such as futex yield the lane, so other threads may execute in it. Therefore, neither the
hotplug interface nor user-space locking nor calls to mwait are designed to release
and acquire SMT lanes to and from each other because a thread does not retain
exclusive ownership of a lane while it pauses.

We design a new system call, nanonap, to control the SMT microarchitecture
hardware resources directly. Any application that wants to release a lane invokes
nanonap, which enters the kernel, disables preemption, and sleeps on a per-CPU
nanonap flag. From the kernel’s perspective, nanonap is a normal system call and
it accounts for the thread as if the thread is still executing. Because nanonap does
not disable interrupts and the kernel does not preempt the thread that invoked the
nanonap, the SMT lane stays in a low-power sleep state until the OS wakes the thread
up with an interrupt or the Elfen scheduler sets the nanonap flag. After the SMT
lane wakes up, it enables preemption and returns from the system call. Figure 5.6
shows the pseudocode of nanonap, which we implement as a wrapper that invokes a
virtual device using the Linux OS’s ioctl interface for devices.
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No starvation or new security state The nanonap system call and monitoring of
request lanes do not cause starvation or pose additional opportunities for security
breaches. Starvation does not occur because nanonap does not disable interrupts. The
scheduler may wake up any napping threads and schedule a different batch thread
on the lane at the end of a time quanta, as usual. When a batch thread wakes up or a
new one starts executing, it tests whether its request lane partner is occupied and if
so, puts itself to sleep. Since the OS accrues CPU time to batch threads waiting due
to a nanonap, user applications cannot perform a denial of service attack simply by
continuously calling nanonap, since the OS will schedule a napping thread away after
they exhaust their time slice.

The Elfen instrumentation monitors system state to make decisions. It reads
memory locations and performance counters that reveal if the core has multiple
threads executing. All of this system state is already available to threads on the same
core — Elfen reveals no additional information about co-runners to each other.

5.3.2 Latency of Thread Control

This section presents an experiment that measures the latency of sleeping and waking
up with nanonap, mwait, and futex. Measuring these latencies is challenging because
detecting exactly when a lane releases hardware resources must be inferred, rather
than measured directly.

When a batch thread executes mwait on our Intel hardware, the lane first enters
the shallow sleeping C1 state immediately. If no other thread executes in the lane
for a while, it then enters a deep sleep state and releases its hardware resources to
the active request lane. We measure how long it takes the lane to enter the deep
sleeping state indirectly as follows. The CPU executes a few µops to transition an
SMT lane from the shallow to the deep sleep state. For measurement purposes, we
thus configure the measurement thread to continuously record how many µops the
measurement thread has retired and how many µops the whole core retires every
150 cycles. When the measurement thread notices that the sleeping SMT lane does
not retire any µops for a while, then retires a few more µops, and then stops retiring
µops, it infers that the SMT lane is in the deep sleep state.

Figure 5.7 shows a microbenchmark that measures the latencies of sleeping and
waking up with nanonap, mwait, and futex. The microbenchmark has two threads:
a measurement thread and another thread, T2. The measurement thread puts T2
to sleep and wakes it up. The two threads execute on the same core but different
SMT lanes. The measurement thread sets a flag, forcing T2 to sleep (line 5). T2 then
executes sleep which either calls nanonap or futex to put the SMT lane to sleep,
according to which is being measured. The wait_until_t2_goes_to_sleep() (line
6) call performs the deep sleep detection process described in the above paragraph.
We measure wake-up latency directly (lines 10 to 13). The measurement thread sets a
flag (line 11) and then detects when T2 starts executing instructions (line 12).

We execute each configuration 100 times. Figure 5.8 presents the time and the
95% confidence interval for using nanonap, mwait, and futex to sleep and wake-up
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1 /******************* USER *********************/
2 void nanonap() {
3 ioctl(/dev/nanonap);
4 }
5 /******************* KERNEL *******************/
6 nanonap virtual device: /dev/nanonap;
7 per_cpu_variable: nap_flag;
8 ioctl(/dev/nanonap) {
9 disable_preemption();
10 my_nap_flag = this_cpu_flag(nap_flag);
11 monitor(my_nap_flag);
12 mwait();
13 enable_preemption();
14 }

Figure 5.6: Pseudo code for nanonap.

1 /***** MEASUREMENT THREAD ON ONE SMT LANE *****/
2 void measure() {
3 /* measure send-to-sleep latency */
4 start_sleep_request = timestamp();
5 ask_t2_sleep();
6 wait_until_t2_goes_to_sleep();
7 finish_sleep_request = timestamp();
8

9 /* measure wake-up latency */
10 start_wakeup_request = timestamp();
11 wakeup_t2();
12 wait_until_t2_wakes_up();
13 finish_wakeup_request = timestamp();
14

15 if (measuring_futex || measuring_nanonap) {
16 sleep_latency =
17 finish_sleep_request - start_sleep_request;
18 wakeup_latency =
19 finish_wakeup_request - start_wakeup_request;
20 }
21 if (measuring_mwait) {
22 sleep_latency = finish_sleep_request - mwait_start;
23 wakeup_latency = mwait_finish - start_wakeup_request;
24 }
25 }
26 /************ T2 ON OTHER SMT LANE ************/
27 void sleep() {
28 if (measuring_futex)
29 wait_on_futex();
30 else if (measuring_nanonap || measuring_mwait)
31 nanonap();
32 }
33 void nanonap() {
34 ...
35 mwait_start = timestamp();
36 monitor(flag);
37 mwait();
38 mwait_finish = timestamp();
39 ...
40 }

Figure 5.7: Microbenchmark that measures time to sleep with nanonap, mwait, and futex.
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Figure 5.8: Time to sleep and wake-up SMT partner lanes.

a thread executing in a partner SMT lane. The time to put a lane to sleep for mwait
is 2 443 cycles, is 3 285 cycles for nanonap, and is 11 518 cycles for futex, 3.5 times
slower than nanonap. Waking up a lane directly with mwait takes 1 036 cycles —
essentially the hardware latency of wake-up. The latency of nanonap’s wake-up is
similar to mwait’s at 1438 cycles. However, futex takes 3 968 cycles, which is 2.72
times slower than nanonap. Although futex is substantially slower, this latency is
likely tolerable, since most idle periods are more than 1 million cycles on our 2 GHz
machine (1 ms in Figure 5.5). However, as explained above, neither the semantics of
locks nor user-space calls to mwait are adequate for our purposes.

5.3.3 Continuous Monitoring and Signaling

Sleeping and waking up fast is necessary but not sufficient. The scheduler has to
know when to act. We further exploit the nanonap mechanism to improve over
our Shim [Yang et al., 2015a] fine-grain profiling tool. Shim views time-varying
software and hardware events as continuous ‘signals’ (in the signal processing sense
of the word). Rather than using interrupts to examine request threads, as many
profiling tools do, we configure our batch threads to continuously read signals from
memory locations and hardware performance counters to profile request threads. In
the simplest case, the profiling observes whether the request thread is executing. Our
prior work shows that Shim accurately observes events at granularities as fine as 100s
to 1000s of cycles with overheads of a few percent when executing on another core.
However, when threads share an SMT core, we saw similar overheads from SMT
sharing as shown in Figure 5.4. In this chapter, we use the nanonap mechanism to
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essentially eliminate this overhead.
Whereas Shim observes signals from a dedicated thread, here we (1) use GCC

-pg instrumentation [GCC, 2016] to insert checks at method prologues into C batch
workloads and (2) piggyback on the default Java VM checks at every method entry/exit
and loop backedge [Lin et al., 2015]. These mechanisms add minimal overhead as
shown by Lin et al. [2015] and, most importantly, remove the need for a third profiling
thread to observe request threads.

At each check, the fast-path consists of a few instructions to check monitored
signals. For efficiency, this fast path is inlined to the body of compiled methods.
If the observed signal matches the condition (e.g., the scheduler sets the memory
location that indicates the request lane is idle), the batch thread jumps to an out-of-
line function to handle the task of putting itself to sleep.

5.3.4 Elfen Scheduling

We design and implement four policies that borrow underutilized resources without
compromising SLOs.

Borrowing Idle Cycles The simplest way to improve utilization is to run the batch
workload only when the latency-critical workload is idle. Section 5.2 analyzed the
maximum CPU utilization of Lucene while meeting a practical SLO at ~70% of one
SMT lane, which corresponds with prior analysis of latency-critical workloads [Dean
and Barroso, 2013; Delimitrou and Kozyrakis, 2014; Ren et al., 2013; Haque et al.,
2015; Hauswald et al., 2015]. Therefore even when the latency-sensitive workload
is executing at the maximum utilization at which it can meet SLOs, there is an
opportunity to improve utilization by 30% if the batch workload can borrow this
excess capacity. At lower loads, there is even more opportunity.

This policy enforces mutual exclusion. Batch threads execute only when the
request lane is empty. When a request starts executing, the batch thread immediately
sleeps, relinquishing its hardware resources to the latency-critical request. When the
request lane becomes idle, the batch thread wakes up and executes in the batch lane.

Figure 5.9(a) shows the simple modifications to the kernel and batch workloads
required to implement this policy. We add an array (software channels) called
cpu_task_map that maps a lane identifier to the current running task. At every
context switch, the OS updates the map, as shown in task_switch_to(). By observ-
ing this signal, the scheduler knows which threads are executing in the SMT lanes.
At each check, the scheduler determines whether the idle_task is executing in the
request lane. If the request lane is idle, the scheduler either continues executing the
batch thread in its lane or starts a batch thread. If the request lane is occupied, the
scheduler immediately forces the batch thread to sleep with nanonap.

Fixed Budget Borrowing idle cycles is simple and as we show, effective, but we can
further exploit underutilized resources when requests may incur some overhead and
still meet their SLO. In particular, short requests, which typically dominate, easily
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1 /******************* KERNEL *******************/
2 /* maps lane IDs to the running task */
3 exposed SHIM signal: cpu_task_map
4

5 task_switch(task T) { cpu_task_map[thiscpu] = T; }
6 idle_task() { // wake up any waiting batch thread
7 update_nap_flag_of_partner_lane();
8 ......
9 mwait();
10 }
11 /**************** BATCH TASKS *****************/
12 /* fast path check injected into method body */
13 check:
14 if (!request_lane_idle) slow_path();
15

16 slow_path() { nanonap(); }

(a) Borrow idle policy.

1 /********** LATENCY CRITICAL WORKLOAD *********/
2 exposed SHIM signal: queue_len
3

4 /**************** BATCH THREADS ***************/
5 per_cpu_variable: lane_status = NORMAL;
6 per_cpu_variable: start_stamp;
7 check:
8 if (request_lane_idle && queue_len == 0) {
9 lane_status = NEW_PERIOD;
10 } else if (!request_lane_idle) {
11 slow_path();
12 }
13 slow_path() {
14 switch (lane_status) {
15 case NORMAL:
16 nanonap();
17 break;
18 case NEW_PERIOD:
19 lane_status = CO_RUNNING;
20 start_stamp = rdtsc();
21 break;
22 case CO_RUNNING:
23 now = rdtsc();
24 if (now - start_stamp >= budget) // expired
25 lane_status = NORMAL;
26 } }

(b) Fixed budget policy.

Figure 5.9: The pseudocode of four scheduling policies (the borrow idle policy and the fixed
budget policy).
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1 /********** LATENCY CRITICAL WORKLOAD *********/
2 exposed SHIM signals: queue_len, running_request
3

4 /**************** BATCH THREADS ***************/
5 /* Same as the fixed budget policy, except... */
6 per_cpu_variable: last_request
7 ...
8 case NEW_PERIOD:
9 ...
10 last_request = running_request;
11 ...
12 case CO_RUNNING:
13 if (running_request != last_request &&
14 queue_len == 0) {
15 last_request = running_request;
16 start_stamp = rdtsc();
17 }
18 ...

(c) Refresh budget policy.

1 /**************** BATCH THREADS ***************/
2 /* Same as the refresh budget policy, except... */
3 ...
4 case CO_RUNNING:
5 ...
6 /* calculate IPC of LC lane */
7 ratio = ref_IPC / (ref_IPC - LC_IPC)
8 real_budget = budget * ratio;
9 if (now - start_stamp >= real_budget)
10 lane_status = NORMAL;
11 ...

(d) Dynamic refresh policy.

Figure 5.9: The pseudocode of four scheduling policies (the refresh budget policy and the
dynamic refresh policy).
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meet the SLO under moderate loads. We consider the maximum slowdown requests
can incur under a certain load as a budget for the batch workload. As an example,
consider an SLO latency of 100 ms for 99% of requests. If 99% of requests executing
exclusively on the core complete in 53 ms at some RPS, then there exists headroom of
100� 53 = 47 ms. We thus could take a budget of 47 ms for executing batch tasks. (We
leave more sophisticated policies that also incorporate load along the lines of Haque
et al. [2015] to future work.)

Given a budget, the fixed-budget scheduler will execute batch threads concur-
rently with requests in their respective SMT lanes when the scheduler is confident
that the batch threads will not slow down any request longer than the given budget.
Co-running with a request for T ms slows down the processing time of the request
less than T ms. For requests that never wait in the queue, the processing time is the
same as the request latency. So, it is safe to co-run with these requests for a budget
period. Figure 5.9(b) shows the implementation of this policy. Line 7 detects when
the request queue is empty and renews the budget period, such that the next request
will co-execute with the batch thread for the fixed budget.

As we showed in Section 5.2, the request lane is frequently idle for short periods
because after one request finishes there are no pending requests, and most requests
are short. The fixed-budget scheduler only uses its budget when a new request that
never waits in the queue starts executing in the request lane. When the scheduler
detects that a new request starts executing and the lane_status is set to NEW_PERIOD
because the request queue was empty before this requests started, it co-schedules the
batch thread in its lane for the budget period. If the request is finished in the period
and there are no waiting requests, the scheduler resets the budget and uses it for the
next request. When the budget expires, the scheduler puts the batch thread to sleep.
When another idle period begins because the request terminates, the request queue is
empty, and no other request is executing, the scheduler restarts the batch thread and
repeats this process. Note that if N requests execute in quick succession without idle
gaps, this simple scheduler only co-executes the batch thread with the first request
that begins after an idle period. This conservative strategy ensures that each request
is only impacted for the budget period of its execution.

Refresh Budget The refresh budget policy extends the fixed budget policy based on
the observation that once a request has completed and the queue is empty, the budget
may be refreshed. The rationale is that the original budget was calculated based on
avoiding a slowdown that could prevent the just-completed task from meeting the
SLO. Once that task completes, then the budget may be recalculated with respect to
the new task meeting the SLO. However, because the slowdown imposed by the batch
workload is imparted not just on the running request, but on all requests behind it
in the queue, we only refresh the budget if the task changes and the queue is empty.
Figure 5.9(c) shows the code.

Dynamic Budget The dynamic budget policy is the most aggressive policy and
builds upon the refresh budget policy. It uses a dynamic budget that is continuously
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adjusted according to the base budget and the IPC of the latency-critical request. This
policy requires us first to profile the IPC with no interference and then to monitor
the impact of co-running on request IPC. We implement the monitoring based on the
sampling ideas in Shim [Yang et al., 2015a]. We read the IPC hardware performance
counter of the request lane from the batch lane, at high frequency with low overhead.
When the latency-critical request’s IPC is high, it will be proportionately less affected
by the batch workload, so we adjust the dynamic budget accordingly.

5.4 Methodology

Hardware & OS We use a 2.0 GHz Intel Xeon-D 1540 Broadwell [Intel, 2013b] pro-
cessor with eight two-way SMT cores, a 12 MB shared L3. Each core has a private
256 KB L2, a 32 KB L1D and a 32 KB L1I. The TurboBoost maximum frequency is
2.6 Ghz, TDP is 45 W. The machine has 16 GB of memory and two Gigabit Ethernet
ports. We disable deep sleep and TurboBoost.

We use Ubuntu 15.04, Linux version 4.3.0, and the perf subsystem to access the
hardware performance counters. We implement the nanonap mechanism as a virtual
device as shown in Figure 5.6. We modify the idle task to wake up sleeping batch lanes
as shown in Figure 5.9(a). We expose a memory buffer to user space to determine
which tasks are running on which cores.

Latency-Critical Workload We use the industrial-strength open-source Lucene
framework to model behavior similar to the commercial Bing web search en-
gine [Haque et al., 2015] and other documented latency-critical services [Dean and
Barroso, 2013; Delimitrou and Kozyrakis, 2014; Ren et al., 2013; Hauswald et al., 2015].
Load variation results from both the number of documents that match a request and
from ranking calculations. We considered using memcached, a key-value store ap-
plication, because it is an important latency-critical workload for Facebook [Hart
et al., 2012; Nishtala et al., 2013] and a popular choice in the OS and architecture
communities. However, each request offers the same uniformly very low demand
(<10 K instructions) [Hart et al., 2012], which means requests saturate the network
before they saturate the CPU resources on many servers. Recent work offers OS and
hardware solutions to these network scalability problems [Belay et al., 2014; Lim et al.,
2014], which we believe if combined with our work would be complementary. We
leave such investigations to future work.

We execute Lucene (svn r1718233) in the Open JDK 64 bit server VM (build 25.45-
b02, mixed mode). We use the Lucene performance regression framework to build
indexes of the first 10 M files from Wikipedia’s English XML export [Wikipedia, 2016]
and use 1141 term requests from wikimedium.10M.nostopwords.tasks as the search
load. The indexes are small enough to be cached in memory on our machine. We
warm up the server before running any experiments.

We send Lucene requests from another machine that has the same specifications
as the server. The two machines are connected via an isolated Gigabit switch. For
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each experiment, we perform 20 invocations. For each invocation, the client loads
1141 requests, shuffles the requests, and sends requests 5 times. The client issues
search requests at random intervals following an exponential distribution around the
prescribed RPS mean rate. We report the median result of the 20 invocations. The
95% confidence interval is consistently lower than ±0.02.

Batch Workloads We use 10 real-world Java benchmarks from the DaCapo 2006
release [Blackburn et al., 2006a] and three micro C benchmarks, Loop, Matrix, and
Flush. The DaCapo benchmarks are popular open-source applications with non-
trivial memory loads that have active developers and users. Using DaCapo as batch
workloads represents a real world setting. The C micro benchmarks demonstrate the
generality of our approach and give us control over the interference pattern. Loop
calls an empty function and has an IPC of 1. It consumes front-end pipeline resources.
Matrix calls a function that multiplies a 5⇥5 matrix, a computationally intensive high
IPC workload. It consumes both front-end pipeline and functional-unit resources.
Flush calls a function that zeros a 32 KB buffer, a disruptive co-runner that flushes
the L1D cache.

We run Java benchmarks with JikesRVM [Alpern et al., 2005], release 3.1.4 + git
commit fd68163, a Java-in-Java high performance Virtual Machine, using a large
200 MB heap. The JIT compiler in JikesRVM already inserts checkpoints for thread
control and garbage collection into function prologues, epilogues and loop back-
edges. We add to these a check for co-runner state, as shown in Figure 5.9. For C
micro benchmarks, we use GCC’s -pg instrumentation option [GCC, 2016] to add
checks to method prologues.

Measurements We use a target, 100 ms request latency for 99% of requests, as our
SLO in all of our experiments, which is a practical SLO target for the search engine.

5.5 Evaluation

This section evaluates the ability of Elfen to improve server utilization while meeting
Service Level Objectives (SLOs) and Elfen overheads.

Borrow idle We first present Elfen configurations that use the borrow idle policy
with DaCapo as the batch workload. This policy minimizes the impact on request
latencies. Figure 5.10(a) plots latency (top) and utilization (bottom) versus requests
per second (RPS) on the x-axis for Lucene without (black) and with each of the ten
DaCapo batch workloads (colors) executing on one two-way SMT core of the eight-
core Broadwell CPU. Figure 5.10(b) presents these same configurations executing
seven instances of each DaCapo benchmark on seven cores. The eighth core manages
network communication (receiving requests and returning results), queuing, and
starting requests for the latency-sensitive workload. We plot median latency; error
bars indicate 10th and 90th percentiles.
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Figure 5.10: 99th percentile latency (top) and utilization (bottom) for Lucene co-running with
DaCapo batch workloads.
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The results in Figure 5.10(a) and 5.10(b) show that executing these batch workloads
in idle cycles imposes very little impact on Lucene’s SLO on a single core or a CMP. Elfen
achieves essentially the same 99th percentile latency at the same requests per second
(RPS) with or without batch execution. In fact on one core, Elfen sometimes delivers
slightly lower latencies for Lucene when executing each of the batch workloads in the
other lane during idle periods. This results occur because running the batch thread
in the other lane causes the core never to enter any of its sleep states. When a new
request arrives, the core is guaranteed not to be sleeping, its request lane is empty,
and thus the core will service requests slightly faster. With the borrow idle policy,
the peak utilization of the core is 100% out of 200% since each core has 2 hardware
contexts, but by design, only one is active at a time. Because Elfen keeps the core
busy, executing requests as they arrive in one lane and batch threads with mutual
exclusion in the other, it often achieves its peak potential of 100% utilization, but
when the utilization of the batch workload is low, the total utilization may be less
than 100%.

The chip multiprocessor (CMP) results in Figure 5.10(b) show better throughput
scaling than just a factor of seven. For example, at 60 ms, the single core system can
sustain about 70 RPS, while the seven-core system can sustain as much as 1000 RPS.
Remember that most requests are short, and long requests contribute most to tail
latencies. CMPs better tolerate long request latencies than a single core by executing
multiple other short requests on other cores, so fewer short requests incur queuing
delay when a long request monopolizes a core. At moderate loads, we again see some
improvements to request latency when co-running with batch workloads because the
cores never sleep, whereas cores are sometimes idle long enough without co-runners
to sleep. However, continuously and fully utilizing all seven cores on the chip incurs
more interference, and thus we see some notable degradations in the 99%ile latency
at high load. There are two sources of increased latency. First, the effects of managing
the queue and request assignment, which shows some non-scalable results. For
example, even small amounts of contention for the request queue impacts tail latency
independent of Elfen. Elfen slightly exacerbates this problem. Second, as prior
work has noted and addressed [Herdrich et al., 2013; Lo et al., 2015; Mars et al., 2011],
requests and batch threads can contend for shared chip-level resources on CMPs,
such as memory and bandwidth. Adding such techniques to Elfen should further
improve its effectiveness.

Increasing Utilization on a Budget Figure 5.11 presents latency (top graphs) and
utilization (bottom) for the four Elfen scheduling policies described in Section 5.3:
borrow idle, fixed budget, refresh budget, and dynamic refresh on one core. The
budget-based policies all borrow idle cycles and trade latency for utilization, slowing
the latency-critical requests to increase utilization. Comparing the top row in the
figure shows that increasingly aggressive policies cause more degradations in the
99th percentile latency. In these RPS ranges, Lucene’s requests meet the 100 ms SLO
latency target, but are degraded.

Borrowing idle cycles and co-executing batch threads with requests increases
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Figure 5.11: 99th percentile latency (top) and utilization (bottom) for Lucene co-running with
C microbenchmarks under four Elfen policies on a single two-way SMT core.
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utilization significantly. Comparing across the utilization figures reveals that the
budget-based policies further improve utilization compared to borrowing idle cycles.
Core utilization rises as load increases. At moderate loads, Elfen achieves utilizations
over 1.4 for the fixed budget policy and 1.5 for the dynamic refresh policy. All budget-
based policies achieve utilizations of at least 1.2. When the system becomes highly
loaded with requests, Elfen adjusts by executing the co-runners less, and thus total
utilization drops. While all of the Elfen policies are effective at trading off utiliza-
tion for SLOs, the most aggressive dynamic refresh policy consistently runs at higher
utilization. The dynamic refresh policy is performing precise, fine grain monitoring of
request IPC to more accurately and effectively manage this tradeoff. Although we
study IPC, Elfen may monitor and partition other resources, such as memory and
cache. Although higher utilization is appealing, some service providers may not be
willing to sacrifice throughput of latency-critical tasks, so for them the most practical
policy may be to borrow idle cycles.

Figure 5.10(c) shows the latency and utilization results for the most aggressive
dynamic refresh policy on our CMP with DaCapo as the batch workload. This policy
degrades the 99th percentile latency by 20 ms before reaching a peak utilization of 1.75
at around 600 RPS. At larger RPS, Elfen schedules the batch less, system utilization
drops and the latency approaches to the same level of the borrow idle policy.

Overhead on Batch Workload Overhead on the batch workload comes from instru-
mentation, interference with the latency-sensitivity requests, and being frequently
paused and restarted. As we pointed out above, Lin et al. [2015] show the instrumen-
tation overheads are low, at most a couple percent.

Figure 5.12 measures these other overheads. It presents the execution time, user
time utilization, and user level IPC of each DaCapo benchmark co-running with
Lucene normalized to its execution alone on one core. When co-running, we use
the borrow idle policy and load the Lucene at 80 RPS, which leads to about 50%
utilization for both Lucene and each DaCapo benchmark. The execution time of
co-running each DaCapo benchmark increases by 49% on average as predicted by
the 50% utilization. There are small variations in these slowdowns, but none of them
are due to DaCapo programs executing more instructions when co-running — the
number of retired instruction at user level is the same. Furthermore, DaCapo does
not execute instructions less efficiency, because IPC decreases are only 1%.

Variation in execution times is due to variations in utilization already present in
the DaCapo benchmarks. If the batch workload is idle for some other reason (e.g.,
waiting on I/O or a lock), then a request that forces it to stop executing will affect it
less. The more idle periods the batch workload has, the less execution is degraded.
This effect causes normalized execution time and utilization to be strongly correlated.
For instance, the pmd benchmark incurs the largest slowdown in execution time, 59%,
and the largest utilization reduction, 36%. The fop benchmark has the lowest native
utilization in these benchmarks. Consequently, it has both the smallest slowdown
and the smallest utilization reduction, 47% and 26%.
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5.6 Related Work

Exploiting SMT The queuing delay caused by load spikes results in highly non-
linear increases in tail-latency. To handle the load spikes, prior work [Haque et al.,
2017, 2015; Hsu et al., 2015; Ren et al., 2013; Kasture et al., 2015] explores SMT, DVFS,
heterogeneous hardware, or parallelism for servers that exclusively handle latency-
sensitive requests (no co-location). Elfen is largely orthogonal to these approaches
since our work focuses on improving server utilization and mitigating the impact of
co-running batch jobs.

Lo et al. [2015] demonstrate that naively co-running batch workloads with latency-
critical workloads violates Google’s SLO, even under light load. They show that for
many latency-critical workloads, uncontrolled interference due to SMT co-location is
unacceptably high, and conclude that it is not practical to share cores with SMT. Our
results contradict this conclusion.

Herdrich et al. [2013] note that achieving latency objectives with current SMT
hardware is challenging because the shared resources introduce contention that make
it hard to reason about and meet SLOs. They propose SMT rate control as a building
block to improve fairness and determinism in SMT, which dynamically partitions
resources and implements biased scheduling. These mechanisms should help limit
interference on requests and complement our approach. They do not evaluate latency-
critical workloads, seek to borrow idle cycles, or offer a fine-grain thread-switching
mechanism, as we do here.

Inspired by our appraoch, Margaritov et al. [2019] designs a similar fine-grain
thread-switching mechanism in hardware. They utilizes the mechanism to balance
QoS and throughput of co-located latency-critical and batch workloads on SMT cores.

Accommodating Overheads Zhang et al. [2014] use offline profiling of batch work-
loads to precisely predict the overhead due to co-running with latency-critical re-
quests on SMT. They then carefully provision resources to co-run batch workloads
whilst maintaining SLOs for latency-critical workloads. Unlike our work, they do
not attempt to minimize the overhead of co-running batch workloads. Rather, they
predict and then accommodate it. They measured interference due to co-run batch
workloads in the range of 30%-50%.

POSIX Real-Time Scheduling Leverich and Kozyrakis [2014] propose using POSIX
real-time scheduling disciplines to prioritize requests over co-run batch threads.
When hardware contexts are scarce, this approach ensures that latency-critical re-
quests have priority — batch threads will be the first to block. When given sufficient
hardware contexts however, the approach does not control for interference due to co-
running. Thus it does not address the problem we address here: avoiding interference
due to co-running while utilizing SMT.

Exposing and Evaluating mwait Anastopoulos and Koziris [2008] use mwait to re-
lease resources to another SMT thread when waiting on a lock. Wamhoff et al. [2014]
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make mwait user-level visible and then use it to put cores into sleep states so as
to provide power headroom for DVFS to boost performance on other cores which
are executing threads on the program’s critical path. They measure the latency of
putting an entire core into a C1 sleep state on an Intel Haswell 4 770 and found that
it was 4 655 cycles. This result is broadly consistent with our measurements, which
are for a single hardware context on a more recent processor. With regard to seman-
tics, Meneghin et al. [2012] claim fine-grain thread communication requires user-level
mechanisms, whereas we offer an intermediate point that involves the OS, but not
the OS scheduler. None of this prior work has the same semantics as nanonap for
hardware control, which we exploit for both fine-grain monitoring and scheduling.

5.7 Summary

This chapter shows how to implement a Shim-inspired optimization. We show how
Elfen uses SMT to execute latency-critical and batch workloads on the same server
to increase utilization without degrading the SLOs of the latency-critical workloads.
We show, given a budget, how to control latency degradations to further increase
utilization while meeting SLOs. Our policies borrow idle cycles and control inter-
ference by reserving one lane for requests and one for batch threads. By reserving
SMT lanes, Elfen always immediately executes the next request when the previous
one completes or a new one arrives. Using Shim’s high-frequency monitoring and
nanonap, Elfen responds promptly to release core resources to requests or to control
interference from batch threads. Our principled borrowing approach is extremely
effective at increasing core utilization. Whereas current systems achieve utilizations
of 5% to 35% of a 2-way core (by only using one lane at 10% to 70%) while meeting
SLOs, Elfen’s borrow idle policy uses both lanes to improve utilization at low load
by 90% and at high load by 25%, delivering consistent and full utilization of a core
at the same SLO. On CMPs, Elfen with the borrow idle policy is extremely effective
as well, achieving its peak utilization without degrading SLOs for all but the highest
loads. No prior work has managed this level of consistent server utilization without
degrading SLOs.
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Chapter 6

Conclusion

In their Turing Lecture, entitled “A New Golden Age for Computer Architecture”,
Hennessy and Patterson [2019] highlight that with the end of Moore’s Law and
Dennard Scaling, the future of performance improvement is in inventing full-stack
optimizations. However, given the complexity of computer systems, discovering
full-stack optimizations is a challenging discovery process: engineers must observe
system behavior, develop insights, and design optimizations. This thesis empower
engineers with a new observation tool that gives them high-frequency high-fidelity
profiling information. It shows how to use this information to observe, analyze,
and optimize the fine-grain behavior of production systems on commodity multicore
hardware.

To observe the fine-grain behavior of production systems, we design Shim, a
new continuous profiling approach working on today’s multicore processors. Shim
views computer systems as high-frequency signal generators. It samples software and
hardware signals at high frequencies from observer threads on multicore hardware.
We show that Shim filters out noisy samples efficiently using double-time error
correction. We present case studies demonstrating that Shim delivers high-frequency
high-fidelity signals. Shim improves sampling frequencies by three to five orders of
magnitude, fundamentally altering which system behaviors are observable.

To analyze and control the fine-grain behavior of latency-critical systems, we
design Tailor, a real-time latency controller that consists of two parts: 1) a Shim-
based high-frequency profiler which continuously analyzes the fine-grain interactions
of complex system components and promptly acts on hazardous system behaviors,
2) and an application-level network proxy which uses local node server redundancy
to reduce the impact of unavoidable random hazardous behaviors. We present a
case study demonstrating that Tailor not only diagnoses root causes of slow latency-
critical requests, but also reduces tail latency by nine times via adjusting system
configurations and mitigating the impact of unavoidable random JVM pauses with
loca-node server redundancy.

To demonstrate that fine-grain control of system components leads to a new class
of online profile-guided optimizations, we design Elfen, a Shim-based job scheduler
that controls fine-grain interactions between latency-critical requests and batch jobs.
We show that Elfen improves server utilization significantly without degrading the
SLOs of the latency-critical requests by co-running batch jobs and latency-critical
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requests on the same core but on different SMT contexts. We show that co-running
batch jobs can use the Shim profiling approach to continuously monitor the status of
latency-critical requests, and promptly release CPU resources to the paired latency-
critical SMT context with the nanonap system call, which we introduce. Elfen opens a
new way to substantially improve the utilization of datacenter running latency-critical
workloads.

Today, gigahertz multicore processors are prevalent. This thesis enables online
high-frequency profiling on these platforms and demonstrates that not only does
high-frequency profiling discover full-stack optimization opportunities, but also can
be used to implement new optimizations.

6.1 Future Work

This section highlights three future research directions that follow from this thesis:
profiling distributed systems, designing customized profiling cores, and exploring
more system signal processing techniques.

6.1.1 Distributed High-Frequency Profiling

In the era of cloud computing, developers need tools to help them observe, analyze,
and control the fine-grain behavior of complex distributed systems. Shim could
be extended to address this problem: On each node, we deploy a continuous high-
frequency profiler, which in addition to sampling local hardware and software signals,
continuously communicates with other remote profilers to draw a map showing fine-
grain interactions between distributed nodes.

6.1.2 A Profiling Core

In this thesis, we repurpose existing multicore hardware to execute high-frequency
profiling observers. It is wasteful to delicate a general-purpose core to high-frequency
profiling, both in terms of power and CPU utilization. The general-purpose core also
has limited channels with which to observe hardware events from other hardware
contexts, and limited capabilities to control other hardware behavior. A customized
core with the changes proposed in Section 3.1 could reduce the overhead of continu-
ous high-frequency profiling, enlarge the scope of observable hardware and software
events, and reduce the risk factor of leaking sensitive signals to general-purpose cores.

6.1.3 System Signal Processing

Processing high-frequency signals of system behavior is challenging. In this thesis,
we introduce a few signal processing techniques: Shim uses the double-time error
correction to improve the fidelity of signals, Tailor tracks latency-critical requests
with TaleChain signals, and Elfen listens to signals of latency-critical requests and
takes real-time scheduling actions. However, many more signal processing techniques
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can be explored within the framework provided by this thesis such as indexing and
searching large-volume real-time signal data, as well as new real-time signal filters
and analyzers.

6.2 Final Words

Claude Shannon, the father of information theory, recalled a conversation with Alan
Turing when he visited Turing’s Laboratory in 1950:

So I asked him what he was doing. And he said he was trying to find a way
to get better feedback from a computer so he would know what was going
on inside the computer. And he’d invented this wonderful command. See,
in those days they were working with individual commands. And the
idea was to discover good commands. And I said, what is the command?
And he said, the command is put a pulse to the hooter, put a pulse to the
hooter. Now let me translate that. A hooter is an English, in England is a
loudspeaker. And by putting a pulse to it, it would just be put a pulse to
a hooter. Now what good is this crazy command? Well, the good of this
command is that if you’re in a loop you can have this command in that
loop and every time it goes around the loop it will put a pulse in and you
will hear a frequency equal to how long it takes to go around that loop.
And then you can put another one in some bigger loop and so on. And
so you’ll hear all of this coming on and you’ll hear this “boo boo boo boo
boo boo,” and his concept was that you would soon learn to listen to that
and know whether when it got hung up in a loop or something else or
what it was doing all this time, which he’d never been able to tell before.

From the oral history by Price [1982]

Shannon and Turing’s interaction shows that from the very beginning of com-
puting, people needed ways to understand what computations and computers were
doing. They saw that computation could be interpreted as generating signals and
understood as signal processing. In essence, this thesis views system behavior from
a digital signal processing perspective. Our approach listens to the “sound” of com-
putation by sampling software and hardware signals at orders of magnitude higher
frequencies while limiting observer effects. It shows examples of how this increase
in sampling rate leads to new analysis, insights, and optimizations. We believe it
presages even more such opportunities.
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