
An Efficient Implementation of a
Micro Virtual Machine

Yi Lin

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

March 2019



c© Yi Lin 2019



Except where otherwise indicated, this thesis is my own original work.

Yi Lin
March 2019





This thesis is dedicated to my parents. The idea of starting a PhD and the fact of
actually finishing it, would hardly happen for me if it were not them.





Acknowledgements

First I would like to thank my supervisor, Steve, for many years of mentoring me
through both a master degree and a PhD. He started and leads the micro virtual
machine project, and I am lucky to be a part of it for my PhD. Witnessing a virtual
machine being designed and built from scratch, and joining as a part of the process
is of great value to me. I learnt a lot from his expertise in runtime implementation
and hardware architecture, and his serious attitude towards performance analysis
and sound methodology shaped my understanding about scientific performance
evaluation and will benefit me life-long. Besides, I want to express my gratitude to
Steve for creating an encouraging and autonomous lab environment that makes this
hard and long PhD journey enjoyable.

Then I would like to thank my advisor, Tony. The compiler work would be much
more difficult, much more time consuming, or maybe impractical for me to finish if
he were not around. I greatly appreciate that he spent lots of time with me looking
into the very details and figuring out issues. I also would like to thank Michael, my
other advisor, for his great insights on language semantics and formal verification.
He closely follows the progress of the project, helps keep the project always on the
right track, and provides valuable suggestions.

Then I would like to thank my parents. They encouraged me to pursue a PhD
degree in the area that I am interested in, and they are being supportive full-heartedly
through these many years. In the very last few months of my PhD, they even cancelled
a planned trip to visit me so that I can more concentrate on the thesis writing. The
idea of starting a PhD, and the fact of actually finishing it, would hardly happen for
me if it were not them.

In the years when I am in the computer systems lab in ANU, there have been
many fellow students who have walked alongside me, whom I owe my thanks. They
have discussed problems with me, and provided useful suggestions and solutions.
Especially, I would like to thank Xi for helping me so much in research, in technical
stuff, and in life.

vii





Abstract

Implementing a managed language efficiently is hard, and it is becoming more dif-
ficult as the complexity of both language-level design and machines is increasing.
To make things worse, current approaches to language implementations make them
prone to inefficiency as well. A high-quality monolithic language implementation
demands extensive expertise and resources, but most language implementers do not
have those available so their implementations suffer from poor performance. Alter-
natively, implementers may build on existing frameworks. However, the back-end
frameworks often offer abstractions that are mismatched to the language, which either
bounces back the complexity to the implementers or results in inefficiency.

Wang et al. proposed micro virtual machines as a solution to address this issue. Mi-
cro VMs are explicitly minimal and efficient. Micro VMs support high-performance
implementation of managed languages by providing key abstractions, i.e. code exe-
cution, garbage collection, and concurrency. The abstractions are neutral across client
languages, and general and flexible to different implementation strategies. These
constraints impose interesting challenges on a micro VM implementation. Prior to this
work, no attempt had been made to efficiently implement a micro VM.

My thesis is that key abstractions provided by a micro virtual machine can be
implemented efficiently to support client languages.

By exploring the efficient implementation of micro virtual machines, we present
a concrete implementation, Zebu VM, which implements the Mu micro VM spec-
ification. The thesis addresses three critical designs in Zebu, each mapping to a
key abstraction that micro virtual machines provide, and establishes their efficiency:
(i) demonstrating the benefits of utilizing a modern language that focuses on safety
to implement a high performance garbage collector, (ii) analysing the design space of
yieldpoint mechanism for thread synchronization, and (iii) building a micro compiler
under the specific constraints imposed by micro virtual machines, i.e. minimalism,
efficiency and flexibility.

This thesis is a proof of concept and an initial proof of performance to establish
micro virtual machines as an efficient substrate for managed language implementa-
tion. It encourages the approach of building language implementations with micro
virtual machines, and reinforces the hope that Mu will be a suitable back-end target.
The thesis discusses the efficient implementation for micro virtual machines, but
illustrates broader topics useful in general virtual machine design and construction.
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Chapter 1

Introduction

Micro virtual machines were proposed by Wang et al. to facilitate efficient imple-
mentations of managed languages by providing abstractions in a single, minimal,
efficient and flexible low-level substrate. The design goals bring constraints and inter-
esting challenges to a micro virtual machine’s implementation. This thesis discusses
the challenges in implementing key abstractions in a micro virtual machine, demon-
strates the efficiency of our solutions, and presents a concrete micro virtual machine
implementation, Zebu VM.

This thesis complements the prior work [Wang et al., 2015] on micro virtual
machines, by realizing that works’ design of a micro virtual machine specification
into an efficient implementation. The prior work presented a proof of existence for
micro virtual machines, while this thesis is a proof of concept and an initial proof
of performance [National Research Council, 1994] for micro virtual machines as an
efficient substrate for managed language implementation.

1.1 Thesis Statement

My thesis is that key abstractions provided by a micro virtual machine can be imple-
mented efficiently.

1.2 Contributions

The thesis focuses on the approaches to and the delivery of desired properties of micro
virtual machines, i.e., minimalism, efficiency, flexibility and robustness, across key
services that micro virtual machines provide, i.e., code execution, garbage collection
and concurrency.

The principal contributions of this thesis are: (i) a critical analysis of current
frameworks for managed language implementation, (ii) a case study of utilizing a
memory-/thread-safe language for a garbage collector implementation to achieve
both efficiency and robustness, (iii) a categorization of a widely used thread syn-
chronization mechanism for virtual machines, yieldpoints, and an evaluation across
various yieldpoint implementations with respect to their efficiency and flexibility, and

1



2 Introduction

(iv) a micro compiler design as our solution to balance minimalism, efficiency and
flexibility in back-end code generation for micro virtual machines1.

1.3 Problem Statement

1.3.1 Difficulties in Language Implementation

Engineering an efficient managed language implementation is hard, and it is becom-
ing more difficult. (i) Language design tends to be higher level and friendlier to
the programmer than to the machine. This leaves a larger gap between language
semantics and machine instruction set architectures (ISAs) for implementers to close.
Furthermore, some language features, such as dynamic typing, require sophisticated
optimizations to be efficient, such as inline caching, type specialization and specula-
tive execution. Performance suffers if the implementation is naive. (ii) Hardware is
becoming more complex. Architectures such as multi-core and heterogeneous archi-
tectures, and instructions such as hardware transactional memory, raise more issues
that the implementers must take care of, such as memory consistency in concurrent
systems, but they also provide more opportunities for the implementers to exploit for
better efficiency. This further complicates the implementation. (iii) Implementation
techniques are getting more advanced. Both academia and industry continuously
improve the techniques used in language implementation, which improves perfor-
mance but also makes the implementation more complex. It is resource-consuming
(or infeasible) to apply state-of-the-art techniques in one single implementation. Small
slowdowns may add up, compromising efficiency. (iv) Security is becoming more
critical and more challenging to deal with efficiently.

The impact of implementation difficulties is profound. One obvious consequence
when the difficulties cannot be properly handled is that performance suffers. Inef-
ficient implementations may cause the language to run orders of magnitude slower
than languages such as C. Even the simple tests of the Benchmarks Game [Bench-
marks Game] reveal widely popular languages such as Python and PHP to be ex-
tremely inefficient. This leads to a common misunderstanding that those languages
are intrinsically inefficient. However, through efforts from academia and industry,
more advanced language implementations such as PyPy [Rigo and Pedroni, 2006] and
HHVM [Adams et al., 2014] make those languages faster, and in some cases, bring
the performance to the same order of magnitude as C, indicating a major source of
the inefficiency is the implementation. Unfortunately, most languages do not have
such opportunities to draw attention from either academia or industry, and their
implementations remain inefficient.

Another consequence is that implementation difficulties may obscure the language
designers’ understanding of the underlying implementation and levels of abstraction,
unnecessarily reflecting implementation details to language design. For example,

1While this thesis discusses and proposes a compiler design around minimalism, efficiency and
flexibility, we prioritize efficiency in this thesis and only provide performance evaluation for the compiler.
Section 1.4.1 states the scope of this thesis.



§1.3 Problem Statement 3

some languages expose specific GC algorithms and policies to the user. PHP bears
the assumption of using immediate reference counting garbage collection throughout
its language design2 [PHP GC, 2017]. This also happens for .NET languages, which
assume and expose a generational GC algorithm to users [.NET GC, 2017]. This
assumption imposes unnecessary constraints on the language, and prevents the im-
plementation from using other GC algorithms which may be more efficient or more
suitable in some scenarios.

1.3.2 Common Approaches to Language Implementation

To make things worse, common approaches to managed language implementations
make them prone to inefficiency. Developers may build a monolithic implementation,
which covers all aspects of the language implementation. Building a high-quality
monolithic implementation demands great depth and breath of expertise from its
implementers, and considerable resources if it is to deliver good performance. No-
table examples with this approach include various Java virtual machines, such as
Hotspot VM [Open JDK, 2017] and IBM J9. They are the results of efforts from
many years of commitment and investment by large, well-resourced teams. However,
many language implementations do not have such resources available, and remain
inefficient.

Alternatively, developers may base their language implementation on top of ex-
isting well-engineered and performant frameworks. This approach alleviates the
implementation difficulties by leveraging mature infrastructures that include rich
sets of optimizations, support for multiple platforms, and other standard services.
Popular back-end frameworks for managed languages include LLVM and the JVM3.
Though the frameworks are eligible as back-ends and performant for their originally
supported languages, the suitability of re-targeting them for other high-performance
managed languages is questionable, especially for dynamic languages and just-in-
time compiled languages [Tatsubori et al., 2010; Klechner, 2011; Castanos et al., 2012;
Pizlo, 2016]. The reasons are solid, as we shall see below.

LLVM. LLVM was designed and built as an ahead-of-time optimizing compiler
framework for native statically typed languages, which makes it less than ideal as
a back-end for managed languages. (i) In a managed language implementation,
the runtime is usually tightly coupled with the compiler. However, LLVM lacks
a runtime implementation of features such as GC and exception handling, so the
developers will still have to implement their own runtime. (ii) LLVM’s support for
integrating with a runtime is insufficient, or inefficient. Most of the arguments are
around flexible and efficient support for precise garbage collectors [LLILC GC, 2017].

2Facebook’s Hack language addresses this and other shortcomings of PHP [Hack, 2017]. In the mean-
while, PHP still carries the burden while being one of the most popular languages in web development.

3There are emerging frameworks, such as PyPy, Truffle/Graal and Eclipse OMR, which offer different
solutions as back-end frameworks. Here we only discuss LLVM and the JVM, as they are most widely
used. A detailed review of the frameworks can be found in Section 2.1.
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(iii) LLVM’s optimizing compiler is not a silver bullet to language optimization: LLVM
can optimize its intermediate representation, but is not capable of language-specific
optimizations [Klechner, 2011]. Both are essential for performance. (iv) Compilation
time is an important requirement for a just-in-time compiler. However, it is not a
major concern of LLVM and is known for slow compilation compared to a modern
optimizing JIT.

The JVM. As opposed to LLVM, the JVM is a complete virtual machine with a
high-performance JIT compiler and runtime. However, it also has pitfalls that prevent
a high-performance implementation for an arbitrary language [Rose, 2014]. (i) Java
bytecode, as the input intermediate representation (IR) for the JVM, is high-level.
It lacks efficient access for unsafe and unmanaged code. This greatly constrains
the viability and flexibility of implementing certain languages on top of the JVM.
(ii) Java bytecode carries Java semantics, such as object orientation, object finalization,
per-object headers and locks, the class hierarchy root Object, and ‘all object variables
are references’. This often presents semantic mismatches for an arbitrary language,
and forces language developers to translate their languages into Java-like semantics
when they target the JVM, no matter whether it is suitable or not for the language. As
a result, it imposes unnecessary overheads. (iii) The JVM lacks a lightweight interface4

for clients to access run-time variables and states, or to control VM behaviours. It
makes it difficult or impossible for clients to implement run-time optimizations.

1.3.3 Micro Virtual Machines

Based on the observation that managed language implementations are difficult and
that existing back-end frameworks are not suitable, the idea of micro virtual machines
was proposed in Wang et al. [2015] as a foundation for managed language implemen-
tation. Micro virtual machines are analogous to micro kernels in terms of language
virtual machines: they are a thin substrate that provides minimal key services to
support managed language implementation. Micro virtual machines define the key
services as three parts, i.e., memory management, code execution and concurrency,
and provide a flexible and efficient abstraction over them.

Micro virtual machines are significantly different from existing back-end frame-
works, mainly due to the principle that micro virtual machines are explicitly minimal.
Micro virtual machines do not aim for omnipotence, but instead, they provide mini-
mal support for the three key abstractions, and make guarantees for efficiency behind
the abstractions. The implications of this principle are important: (i) The abstraction
provided by the micro virtual machines draws a clear line between the front-end of
the language implementation (referred to as the client) and the back-end, i.e., the
micro virtual machine. This separation clarifies the duties of a client. If the client
fails to undertake its duty, performance may be compromised. For example, in terms
of code optimizations, the micro virtual machine is responsible for hardware-specific
optimization as the hardware is abstracted away from the client, and the client takes

4JVM TI is a heavyweight API, mainly for debug use.
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the responsibility for all other optimizations5. (ii) Minimalism leads to flexibility, as
it imposes fewer assumptions about client languages, e.g., what languages can be
implemented on top of micro virtual machines, how they are implemented at the
client side and what the requirements of a implementation are. Ideally, micro virtual
machines support various kinds of client languages, for example, functional/proce-
dural/object-oriented, statically-/dynamically-typed. And micro virtual machines
support different approaches to language implementations, whether they are inter-
preted, compiled, or a mix of both. Micro virtual machines fit in resource-constrained
platforms where a low memory footprint is a requirement. (iii) Finally, the minimal-
ism leads to the possibility of verifiability. A formally verified micro virtual machine
raises the abstraction level of a trustable computing infrastructure from operating
systems [Klein et al., 2009] to language implementation back-ends.

Following the principles and concepts of micro virtual machines, Wang et al. pro-
posed a concrete design, the Mu micro virtual machine [Wang et al., 2015]. Mu is a
specification that defines the semantics of the micro virtual machine6. Mu is designed
with a requirement in mind: to efficiently support diverse managed languages and
implementation approaches, with an emphasis on dynamically-typed languages. Mu
attempts to avoid pitfalls of previous approaches and make distinct improvements.
Mu exposes a unique level of abstractions by a low-level language-/machine-agnostic
intermediate representation (Mu IR) with rich run-time support, such as garbage col-
lection, exception handling, on-stack replacement, swapstack, introspection, dynamic
code patching, and the capability of both just-in-time compilation and ahead-of-time
compilation. With Mu, language developers can delegate low-level work to Mu
while focusing on language-level compilation, optimization and runtime. A detailed
introduction to Mu can be found in Section 2.2.

1.3.4 Implementing an Efficient Micro Virtual Machine

Though the concept of micro virtual machines and the specification of Mu was pro-
posed by Wang et al., there was no efficient implementation, and the feasibility of
building an efficient Mu micro virtual machine had not been proved prior to this
work.

Micro virtual machines, on one hand, provide the upper language clients a flexi-
ble and efficient abstraction over key services to support complex language features
and necessary optimizations. On the other hand, micro virtual machines exploit
hardware architectures to implement them efficiently. The difficulties as discussed in
Section 1.3.1 naturally fall to the implementation of a micro virtual machine. But the
difficulties are divided so that (i) client developers only need to focus on language
specific difficulties, and (ii) the efforts in solving difficulties for micro virtual ma-
chines are reusable. Nonetheless, implementing a micro virtual machine efficiently is
difficult.

5This burden can be mitigated by providing a client-level micro virtual machine optimizer library
for common optimizations. However, language-specific optimizations have to be done by the client.

6The specification is publicly accessible at https://gitlab.anu.edu.au/mu/mu-spec.

https://gitlab.anu.edu.au/mu/mu-spec
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A micro virtual machine implements and provides some of the most complex
services of a managed language implementation. Furthermore, the design of Mu
imposes interesting constraints, which further makes an efficient implementation
challenging. We categorize the constraints as minimalism, efficiency and flexibility.
(i) Minimalism leads to properties such as faster compilation time and smaller mem-
ory footprint, which makes Mu a desirable target for just-in-time compiled languages
and on resource constrained devices. Minimalism also means fewer lines of code,
which makes the implementation formally verifiable. (ii) Mu implies efficiency, thus
it demands an efficient implementation. Though efficiency can be a trade-off with
minimalism, Mu seeks a good balance with effective optimizations to achieve decent
performance while remaining minimal. (iii) Mu does not impose unnecessary restric-
tions, or prevent efficiency on the client side as they choose strategies to implement
the clients. Mu must be flexible in order to support this. As we shall see in the
following chapters, properly dealing with the implementation difficulties under these
constraints is challenging.

This thesis presents an implementation of the Mu micro virtual machine named
Zebu VM. We explicitly designed Zebu VM so that it not only implements the Mu
specification but also satisfies the constraints discussed above. To be specific, Zebu
implements three key services that a micro virtual machine requires: garbage collec-
tion, code execution, and concurrency, and Zebu is also designed to be minimal, efficient,
and flexible. We also added another constraint to our design, robustness, as our prior
experience in low-level system development suggests that safety and software engi-
neering for virtual machine construction is equally important [Frampton, 2010; Lin,
2012]. This thesis presents our design for the Mu micro virtual machine’s key services,
and discusses how our design responds to the constraints.

Garbage collection We use the implementation of our garbage collector as a case
study to justify one of the most fundamental design decisions for Zebu VM
that affects overall efficiency and robustness – the choice of the implementation
language. Prior work [Frampton, 2010] has shown the importance of implemen-
tation languages to virtual machine construction and that it affects the overall
performance, robustness and safety. We chose a young but promising language,
Rust, to implement Zebu. The language is efficient and memory-/thread-safe,
but it has relatively restrictive semantics in order to achieve these properties.
In this work, we verified that (i) the restrictiveness of the language does not
prevent its use in a high-performance garbage collector implementation, (ii) its
safety further benefits the implementation, and (iii) its performance is able to
match the C language performance when used carefully. We further apply
the approach applied to the garbage collector to the entire virtual machine
implementation.

Concurrency Concurrency is reflected in Zebu’s implementation in various places,
such as its memory model, thread/stack management and thread synchroniza-
tion. Among these, one of the most important mechanisms to support thread
synchronization is yieldpoints. Yieldpoints are a general mechanism that allows
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threads to pause at designated positions with a coherent view of the virtual ma-
chine, and can be used in various scenarios, for example, as a synchronization
barrier for garbage collection. The design of yieldpoints affects both efficiency
and flexibility of the virtual machine. We fully explore the design space for
yieldpoints, and vigorously evaluate different designs on a mature platform
prior to the start of Zebu’s development. The results help us understand the
mechanics and ultimately decide that conditional yieldpoints are so far the most
suitable choice, due to their decent performance for both taken and untaken
cases and lowest latency.

Code execution We carefully design Zebu’s compiler, as it is the heart of a virtual ma-
chine implementation and determines performance. We take the constraints of
micro virtual machines into full consideration for the compiler, i.e., minimalism,
efficiency and flexibility, and come up with a succinct compiler pipeline with
only necessary transformations and effective back-end specific optimizations.
We evaluate our compiler along with a re-targeted ahead-of-time-compiled man-
aged language implementation, and compare the Zebu compiler with the lan-
guage’s stock back-end, which targets C with LLVM. We find that, despite the
fact that the re-targeting does not implement the front-end optimizations that
Zebu/Mu expects, the resulting performance is good. We also show that Mu’s
rich run-time support allows Zebu to outperform the stock implementation in
some scenarios.

This thesis discusses the design and implementation of Zebu VM, the first micro
virtual machine implementation that aims for high performance. The challenge of
designing Zebu is to satisfy the interesting constraints as a micro virtual machine,
i.e., minimalism, efficiency, flexibility and robustness. This thesis (i) discusses the
design decisions we faced during implementing a high performance micro virtual
machine, (ii) demonstrates that, performance-wise, Mu as a micro virtual machine is
a favourable back-end target for managed language implementation, in comparison
with existing frameworks, (iii) encourages new micro virtual machine implementa-
tions and users, and (iv) sheds light on general virtual machine construction with
discussions and insights in the thesis.

1.4 Thesis Structure

1.4.1 Scope

Mu is a long-running, cooperative and open source research project to explore the
design and implementation of micro virtual machines. Zebu VM, a high-performance
Mu implementation, is one important part of the Mu project, among a few other
finished, on-going and planned projects. My thesis started and laid a solid foundation
for Zebu VM. The design and implementation of Zebu VM up to the submission date
is within the scope of my thesis, unless stated otherwise. However, the following are
explicitly not in the scope of this thesis:
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• The design of Mu micro virtual machine specification, and its feasibility for
managed languages are not in the scope of this thesis. These are included in
[Wang, 2017].

• The implementation of client languages is not in the scope of this thesis. This
thesis refers to an RPython client for performance evaluation, which is described
in [Zhang, 2015].

• This thesis only evaluates the efficiency of our design. The metrics that demon-
strate the minimalism of Zebu, such as compilation time and memory footprint,
are not included7.

1.4.2 Outline

Chapter 2 contains a comprehensive literature review of current approaches to man-
aged language implementation, and a more detailed overview of the Mu micro virtual
machine and Zebu VM. Chapter 3 discusses our utilization of Rust as the implemen-
tation language to engineer Zebu VM, using the garbage collector as a case study
to demonstrate the benefits of using a language such as Rust, and describes the
difficulties encountered. Chapter 4 discusses the design of yieldpoints for thread
synchronization in virtual machine implementation by evaluating characteristics of
various yieldpoint designs. Chapter 5 introduces the Zebu compiler with a focus
on its succinct compiler pipeline and the compiler support for Mu’s rich run-time
semantics. Finally, Chapter 6 concludes the thesis and describes future work.

7Our approach favors fast compilation time and small memory footprint. But getting them correct is
heavily engineering oriented, and it is secondary to our goal, compared to performance metrics for the
project.



Chapter 2

Background

This chapter includes four sections. Section 2.1 is a literature review of current
approaches to managed language implementation with a focus on their benefits and
shortcomings. Section 2.2 gives a detailed introduction to the design of the Mu micro
virtual machine, such as its intermediate representation and APIs. Section 2.3 is an
overview of the Zebu VM including its general design and some details that will not
be covered in the rest of the thesis. Section 2.4 gives background information on other
Mu-related projects.

This chapter discusses background topics that are general and pertinent to the
entire thesis. The background and the related works that are only closely related to
a specific chapter of this thesis will be covered separately in each of the subsequent
chapters.

2.1 Frameworks for Managed Language Implementation

Building a language implementation on top of another is a common strategy. This
approach leverages substantial investments in the lower layer, avoiding re-inventing
the wheel, often with significant benefits in performance and robustness. Above all,
it may allow the language implementation to build on features that would otherwise
be entirely out of reach given the available resources, such as high quality code
generation and advanced garbage collection.

Section 1.3.2 has briefly discussed two concrete frameworks that are popular
as back-ends for managed language implementation, i.e. LLVM and the JVM. This
section is a more comprehensive literature review.

C as a Target Source-to-source compilation (also known as translation) is a common
approach with many software engineering benefits [Plaisted, 2013]. C, as a high-
performance low-level and mostly-portable language, is often considered as a good
target for language implementation to save the efforts of machine code generation
[Henderson and Somogyi, 2002; Flack et al., 2003]. However, in terms of managed
language implementation, C is a cumbersome target. Some run-time features require
the compiler to be cooperative, but those features are not supported in C and C
prevents their efficient implementation. For example, C lacks support for exception

9
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handling [Roberts, 1989]. When targeting C, exceptions are usually implemented as
an explicit check for exceptional return values, or setjmp/longjmp (SJLJ), both of
which impose a much higher overhead than a proper implementation of exception
handling with stack unwinding. Secondly, C lacks support for exact garbage collec-
tion [Baker et al., 2007; Rafkind et al., 2009]. Implementation of garbage collection
with C is either conservative, or creates a shadow stack to enable exactness, neither of
which is ideal. Finally, C is statically compiled, making it a poor target for a just-in-
time back-end. For these reasons, C became a less practical choice once frameworks
such as LLVM emerged.

Compiler Frameworks Compiler frameworks expose a lower-level intermediate rep-
resentation, such as LLVM IR and C−−, which makes them more suitable for just-in-
time compilation than C, since such IRs are natural targets for front-end compilers. A
mature, well-engineered, and language-agnostic back-end framework such as LLVM
is of great value to language implementers, making it a desired target for compilers1,
static analysis [Grech et al., 2015] [Cassez et al., 2017], verification [Zhao et al., 2012],
and many other purposes. Given its popularity, we observe that leveraging LLVM
in managed language implementation can help achieve reasonable performance with
LLVM’s just-in-time compilation support, but LLVM-enabled implementations can-
not compete with a high-quality monolithic implementation. For example, multiple
Python implementations that target LLVM report performance improvements over
CPython [Willis, 2009; Pyston, 2017], but they are markedly slower than the state-
of-the-art Python implementation, PyPy. Another example is that a few production
implementations, such as JavaScriptCore and Glasgow Haskell Compiler, re-targeted
to LLVM, but later moved away from LLVM or no longer use it as the default back-
end. We listed the issues in Section 1.3.2.2 This thesis’ point of view is that LLVM
helps managed language implementation significantly, especially when expertise or
resources are limited, but LLVM was originally designed without consideration of
managed language scenarios, which brings intrinsic pitfalls, therefore making it a
less than ideal target when quality and performance are the main goal. Though
LLVM is evolving to improve its support for managed languages such as through the
introduction of patchpoint, stackmap and primitives to support garbage collection,
the long list of failed projects is an evidence that it is still inadequate at the time of
writing.

1Languages that have compilers targeting LLVM include ActionScript, Ada, C#, Common Lisp,
Crystal, D, Delphi, Fortran, OpenGL Shading Language, Halide, Haskell, Java bytecode, Julia, Lua,
Objective-C, Pony, Python, R, Ruby, Rust, CUDA, Scala, Swift, and Xojo [LLVM LANGS, 2017].

2It is worth mentioning that Zing VM starts using LLVM as the second tier JIT, and reported
positive results [Reames, 2017]. Their approach elided the issues by: (i) restricting the source language
(or restricting how the source language is implemented) in order to implement a relocating garbage
collector on LLVM [Philip Reames, 2014], (ii) deeply customizing LLVM by embedding language-specific
high-level IRs and custom passes to communicate language-specific semantics with the LLVM optimizer,
and (iii) only using LLVM for the second-tier JIT, for which compilation time is not a main concern.
The bypass solutions align with the issues we raised for LLVM being back-end for general managed
languages.
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High-level Virtual Machines A well-engineered reusable virtual machine can be
a real asset to managed language implementation. Unlike compiler frameworks, a
virtual machine provides not only compilation and code execution, but also the im-
plementation of and integration with a runtime. Popular choices include the Java
Virtual Machine (JVM) and the Common Language Runtime (CLR), both of which
are mature and highly developed platforms. We observe that despite the fact that the
JVM and CLR are efficient for their originally supported languages (Java and .NET
languages respectively), other languages do not perform well when implemented on
the VMs. Section 1.3.2 discussed issues of basing managed language implementation
on top of the JVM. This thesis refers to those VMs as high-level virtual machines,
as they expose intermediate representations that are relatively high level, Java byte-
code and Common Intermediate Language (CIL) respectively. The problems with
high-level IRs are fundamental: (i) High-level IRs are closer to the source languages,
and inevitably carry semantics of the source language. This brings an impedance
mismatching when targeting a language that the IR is not designed for. (ii) High-level
IRs do not flexibly support various languages. The notable example is the introduc-
tion of invokedynamic and MethodHandle in JSR-292 with Java 7 [JSR-292, 2011], later
VariableHandle in JEP-193 with Java 9 [JEP-193, 2014], and many proposals that
have not yet been delivered, such as value objects [JEP-169, 2012]. This reflects the
lack of flexibility from a high-level IR, which may consequently lead to IR bloat in
order to support more languages. (iii) High-level IRs are not expressive in terms of
efficiently expressing language-specific run-time optimizations, for example, inline
caches [Hölzle et al., 1991] and guarded specialization [Gal et al., 2009; Costa et al.,
2013]. This leaves the problem that some essential optimizations cannot be done at
the front-end because they cannot be expressed in the IR, and they will not be done
in the back-end VM as the VM does not know about the source language and its
specific optimization. Summarizing, though reusing existing virtual machines brings
great benefits to a managed language implementation, the high-level IR stands in the
way, and prevents high performance implementation.

Meta Compilation Meta compilation derives an execution engine (which is usually
more efficient) from an existing execution engine (which is usually easier and more
straightforward to write). Examples include partial evaluation for Truffle [Würthinger
et al., 2012] [Würthinger et al., 2017] and meta tracing for PyPy [Bolz et al., 2009].
Meta compilation provides a different model for managed language implementation.
The traditional approach is that the language developers write an implementation
while delegating part of the work to a back-end framework. Meta compilation asks
the language developers to write a language interpreter (under special constraints),
and the framework aids in deriving efficient machine code for the source program
from the interpreter. Truffle and PyPy derive machine code differently from each
other: Truffle applies partial evaluation to the interpreter with source programs, and
PyPy runs source programs with the interpreter to produce traces, then optimizes and
generates machine code for the trace. Both approaches are promising. Würthinger
et al. reported that the JavaScript implementation based on Truffle achieves 0.83× per-
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formance of V8 JavaScript engine [Würthinger et al., 2017]. Though it is still slower,
it is a comparison between an implementation based on a common framework and
a high-quality state-of-the-art monolithic implementation. It is a significant improve-
ment over previous approaches. Though meta compilation provides a different but
promising way to implement languages on common frameworks, it has its own limita-
tions. (i) Current approaches of meta compilation rely on a high-level virtual machine,
i.e., the JVM for Truffle and the PyPy virtual machine for PyPy. They also encounter
some of the problems with reusing a high-level virtual machine. Würthinger et al.
stated that they met difficulties when translating language semantics into the JVM
semantics, such as implementing continuation and coroutines as threads, implement-
ing tail calls with an exception trick that the underlying compiler can recognize and
optimize. The implementation of features that are missing on the host VM would
either require changes to the host VM, or suffer from inefficiency. These are the
same problems we discussed in the previous paragraph. (ii) Meta compilation has
longer warm-up time, in comparison with a traditional approach. Würthinger et al.
reported that the warm-up times for Truffle-based implementations are an order of
magnitude longer than a traditional approach, ranging from 30 seconds to 90 sec-
onds per benchmark. This makes meta compilation not suitable for scenarios that
desire peak performance within seconds. (iii) Utilizing these frameworks to achieve
good performance is non-trivial. Niephaus et al. demonstrates an example of how
heavily annotated a simple interpreter loop may have to become to deliver good
interpreter performance with Graal [Niephaus et al., 2018]. Given the limitations
and problems, meta compilation provides an interesting and efficient solution as an
answer to reusing common frameworks for managed language implementation, and
has achieved the best performance so far.

Reusable VM Components Modularizing a virtual machine implementation and
exposing components for reuse is helpful. Projects include VMKit [Geoffray et al.,
2010] and Eclipse OMR [Gaudet and Stoodley, 2016]. This approach focuses on pro-
viding features with generalized interfaces to each single virtual machine component,
instead of a complete and semantically coherent abstraction layer. VMKit provides
three components and it uses existing libraries for each, i.e., threads (pthread), com-
piler (LLVM), and garbage collection (MMTk [Blackburn et al., 2004]). VMKit is one
of the earliest attempts to prove the concept of a universal platform for managed
languages, and its concept inspired many successive approaches, including the Mu
micro virtual machine. However, its design is not performance-centric [Geoffray,
2009]. Eclipse OMR provides more modules than VMKit, such as platform porting,
virtual machine APIs and other utilities. It is worth mentioning that Eclipse OMR is
a modularized platform that is refactored from existing IBM products, including its
multi-lingual just-in-time compiler Testarossa and multiple languages built on top of
it. The performance and shippability is maintained throughout the refactoring work.
However, apart from originally supported languages, we are only aware of limited
information about the performance of other languages built on top of Eclipse OMR.
Ruby+OMR reported a moderate performance improvement over Ruby MRI in its
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early development [Gaudet, 2015]. Reusable VM components, as an approach to help
managed language implementation, provide pluggable and replaceable components,
instead of providing a complete abstraction layer. This approach can be suitable if
the components capture the right abstractions.

In summary, there are various frameworks that can be used for managed language
implementation in attempt to address the issue of high cost/low performance in
managed language implementation. The frameworks include earlier attempts with
LLVM and the JVM, and more recent efforts of Truffle, PyPy and Eclipse OMR.
Interestingly, we noticed a trend that in the recent years, both industry and academia
have shifted their focus and efforts from reusing existing frameworks to proposing
new frameworks. We believe the intrinsic pitfalls of existing frameworks for managed
languages are becoming well understood, and there is an emerging consensus that
these shortcomings need to be addressed.

2.2 The Mu Micro Virtual Machine

The Mu micro virtual machine is a thin language-/machine-agnostic abstract virtual
machine that focuses on providing core services in a minimal, efficient and flexible
manner. Two major differences between Mu and other proposals are that Mu is
minimal and that it presents a coherent lower-level abstraction. It is feasible to
base other frameworks on top of Mu3. The principles of Mu’s design are centred
around minimalism: (i) any feature or optimization that can be realized by the higher
layer (client) must be; however, (ii) minimalism in Mu must not stand in the way of
efficiency, and (iii) minimalism must not come at the cost of flexibility necessary to
support diverse languages.

Mu was proposed in Wang et al. [2015] and Wang [2017] as an open specifica-
tion [Mu Spec, 2016]. This section gives an overview of the specification, as this thesis
will later focus on the discussion about realizing the specification concretely. Mu
presents an interesting and unique abstraction level: it is low-level but embraces a
complete abstraction for rich run-time semantics. We do not discuss designs that are
common to low-level IRs, such as binary operations, comparison operations, conver-
sion operations and control flows. This section focuses on introducing Mu specific
designs.

2.2.1 Memory Management

Mu’s abstract memory includes three parts: a managed heap, stacks, and global cells.
Mu provides complete and coherent semantics for its abstract memory, including
garbage collection for the managed heap, unified access to Mu memory and cross-
referencing between the managed heap and native memory.

3Zhang [2015] presents preliminary work that re-targeted the PyPy’s meta tracing framework to Mu.
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Garbage Collection. Mu supports garbage collection (GC) with its IR without
exposing details and assumptions about the underlying algorithms and policies. The
Mu type system includes reference types that point to objects4. Reference types
include ref<T> (a normal reference), iref<T> (an internal/derived reference that
points to the middle of an object), weakref<T> (a weak reference that will not protect
the referenced object from collection), and tagref64 (a tagged reference that serves
as a union of a double, or an integer, or a reference with a tag). Mu provides NEW and
NEWHYBRID5 for allocation in the managed heap, which return a reference to the object
as a ref<T> value. Other reference types are derived from ref<T> to refer to the heap.
Mu guarantees that non-weak reference values (including derived values) that are
reachable from the client or client-generated IR are always accessible as long as they
reference a valid heap object6. Other than this, Mu does not expose more details or
make more guarantees about GC.

Unified Access to Mu memory. Mu provides memory access operations via LOAD
and STORE with specified memory order and atomic operations. Accessing Mu mem-
ory is always through an internal reference, iref<T>. References to stack-allocated
values (through ALLOCA) and to global values are always of type iref<T>, as they are
conceptually referencing the middle of a memory range, stack and global memory
respectively. Accessing heap-allocated objects requires deriving an internal reference
from a ref<T> through instructions such as GETIREF, GETFIELDIREF, GETELEMENTIREF
and SHIFTIREF7. This abstraction unifies the access of Mu memory, and prevents
the ambiguity of allowing multiples types being accepted by one memory accessing
instruction, or bloating instruction sets for each single reference type. Furthermore,
this abstraction can be zero-cost.

Cross-referencing with Native Memory. Mu allows referencing native memory in
Mu code, and vice versa. Other than reference types, Mu provides an unsafe pointer
type uptr<T>8, to refer to native memory. Managing the lifetime and validity of native
memory is a client-side duty. Native pointers are untraced by Mu, and Mu’s garbage
collector is unaware of native pointers. Mu also allows exposing heap references to
native code by pinning the objects. PIN makes a guarantee that the object reference
(or the internal reference) will stay valid until an UNPIN for the object is executed.
This implies that the garbage collector will keep the object alive regardless of its
reachability in the Mu and will keep the object in place even if the collector is a
moving collector.

4Though Mu does not have the concept of object oriented programming, and is oblivious to inher-
itance and dispatch tables, we use the term ‘object’ to refer to a piece of memory allocated in Mu’s
abstract heap.

5NEWHYBRID allocates objects of variable-length hybrid types, while NEW allocates fixed-length
objects.

6Mu trusts the client, and allows clients to derive reference values, including invalid references such
as out-of-bound array indexing. Accessing invalid references is undefined behaviour in Mu.

7https://gitlab.anu.edu.au/mu/mu-spec/blob/master/instruction-set.rst
8Mu also provides ufuncptr to support native calls.
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2.2.2 Thread and Stack

Mu supports a very flexible model for threads and stacks to allow efficient imple-
mentation of coroutines and client-level green threads (many-to-one model) [JDK
Developer’s Guide, 2017]. Mu makes an explicit distinction between the concepts of
thread and stack: a stack is a memory area used as the context of execution while a
thread is the container for execution. Under this model, the creation of stacks and
threads is separate. The creation of a stack does not imply execution with the stack
context at creation time; instead, only when a stack is bound to a thread does the
execution start. A Mu stack can be active with a Mu thread as its execution container,
or can be detached from any running Mu thread in a ready state and waiting for
resumption. The key to this design is the swapstack primitive [Dolan et al., 2013] as a
lightweight context switching mechanism. We will elaborate on this in later sections,
as Mu exposes a more flexible model of swapstack [Wang et al., 2018] compared to
the prior work.

2.2.3 Exceptions

Mu provides exceptions that are similar to the common throw-catch model [Steele
and Gabriel, 1993; Koenig and Stroustrup, 1993]. Mu has built-in exceptions, such as
division-by-zero error and invalid memory accessing, and also supports user-defined
exceptions as a heap object by a THROW instruction. Some Mu IR instructions can op-
tionally declare a block as the exception destination (similar to a catch block), and if
an exception is thrown from the instruction or gets propagated to the instruction, Mu
will transfer the control flow to the designated exception block. Potentially exception-
generating instructions (PEIs) in Mu include binary operations, memory allocation
and access, thread creation, stack rebinding (swapstack) and call instructions. It is
worth mentioning that Mu allows exceptional resumption with a given stack: when
the stack is bound to a thread, instead of resuming normally with arguments, an
exception is given; the control flow resumes as if the instruction threw the exception.
This, in combination with Mu’s thread model, allows very flexible threading and
control flow to implement client-level semantics.

2.2.4 Foreign Function Interface

Mu allows a mostly bi-directional foreign function interface between Mu and native
code. As discussed in Section 2.2.1, Mu supports using native pointers in Mu code,
and using pinned Mu references in native code. Furthermore, Mu supports calling
native functions in Mu code through CCALL, and calling exposed Mu functions in native
code. However, since Mu does not impose or make guarantees about object memory
layout, native code can only use a pinned Mu reference as an opaque pointer.
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2.2.5 Support for a Client-level JIT

Mu is designed to efficiently support dynamic languages where a client-level just-in-
time compiler is essential.

Watchpoints Watchpoints are a mechanism for the client to conditionally interrupt
and intervene in code execution in Mu with an assumption that the watchpoint
execution is cheap in normal cases. A watchpoint is a global guard whose behaviour
depends on its status: disabled (default) or enabled. The same watchpoint (identified
by its ID) may be referred to by multiple instructions. Mu has two kinds of watchpoint
instructions. WATCHPOINT is a guard, which either normally continues when disabled,
or traps to the client when enabled. A special form of WATCHPOINT is TRAP, which
unconditionally traps to the client. WPBRANCH is the other watchpoint instruction
which branches to different targets based on the watchpoint status, i.e., branching
instructions with targets that can be switched during execution. Watchpoints allow
the client to implement efficient predicates, or interrupt IR execution for various
purposes, e.g., querying execution states, triggering higher-tier recompilation, de-
optimization, specializing code, etc.

Introspection Mu abstracts over machine state, and allows clients to inspect the
abstract state. For example, Mu allows stack walking through abstract stack frames
with a unidirectional framecursor. Clients may create a framecursor that points
to the most recent Mu frame, move it monotonically towards previous frames, and
inspect the current function, instruction, and variables with the cursor. Mu requires
variables to be explicitly marked as keepalive at a given instruction so that they will
be kept alive in a known location at that instruction and can be inspected by the client.
Mu instructions that leave the current frame or stack, such as CALL, SWAPSTACK and
WATCHPOINT, may optionally name keepalive values. This prevents Mu from storing
excessive variable location information in the runtime [Stichnoth et al., 1999].

Function Redefinition Mu supports function redefinition. A function may be dy-
namically redefined, and when a newer version is defined, Mu guarantees that any
further call to the function will be resolved to the most recent version. In practice, the
client can use function redefinition to implement multi-tiered optimization and/or
specialization of functions. Figure 2.1 shows one way to implement code specializa-
tion with inline caching in Mu.

Support for OSR On stack replacement (OSR) is crucial to adaptive optimization
and is notoriously difficult to implement [Chambers and Ungar, 1991; Hölzle and
Ungar, 1994; Lameed and Hendren, 2013]. Mu does not directly provide OSR as a
primitive, but rather, following the principles of minimalism and flexibility, it provides
primitives that allow the client to implement OSR at a level of abstraction above the
underlying machine [Wang et al., 2018]. Besides stack walk and introspection, Mu
also allows stack manipulation with POP_FRAME_TO and PUSH_FRAME. These primitives
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1 ...
2 // inline cache for add
3 if typeof(obj1) == int and typeof(obj2) == int
4 i1 = obj_to_int(obj1)
5 i2 = obj_to_int(obj2)
6 res = i1 + i2
7 else
8 add_general(obj1, obj2)
9 profile_add_binding()
10 ...

(a) Monomorphic inline caching in pseudo code.

1 ...
2 .block %add_inline_cache:
3 WPBRANCH %add_ic_0
4 enable: %check_add_special
5 disable: %add_general
6

7 .block %check_add_special
8 %is_special = CALL check_types(%obj1, %obj2)
9 BRANCH2 %is_special
10 true: %add_special
11 false: %add_general
12

13 .block %add_special:
14 %res = CALL add_special(%obj1 %obj2)
15 BRANCH %after_add
16

17 .block %add_general:
18 %res = CALL add_general(%obj1, %obj2)
19 // client profiling code in the TRAP
20 TRAP
21 normal: %after_add
22 exception: nil
23

24 .block %after_add
25 ...

(b) One way to implement inline caching with Mu. Use WPBRANCH to enable/disable the
inline cache, and use TRAP to profile and redefine check_types and add_special to a
type-specialized version.

Figure 2.1: Example of implementing inline caching with Mu.
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allow re-organizing frames for a paused stack (in the ready state), and provide the
client with sufficient mechanisms to build OSR in their own implementation.

2.2.6 Boot Image Generation

Boot images are commonly used by managed runtimes to capture ahead-of-time gen-
erated code and virtual machine state to expedite start-up. In principle the machine
state can typically be constructed from scratch at start-up, but the boot image is a
simple optimization that will greatly reduce start-up time by pre-computing and
storing the requisite bootstrap state [Alpern et al., 1999; Open J9, 2017]. Meta-circular
language implementations depend on a boot images in order to bootstrap [Alpern
et al., 1999; Ungar et al., 2005; Rigo and Pedroni, 2006; Blackburn et al., 2008; Wimmer
et al., 2013]. Mu provides a make_boot_image() API for generating a boot image
for the target platform. The function takes a set of white list functions, native data
relocation maps, and an optional entry function if the boot image is desired to be
an executable. When the boot image is loaded and resumed, it is guaranteed that
the image contains (i) all white-listed functions in their compiled state, (ii) all related
entities (such as values, types, functions, etc), and (iii) all objects in the Mu heap
reachable at the time of the call. We will elaborate more in Section 5.3.5.

2.2.7 Local SSI Form

Mu IR uses a special Static Single Information (SSI) form9 [Ananian, 1997; Singer, 2006;
Boissinot et al., 2012], an extension form of Single Static Assignment (SSA). Besides
the properties from SSI/SSA that every variable has exactly one definition and cannot
be redefined, we further require that every block explicitly declare variables at the
start of its label and the variables are strictly local to the block (we still call them
SSA variables). A block terminating instruction is required to explicitly list all the
variables being passed to the destination block, instead of only variables split by a
σ-function in normal SSI form.

The benefits of the design are three-fold: (i) The liveness of SSA variables are
explicit in the IR form, which can be exploited by the micro virtual machine to skip
expensive global liveness analysis. (ii) Longer live ranges are broken up into smaller
ones, which may allow better register allocation such as less spilling. (iii) This form
also makes data flow explicit, and helps a formal specification of Mu. However,
this design is essentially a non-minimal SSA form with potential unnecessary value
merging, which causes difficulty in register coalescing. The performance implications
of this design are unclear, as we shall discuss in Section 5.4.2 with a concrete example.

2.3 Zebu VM

Zebu VM is a concrete Mu micro virtual machine implementation that aims for high
performance, developed as part of this thesis. Zebu VM is a proof of concept and

9https://gitlab.anu.edu.au/mu/general-issue-tracker/issues/18

https://gitlab.anu.edu.au/mu/general-issue-tracker/issues/18
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an initial proof of performance for efficient micro virtual machines. In later chapters,
we will discuss design points that are important to Zebu and are the principle con-
tributions of this thesis. In this section, we briefly discuss Zebu and its design and
implementation.

2.3.1 Design

In building Zebu, our goal is to apply state-of-the-art techniques, and when necessary,
advance the state-of-the-art. Implementing a virtual machine is heavily engineering-
oriented, but nonetheless important part of computer systems research. We elaborate
both research questions and practical engineering concerns for our designs.

Focus on Cost-Benefit Ratio Zebu is designed with a target of around 25K lines
of code in implementation while being able to achieve competitive performance, as
the small amount of lines of code leads to the possibility of being formally verified
practically [Klein et al., 2009]. Our experiences with Zebu prove that this target is
feasible. Table 2.1 shows that the total lines of code of the core Zebu VM fall within
our expectation10. In Chapter 5, we will further discuss the performance.

Rust C/Assembly

Compiler (x64 ASM back-end11) 17.0K 0

GC 3.4K 0.3K

Other Runtime 1.3K 0.6K

VM 1.8K 0

Total Core Code 23.5K 0.9K

Table 2.1: Code base of Zebu (as in Git revision 211e3976). The core VM code takes 24.4K
lines of code, which falls within our expectation.

We designed our compiler with a focus on cost-benefit ratio. We estimate the
potential benefits (mainly performance gain) and the cost (in terms of lines of code
and compilation time if applicable). For example, in an early prototype, we used a
weight-based bottom-up rewrite system (BURS) for instruction selection [Boulytchev,
2007]. However, we realized that, due to the simplicity of Mu IR, BURS is over-kill
for Zebu, and we replaced it with much simpler tree pattern matching that prioritizes
the first match. This decision not only saves us from the effort of maintaining a code
generator generator but also reduces the time spent in instruction selection, while
maintaining the ability to produce good quality code for Mu. Another example is that

10The line counting is done with a Zebu build of the x64 ASM back-end configuration (the aarch64
back-end of 10.0K LOC is not included). The count only includes core VM code, and excludes supporting
code, such as the IR data structure (3.4K LOC) and API wrappers (4.7K LOC). As Mu defines its API in
C, we implement a set of wrappers to delegate the calls to our Rust code.

11We have two code generators for x64, an ASM one for boot image generation and a binary one for
JIT. They share the instruction selector.
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Zebu foregoes the opportunity of doing software instruction scheduling in its back-
end. We justify this decision thus (i) modern processors make software instruction
scheduling less effective by out-of-order execution, branch prediction and instruction
prefetch, (ii) some optimizations can be done by our client at the IR level, such as loop
unrolling, and (iii) by skipping instruction scheduling, we further skip the necessity
of providing surrounding infrastructures to support instruction scheduling, such as
more information about machine instructions.

We applied the same principle for our runtime design as well. Zero-cost exception
handling [Drew et al., 1995] delivers excellent performance, but it is expensive to build
as it requires the compiler to cooperate and build tables for location information of
variables and registers so that the runtime can use them to unwind the stack and
restore execution context. However, since Mu already imposes the cost for building
such tables for the requirement of supporting introspection, it is natural and beneficial
to use them for exception handling. But we are undecided on the value of extending
these tables to also support identifying GC roots on the stack. Recent research showed
that a high performance garbage collector that is conservative with respect to the stack
imposes insignificant overhead [Shahriyar et al., 2014]. Besides, conservativeness with
the stack allows us significantly simplify our compiler implementation, and we are
no longer required to carefully maintain reference locations throughout the compiler
pipeline.

Follow the Standards Following defined or de facto standards is an important
software engineering principle. Standardized practices enable inter-operability with
utility tools or other software that follow the same standards. However, for virtual
machine implementation, developers may easily deviate from the standards for their
own requirements. For example, developers may use project-specific calling conven-
tions, memory layout, binary format, etc., and sometimes this is necessary.

However, Zebu chose as a design principle to stick to existing standards wher-
ever possible. For example, Zebu uses the standard ABI for calling convention and
memory layout for target architectures [AMD64 ABI, 2017; ARM64 ABI, 2017]. Zebu
generates position-independent boot images in the standard binary format for target
operating systems, e.g., ELF for Linux and Mach-O for MacOS. Zebu generates debug
symbol information in DWARF. This requirement benefits Zebu. (i) It essentially
eliminates the language barrier between Mu and native, and allows direct access be-
tween Mu code and native, which efficiently supports the Foreign Language Interface
required by Mu (as discussed in Section 2.2.4). (ii) It allows us to use standard utility
tools to link, debug, inspect and profile code generated by Zebu, which is valuable
for development.

2.3.2 Implementation

Figure 2.2 illustrates an overview of Zebu VM, including important components and
interaction between them. Dotted lines illustrate how Zebu fits in and communicates
with a language implementation.
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Figure 2.2: An overview of Zebu VM, illustrating important components and interaction
between them. Dotted lines illustrate how Zebu fits in a language implementation.
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Compiler

Zebu implements a back-end compiler with a short pipeline. The Zebu compiler
executes a defined pipeline which consists of passes. There are two sets of passes,
IR-level passes and machine code passes, separated by a target-specific instruction
selection.

IR-level Passes are mainly for IR transformation and analysis, listed as below. The
symbol ? indicates a target-dependent pass, and analysis passes are omitted
from the list.

1. Return block creation generates a single epilogue for each function, and
explicitly marks it so that trace scheduling will take it into consideration.

2. Inlining? identifies possible inlining choices. Though inlining can be done
by the language client, the micro virtual machine has target information,
and is able to make better inlining choices.

3. IR rewriting? lowers the IR to serve two purposes: (i) For instructions
that will introduce new blocks, this pass will rewrite the instruction, and
introduce new blocks so that trace scheduling will properly lay out the
blocks. (ii) For instructions that involves run-time calls such as heap allo-
cation, this pass will rewrite the instruction into a fast-path sequence with
a call into the runtime slow-path. Furthermore, fast-path and slow-path
blocks are also explicitly marked so that trace scheduling will take them
into consideration.

4. Depth-tree generation? is an essential IR-level pass for performance. The
client feeds Zebu with a sequence of instructions. This pass uses heuristics
to turn the sequence into a depth tree, in order to expose favorable patterns
for instruction selection.

5. Trace scheduling identifies hot traces, and lays out the trace linearly. Zebu
mainly uses three sources of information for trace scheduling: (i) Zebu
considers trace hints from internally generated blocks. (ii) Zebu allows con-
ditional branching instructions to specify a probability with each branch.
(iii) When the probabilities tie, Zebu prioritizes putting the false block to
the hot trace, following common practice.

Instruction Selection in Zebu is implemented by tree pattern matching that priori-
tizes the first match. The instruction selector invokes an abstract interface for
the given target to emit machine code. The abstract interface may have differ-
ent implementations. For x86_64, we implemented an assembly back-end for
ahead-of-time compilation12, and a binary back-end for just-in-time compila-
tion. Though both back-ends share the compiler infrastructure, the instruction

12The assembly back-end generates assembly code that can be easily assembled and linked into a
relocatable boot image in the standard binary format on the target platform by using standard tools. It
also makes debugging easier.
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selector needs to be aware of the current back-end in some cases. For example,
the instruction selector resolves a function to a symbolic name for ahead-of-time
compilation, but to an address for just-in-time compilation.

Machine-level Passes further optimize the generated code. Zebu provides an ab-
straction of the machine code so that some machine code passes can also be
implemented in a target independent way.

1. Register allocation is the most important optimization at the machine-
level. We implemented a graph-coloring register allocator with iterated
register coalescing [Appel and Palsberg, 2003] 13. We tuned the allocator
using heuristics that consider loop depth for temporaries and moves to
make decisions for freezing, spilling, and coloring nodes. The reason is
that our SSA form (as discussed in Section 2.2.7) requires local variables
to be local to a basic block, which essentially splits long-lived temporaries
into many smaller ones. An untuned allocator makes arbitrary decisions
that may fail to properly coalesce temporaries, and consequently the code
contains a lot more moves than necessary.

2. Peephole optimization is the last pass to clean up the generated code.
Currently we have only implemented target independent ones such as
redundant move removal and jump removal.

Runtime

Zebu divides its managed heap into three spaces, two Immix spaces [Blackburn and
McKinley, 2008] for different sized smaller objects and a freelist space for large objects.
Zebu pursues a constant 1/8 ratio for the max overhead of heap object metadata, i.e.,
1 byte per every 8 bytes heap space. This model reduces memory overhead for small
objects, which is usually the dominant majority in managed languages. Zebu also
has a special immortal space only for objects that are persisted during boot image
generation; those objects are mutable and can be referenced normally, but the GC
will not reclaim the memory even if they are no longer reachable (as we put them in
the data segment in the boot image instead of in our managed heap).

Zebu implements a Mu thread as a Rust thread. But before a Mu stack is executed,
Zebu saves the native stack pointer, and then does a special swapstack operation
between the native stack and the Mu stack so that further execution of Mu code is
always on the Mu stack. Before a thread quits, Zebu swaps back the native stack to
allow proper destruction of the Rust thread. Zebu protects both ends of a Mu stack
from any form of accessing to prevent over-flow and under-flow.

Zebu implements its own signal handler. The signal handler is responsible for
(i) re-throwing Mu built-in exceptions, such as floating point errors and invalid
memory access, (ii) INT-3 code patching guard (specific to x86_64), and (iii) aborting

13We chose a graph-coloring algorithm for reliable results and easy implementation. However, this
algorithm may not be ideal for just-in-time compilation when the allocation time becomes a major
concern, and a drop-in replacement may be needed in the future.
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properly if none of the above met. Zebu doesn’t implement TRAP and client-supplied
traphandler with signals. Instead, Zebu simply emits a run-time call to prepare and
call to the pre-registered traphandler as a TRAP instruction.

2.4 Related Mu Projects

Mu is a cooperative research project. This thesis presents the design of the imple-
mentation that focuses on performance. There are other Mu-related projects, such as
Holstein VM 14 (a reference implementation), the Mu formal specification in HOL 15,
and other language clients on top of Mu, GHC-Mu 16 and PyPy-Mu 17. In this section,
we only focus on PyPy-Mu, as it is closely related to this thesis for the performance
evaluation in Section 5.4.

2.4.1 PyPy-Mu

PyPy-Mu is an interesting combination that allows us to to verify the feasibility and
performance of Mu in a number of ways: (i) Python is a popular language with its offi-
cial implementation known to be inefficient, and there are many implementations that
improved the performance, among which PyPy provides a state-of-the-art solution.
We are interested in seeing how PyPy performs with Mu as its back-end. (ii) PyPy
has a JIT for a dynamically-typed language, which exactly matches the design goals
of Mu. (iii) PyPy is an unconventional implementation, as it is meta-circular and fea-
tures a meta-tracing code generator. It is an ambitious target to check Mu’s flexibility
of supporting different client implementation strategies. (iv) PyPy is implemented in
RPython, a restricted subset of Python. PyPy relies on the ahead-of-time compilation
of RPython for a boot image. We are also interested in having RPython and the
boot image generation performed by Mu so that the whole implementation stack
for PyPy runs on top of Mu. (v) Enabling RPython on Mu allows other language
implementations based on PyPy and RPython to run on Mu.

We proceed this in a two-step approach. We start with enabling RPython on top
of Mu, which gives us RPython as a language, and also language interpreters written
in RPython, such as a SOM interpreter [RPYSOM, 2014]. Then, we enable the PyPy
JIT on top of Mu to support the whole PyPy implementation stack. Currently we are
approaching the end of the first step, and the work to support PyPy JIT is not ready
yet. The initial work is described by Zhang [2015].

2.5 Summary

This chapter covers the background for the thesis. We started with a survey of current
frameworks for managed language implementation. We pointed out the pitfalls of

14https://gitlab.anu.edu.au/mu/mu-impl-ref2
15https://gitlab.anu.edu.au/mu/mu-formal-hol
16https://gitlab.anu.edu.au/mu/mu-client-ghc
17https://gitlab.anu.edu.au/mu/mu-client-pypy

https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-formal-hol
https://gitlab.anu.edu.au/mu/mu-client-ghc
https://gitlab.anu.edu.au/mu/mu-client-pypy
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earlier approaches, and discussed more sophisticated work in recent years which
have been happening in parallel with Mu and this thesis’ work. The Mu micro
virtual machine is one of the recent proposals to aid managed language implemen-
tation. We introduced interesting aspects of the abstractions provided by Mu, gave
an overview of our Mu implementation, Zebu VM, and briefly introduced other Mu-
related projects. The following three chapters will each pick one design point of Zebu,
and provide an in-depth discussion.
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Chapter 3

A Garbage Collector as a Test Case
for High Performance VM
Engineering in Rust

High performance virtual machines build upon performance-critical low-level code,
typically exhibit multiple levels of concurrency, and are prone to subtle bugs. Imple-
menting, debugging and maintaining a virtual machine can therefore be extremely
challenging. The choice of implementation language is a crucial consideration when
building a virtual machine. Rust’s ownership model, lifetime specification, and refer-
ence borrowing deliver safety guarantees through a powerful static checker with little
run-time overhead [Rust, 2010]. These features make Rust a compelling candidate
for a virtual machine implementation language, but they come with restrictions that
threaten expressiveness and efficiency. It is desirable to implement a virtual machine
in a language that can benefit the implementation in terms of performance and ro-
bustness, however, it is uncertain that if it is feasible to deliver both requirements if
the language is too restrictive.

This chapter describes our experience in constructing a prototype garbage collec-
tor for the Zebu VM in Rust, which was the first major component of the micro virtual
machine that we built in Rust. Although we have subsequently built a complete pro-
totype VM in Rust, we focus here on the garbage collector. Section 3.1 presents our
motivation to utilize Rust to implement the Zebu VM. Section 3.2 briefly introduces
related work and the Rust language. Section 3.3 uses our garbage collector imple-
mentation as a case study to discuss the benefits of Rust, the obstacles encountered,
and how we overcame them, with a performance analysis. Section 3.4 concludes this
chapter. We find that Rust’s safety features do not create barriers for efficiency, and
benefit our implementation.

This chapter describes work published in the paper “Rust as a Language to im-
plement high-performance garbage collection” [Lin et al., 2016].

27
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3.1 Introduction

Implementing an efficient and robust virtual machine is not easy, even given the
narrow scope of a micro virtual machine. First, a virtual machine must manage its
heap, manipulate raw memory, making it naturally prone to memory bugs. Second,
a modern virtual machine is rich in concurrency (typically thread parallelism), from
the application-level threading to intra-VM concurrency, such as concurrent access
to run-time data, thread-local allocation, parallel garbage collection and compilation,
which makes it prone to race conditions and extremely time-consuming bugs.

What makes the situation worse is that the implementation language usually does
not provide help in terms of memory safety and thread safety. The imperative of
performance has traditionally encouraged the use of languages such as C and C++ in
virtual machine implementation. But their weak type system, lack of memory safety,
and lack of integrated support for concurrency [Boehm, 2005] throws memory and
thread safety squarely back into the hands of developers.

Poor software engineering leads not only to hard-to-find bugs and performance
pitfalls, but decreases reuse, inhibiting progress by thwarting creativity and inno-
vation. Unfortunately, programming languages often place positive traits such as
abstraction and safety at odds with performance. However, we are encouraged: first,
by prior work [Blackburn et al., 2004; Frampton et al., 2009; Frampton, 2010] that
shows that in a system implementation such as a virtual machine, low-level code is
the exception, not the rule; and second by the Rust programming language, which
rather boldly describes itself as a systems programming language that runs blazingly fast,
prevents segfaults, and guarantees thread safety [Rust, 2010].

We evaluate the software engineering of a high performance virtual machine,
and our experience confirms the prior work. In particular, we confirm that: (i) per-
formance-critical code is very limited in its scope, (ii) memory-unsafe code is very
limited in its scope, and (iii) language-supported, high performance thread-safe data
structures are fundamental to a virtual machine implementation. For these reasons, a
well-chosen language may greatly benefit our micro virtual machine implementations
without compromising performance.

Our prior experience in virtual machine implementation includes both C/C++
and high level languages. This, and the emergence of Rust led us to evaluate it as
a language for high performance VM implementation. Rust is type, memory, and
thread safe; all safety features that we believe will help in delivering a robust virtual
machine. Rust provides high performance data structures that are essential to virtual
machine development through its rich libraries (including standard and third party
ones) with the same safety guarantees, which are a rare find in system programming
languages. Rust also permits unsafe operations (and inline assembly1) in unsafe
blocks, allowing us to access bare memory, and to fine-tune performance on fast
paths when needed. Furthermore, Rust uses a powerful compile-time safety checker
to shift the safety burden to compile time as much as possible, avoiding run-time
overheads where possible. The checker is based on Rust’s model of object ownership,

1Inline assembly is only available in nightly releases at the time of writing, and not used in this work.
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lifetimes, and reference borrowing. The model eliminates the possibility of dangling
pointers and races, and ensures memory safety. However, this model also restricts
the language’s expressiveness. Mapping semantics required of a virtual machine
implementation into Rust’s language model was the major challenge that we faced
during the work. This is especially concerning for the runtime implementation, as it
is low-level and tricky to implement, and significantly affects the overall performance
of the virtual machine.

We set out our goal as to test the feasibility of using Rust to write a high perfor-
mance garbage collector, as GC is one of the most correctness and performance crucial
components of a virtual machine runtime. Ultimately, we found that not only was
this achievable, but that we could do so with no discernable overhead compared to an
implementation of the same collector written in C. The results are encouraging, and
we further apply the idea to a larger scope, and implement the entire Zebu virtual
machine in Rust.

This chapter uses the garbage collector in Zebu as a case study. We start by
describing how we are able to use Rust’s particular language features in our high
performance collector implementation. We then discuss cases where we found it
necessary to abuse Rust’s unsafe escape hatches, avoiding its restrictive semantics,
and ensuring the performance and semantics we required. Finally, we conduct a
head-to-head performance comparison between our collector implementation in Rust
and a mostly identical implementation in C to demonstrate that if used properly, the
safety and abstraction cost from Rust is minimal, compared to an unsafe language
such as C. Also we show that both implementations outperform BDW, a widely used
conservative GC library.

The principal contributions of this chapter are: (i) a discussion of the challenges
of implementing a high-performance collector in a type, memory and thread-safe
language, (ii) a discussion of the semantic impedance between Rust’s language model
and the semantic requirements of a collector implementation, (iii) a performance com-
parison evaluating Rust and C implementations of the same high performance col-
lector design, and (iv) a comparison with the popular Boehm-Demers-Weiser (BDW)
collector implemented in C [Boehm and Weiser, 1988; Boehm et al., 1992].

3.2 Background

This section describes related prior work that utilized a higher-level safe implementa-
tion language for virtual machine implementation, and gives an introduction to the
Rust language.

3.2.1 Related Work

There has been much previous work addressing the implementation of efficient vir-
tual machines in safe languages [Alpern et al., 1999; Blackburn et al., 2004; Alpern
et al., 2005; Rigo and Pedroni, 2006; Blackburn et al., 2008; Frampton et al., 2009;
Wimmer et al., 2013]. The advantages of using safe languages demonstrated by these
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projects motivate our work. However, our use of Rust takes some further steps:
(i) Rust guarantees type, memory, and thread safety. Previous work uses languages
that make weaker safety guarantees such as type safety and weaken memory safety
(by disabling GC) and leave thread safety exposed. (ii) Rust has considerably more re-
stricted semantics and expressiveness, since it performs most safety checks at compile
time. This constrains runtime implementation, and invites the question of whether
implementing a high performance runtime in Rust is even viable. (iii) Rust is an of-
f-the-shelf language. We take the challenge to map desired features efficiently to the
language semantics and we use Rust without changes to the base language. Previous
work changed or augmented the semantics of the implementation languages to favor
their runtime implementation [Frampton et al., 2009; Wimmer et al., 2013].

There are also projects2 that implement garbage collectors in Rust for Rust. Though
these projects use Rust as the implementation language, their focus is in introducing
GC as a language feature to Rust. Their implementations do not reflect the state of
the art of GC, and they do not report performance: the delivery of both significantly
adds difficulty in a collector implemented in Rust. Our work takes on the challenge
of achieving both, to deliver a high-performance advanced collector implementation.

3.2.2 The Rust Language

We now introduce some of the key concepts in Rust used in this chapter.

Ownership In Rust, variable binding grants a variable the unique ownership of the
value it is bound to. This is similar to C++11’s std::unique_ptr, but it is mandatory
for Rust as it is the key concept upon which Rust’s memory safety is built. Unbound
variables are not allowed, and rebinding involves move semantics, which transfer the
ownership of the object to the new variable while invalidating the old one3. When
a variable goes out of scope, the associated ownership expires and resources are
reclaimed.

References Acquiring the ownership of an object for accessing is expensive because
the compiler must emit extra code for its proper destruction on expiry. A lightweight
approach is to instead borrow references to access the object. Rust allows one or more
co-existing immutable references to an object or exactly one mutable reference with
no immutable references. The ownership of an object cannot be moved when it is
borrowed. This rule eliminates data races, as mutable (write) and immutable (read)
references are made mutually exclusive by the rule. More interestingly, this mutual
exclusion is guaranteed mostly at compile time by Rust’s borrow checker.

2A reference counted type with cycle collection for Rust: https://github.com/fitzgen/bacon-rajan-cc; a
simple tracing (mark and sweep) garbage collector for Rust: https://github.com/Manishearth/rust-gc.

3Rebinding of Copy types, such as primitives, makes a copy of the value for the new variable instead
of moving ownerships; the old variable remains valid.

https://github.com/fitzgen/bacon-rajan-cc
https://github.com/Manishearth/rust-gc
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Data Guarantees (Wrapper Types) An important feature of Rust is that the lan-
guage and its library provide various wrapper types with different guarantees and
tradeoffs. For example, plain references such as &T and &mut T statically guaran-
tee a read-write ‘lock’ for single-threaded code with no run-time overhead, while
RefCell<T> offers the same guarantee at the cost of run-time checks but is useful
when the program has complicated data flow. Our implementation uses the following
wrapper types as will be described in the next section. Box<T> represents a pointer
which uniquely owns a piece of heap-allocated data. Arc<T> is another frequently
used wrapper which provides an atomically reference-counted shared pointer to data
of type T, and guarantees the data stays accessible until every Arc<T> to it goes out of
scope (i.e., the count drops to zero). A common idiom to share mutable data among
threads is Arc<Mutex<T>> which provides a mutual exclusive lock for type T, and
allows sharing the mutex lock across threads.

Unsafe Rust provides a safe world where there are no data races and no memory
faults. However, the semantics in safe Rust are in some cases either too restric-
tive or too expensive. Rust allows unsafe code, such as raw pointers (e.g., *mut T),
forcefully allowing sharing data across threads (e.g., unsafe impl Sync for T{}), in-
trinsic functions (e.g., mem::transmute() for bit casting without check), and external
functions from other languages (e.g., libc::malloc()). Unsafe is a powerful weapon
for programmers to wield at their own risk. Rust alerts programmers by requiring
unsafe code to be contained within a block that is marked unsafe, or exposed to the
caller by marking the containing function as itself unsafe.

3.3 Case Study: A High Performance Garbage Collector in
Rust

We describe our experience implementing an Immix garbage collector [Blackburn and
McKinley, 2008] in Rust and C. We discuss the benefits of Rust, the obstacles encoun-
tered, and how we overcame them. We show that our Immix implementation has
almost identical performance on micro benchmarks, compared to its implementation
in C, and outperforms the popular BDW collector on the gcbench micro benchmark.
We find that Rust’s safety features do not create significant barriers to implementing
a high performance collector. Though memory managers are usually considered low-
level, our high performance implementation relies on very little unsafe code, with
the vast majority of the implementation receiving all the benefits of Rust’s safety. We
see our experience as a compelling proof-of-concept of Rust as an implementation
language for high performance garbage collectors, and later apply the experience to
benefit the entire Zebu VM development.
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1 #[derive(Copy, Clone, Eq, Hash)]
2 pub struct Address(usize);
3

4 impl Address {
5 // address arithmetic
6 #[inline(always)]
7 pub fn plus(&self, bytes: usize) -> Address {
8 Address(self.0 + bytes)
9 }
10

11 // dereference a pointer
12 #[inline(always)]
13 pub unsafe fn load<T: Copy> (&self) -> T {
14 *(self.0 as *mut T)
15 }
16

17 // bit casting
18 #[inline(always)]
19 pub fn from_ptr<T> (ptr: *const T) -> Address {
20 unsafe {mem::transmute(ptr)}
21 }
22

23 // cons a null
24 #[inline(always)]
25 pub unsafe fn zero () -> Address {
26 Address(0)
27 }
28

29 ...
30 }

Figure 3.1: An excerpt of our Address type, showing some of its safe and unsafe methods.

3.3.1 Using Rust

We now describe key aspects of how we use Rust’s language features to construct
a high performance garbage collector. In Section 3.3.2 we discuss how we found it
necessary to abuse Rust, selectively bypassing its restrictive semantics to achieve the
performance and semantics necessary for a high performance collector.

For the sake of this proof of concept implementation, we implement the Immix
garbage collector [Blackburn and McKinley, 2008]. We use it because it: (i) is a high-
-performance garbage collector, (ii) has interesting characteristics beyond a simple
mark-sweep or copying collector, and (iii) has a well-documented publicly available
reference implementation. Our implementation supports parallel (thread-local) alloca-
tion and parallel collection. We have not yet implemented opportunistic compaction,
nor generational or reference counting variants [Shahriyar et al., 2013]. We do not
limit our discussion to the Immix algorithm, but rather we consider Rust’s broader
suitability as a GC implementation language.

Our implementation follows three key principles: (i) the collector must be high
performance, with all performance-critical code closely scrutinized and optimized,
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(ii) we do not use unsafe code unless absolutely unavoidable, (iii) we do not modify
the Rust language in any way.

The remainder of this section considers four distinct elements of our experience
of Rust as a GC implementation language: (i) the encapsulation of Address and
ObjectReference types, (ii) managing ownership of memory blocks, (iii) managing
global ownership of thread-local allocators, and (iv) utilizing Rust libraries to support
efficient parallel collection.

Encapsulating Address Types

Memory managers manipulate raw memory, conjuring language-level objects from
raw memory. Experience shows the importance of abstracting over both arbitrary
raw addresses and references to user-level objects [Blackburn et al., 2004; Frampton
et al., 2009]. Such abstraction offers type safety and disambiguation with respect to
implementation-language (Rust) references. Among the alternatives, raw pointers
can be misleading and dereferencing an untyped arbitrary pointer may yield unex-
pected data, while using integers for addresses implies arbitrary type casting between
pointers and integers, which is dangerous.

Abstracting address types also allows us to distinguish addresses from object
references for the sake of software engineering and safety. Addresses and object
references are two distinct abstract concepts in GC implementations: an address
represents an arbitrary location in the memory space managed by the GC and address
arithmetic is allowed (and necessary) on the address type, while an object reference
maps directly to a language-level object, referring to a piece of raw memory that lays
out an object and that assumes some associated language-level per-object meta data
(such as an object header, dispatch table, etc). Converting an object reference to an
address is always valid, while converting an address to an object reference is unsafe.

Abstracting and differentiating addresses is important, but since addresses are
used pervasively in a GC implementation, the abstraction must be efficient, both in
space and time. We use a single-field tuple struct to provide Address and Object
Reference, abstracting over Rust’s word-width integer usize to express addresses,
as shown in Figure 3.1. This approach disables the operations on the inner type,
and allows a new set of operations on the abstract type. This abstraction adds no
overhead in type size, and the static invocation of its methods can be further marked
as #[inline(always)] to remove any call overhead. So while the types have the
appearance of being boxed, they are materialized as unboxed values with zero space
and time overheads compared to an untyped alternative, whilst providing the benefits
of strong typing and encapsulation.

We restrict the creation of Addresss to be either from raw pointers, which may
be acquired from mmap and malloc for example, or derived from an existing Address.
Address creation from arbitrary integers is forbidden, with the single exception of
the constant Address::zero(). This serves as an initial value for some fields of type
Address within other structs, since Rust does not allow structs with uninitialized
fields. A safer alternative in Rust is to use Option<Address> initialized as None to
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indicate that there is no valid value. However, this adds a conditional and a few
run-time checks to extract the actual address value in the performance-critical path
of allocation, which adds around 4% performance overhead. We deem this tradeoff
not to be worthwhile given the paramount importance of the allocation fast path and
the infrequency with which this idiom arises within the GC implementation. Thus
we choose to allow Address::zero() but mark it as unsafe so that implementers are
explicitly tasked with the burden of ensuring safety.

Our implementation of ObjectReference follows a very similar pattern. The
ObjectReference type provides access to per-object memory manager metadata (such
as mark-bits/-bytes). An Address cannot be safely cast to an ObjectReference; the
allocator code responsible for creating objects must do so via an unsafe cast, explicitly
imposing the burden of correctness for fabricating objects onto the implementer of
the allocator. An ObjectReference can always be cast to an Address.

Ownership of Memory Blocks

Thread-local allocation is an essential element of high performance memory man-
agement for multi-threaded languages. The widely used approach is to maintain a
global pool of raw memory regions from which thread-local allocators take memory
as they need it, and to which thread-local collectors push memory as they recover
it [Alpern et al., 1999]. Most of the allocations are from the thread-local memory
buffer that each thread reserves. This design means that the common case for alloca-
tion involves no synchronization, whilst still facilitating sharing of a global memory
resource. The memory manager must ensure that it correctly manages raw mem-
ory blocks to thread-local allocators, ensuring exclusive ownership of any given raw
block. Note, however that once objects are fabricated from these raw blocks, they may
(according to the implemented language’s semantics) be shared among all threads.
Furthermore, at collection time a parallel collector may have no concept of memory
ownership, with each thread marking objects at any place in the heap, regardless of
any notion of ownership over the object’s containing block. We make this guarantee
by using Rust’s ownership semantics.

Ownership is the key part of Rust’s approach to delivering both performance and
safety. We map the ownership semantics to this scenario to make the guarantee that
each block managed by our GC is in a coherent state among usable, used, or being
allocated into by a unique thread. To achieve this, we create Block objects, each of which
uniquely represents the memory range of the block and its meta data. The global
memory pool owns the Blocks, and arranges them into a list of usable Blocks and a
list of used Blocks (Figure 3.2). Whenever an allocator attempts to allocate, it acquires
the ownership from the usable Block list, gets the memory address and allocation
context from the Block, then allocates into the corresponding memory. When the
thread-local memory block is full, the Block is returned to the global used list, and
waits there for collection. The Rust’s ownership model ensures that allocation will not
happen unless the allocator owns the Block, and, further every Block is guaranteed
to be in one of the three states: (i) owned by the global space as a usable Block,
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1 // thread local allcator
2 pub struct AllocatorLocal {
3 ...
4 space: Arc<Space>,
5

6 // allocator may own a block it can allocate into
7 // Option suggests the possibily of being None,
8 // which leads to the slow path to acquire a block
9 block: Option<Box<Block>>
10 }
11

12 // global space, shared among multiple allocators
13 pub struct Space {
14 ...
15 usable_blocks : Mutex<LinkedList<Box<Block>>>,
16 used_blocks : Mutex<LinkedList<Box<Block>>>
17 }
18

19 impl AllocatorLocal {
20 fn alloc_from_global (&mut self,
21 size: usize, align: usize) -> Address {
22 // allocator will return the ownership of
23 // current block (if any) to global space
24 if block.is_some() {
25 let block = self.block.take().unwrap();
26 self.space.return_used_block(block);
27 }
28

29 // keep trying acquiring a new block from space
30 loop {
31 let new_block
32 = self.space.get_next_usable_block();
33 ...
34 }
35 }
36 }

Figure 3.2: Ownership transfer between the global memory pool and a thread local allocator.

(ii) owned by a single allocator, and being allocated into, (iii) owned by the global
space as a used Block. During collection, the collector scavenges memory among
used Blocks, and classifies them as usable for further allocation if they are free.

Globally Accessible Per-Thread State

A thread-local allocator avoids costly synchronization on the allocation fast path
because mutual exclusion among allocators is ensured. This is something that Rust’s
ownership model ensures can be implemented very efficiently. However, parts of
the thread-local allocator data structure may be shared at collector time (for example,
allocators might be told to yield by a collector thread via this data structure). Rust
will not allow for a mixed ownership model like this except by making the data
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structure shared, which means that all accesses are vectored through a synchronized
wrapper type, ensuring that every allocation is synchronized, thus defeating the very
purpose of the thread-local allocator.

We deal with this by breaking the per-thread Allocator into two parts, a thread-
local part and a global part, as shown in Figure 3.3. The thread-local part includes
the data that is accessible strictly within current thread and an Arc reference to its
global part. All shared data goes to the global part (with either atomic types or a safe
wrapper if mutability is required). This allows efficient access to thread local data,
while allowing shared per-thread data to be accessed globally.

1 pub struct AllocatorLocal {
2 // fields that are strictly thread local
3 ...
4

5 // fields that are logically per allocator
6 // but need to be accessed globally
7 global: Arc<AllocatorGlobal>
8 }
9

10 pub struct AllocatorGlobal {
11 // any field in this struct that requires
12 // mutability needs to be either be atomic
13 // or lock-guarded
14 ...
15 }
16

17 // statics that involve dynamic allocation
18 lazy_static! {
19 pub static ref ALLOCATORS
20 : Vec<Arc<AllocatorGlobal>> = vec![];
21 }

Figure 3.3: Separating a per-thread allocator into two parts. The local part is strictly thread
local, while the global part can be accessed globally.

Library-Supported Parallelism

Parallelism is essential to high performance collector implementations. Aside from
the design of the high level algorithm, the efficiency of a collector depends critically
on the implementation of fast, correct, parallel work queues [Ossia et al., 2002]. In a
marking collector such as Immix and most tracing collectors, a work queue (or ‘mark
stack’) is used to manage pending work. When a thread finds new marking work, it
adds a reference to the object to the work queue, and when a thread needs work, it
takes it from the work queue. Ensuring efficient and correct operation of a parallel
work queue is a challenging aspect of high performance collector implementation [Os-
sia et al., 2002; Blackburn et al., 2004].

We were pleased to find that Rust provides a rich selection of safe abstractions
that perform well as part of its standard and external libraries (known as crates in
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Rust parlance), and unlike past works [Alpern et al., 1999; Blackburn et al., 2004;
Alpern et al., 2005; Rigo and Pedroni, 2006; Frampton et al., 2009; Wimmer et al.,
2013], we are not restricted to a subset of the language semantics. The use of standard
libraries is deeply problematic when using a modified or restricted language subset,
as has been commonly used in the past. For example, if using a restricted subset
of Java, one must be able to guarantee that any library used does not violate the
preconditions of the subset, which may be extremely restrictive (such as using only
the fully static subset of the language, excluding allocation and dynamic dispatch).
Consequently, standard libraries are off limits when using restricted Java to build a
garbage collector.

We utilize two crates in Rust, std::sync::mpsc, which provides a multiple-
producers single-consumer FIFO queue, and crossbeam::sync::chase_lev4, which
is a lock-free Chase-Lev work stealing deque that allows multiple stealers and one
single worker [Chase and Lev, 2005]. We use these two abstraction types as the back-
bone of our parallel collector with a modest amount of additional code to integrate
them.

Our parallel collector starts single-threaded, to work on a local queue of GC
roots; if the length of the local queue exceeds a certain threshold, the collector turns
into a controller and launches multiple stealer collectors. The controller creates an
asynchronous mpsc channel and a shared deque; it keeps the receiver end for the
channel, and the worker for the deque. The sender portion and stealer portion are
cloned and moved to each stealer collector. The controller is responsible for receiving
object references from stealer threads and pushing them onto the shared deque, while
the stealers steal work (ObjectReferences) from the deque, do marking and tracing
on them, and then either push the references that need to be traced to their local
queue for thread-local tracing or, when the local queue exceeds a threshold, send the
references back to the controller where the references will be pushed to the global
deque. When the local queue is not empty, the stealer prioritizes getting work from
the local queue; it only steals when the local queue is empty.

Using those existing abstract types makes our implementation straightforward,
performant and robust: our parallel marking and tracing features only 130 LOC while
there are over one thousand lines of well tested code from the libraries to support our
implementation. We measure and discuss the performance of our parallel marking
and tracing implementation in Section 3.3.3.

3.3.2 Abusing Rust

In the previous subsection, we described how Rust’s semantics affect the implemen-
tation of a high performance garbage collector. Though Rust’s model is sometimes
restrictive, in most cases we were able to fairly straightforwardly adapt the collector
design to take full advantage of Rust’s safety and performance. However, there are a
few places where we found that Rust’s safety model was too restrictive to express the
necessary semantics efficiently, and thus found ourselves having to dive into unsafe

4https://github.com/aturon/crossbeam

https://github.com/aturon/crossbeam
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code, where the programmer bears responsibility for safety, rather than Rust and its
compiler.

Shared Bit/Byte Maps

Garbage collectors often implement bit maps and byte maps to represent collection
state, mapping addresses to table offsets. Examples include card tables (which remem-
ber modified memory regions), and mark tables (which remember marked objects).
To implement these correctly and efficiently, they are frequently byte maps (allowing
atomic update). Semantics may include, for example, multiple writers but idempo-
tent transitions: during the mark phase, the writers may only set the mark byte (not
clear it). For example, an object map indicates the start of objects: in a heap where
every object is 8-byte aligned, every byte in such a byte map can represent whether
an 8-byte aligned address is the start of an object. In Immix, a line mark table is used
to represent the state of every line in the memory space — an unsigned byte (u8) for
every 256-bytes of allocated memory.

During allocation, the line mark table may be accessed by multiple allocator
threads, exclusively for the addresses that they are allocating into. Since every al-
locator allocates into a non-overlapping memory block, they access non-overlapping
elements in the line mark table. However, in Rust, if we were to create the line
mark table as a Rust array of u8, Rust would forbid concurrent writing into the array.
Ways to bypass this within the confines of Rust are to either break the table down into
smaller tables, or to use a coarse lock on the large table, both of which are impractical.

On the other hand, during collection, the mutual exclusion enjoyed by the allocator
does not exist: two collector threads may race to mark adjacent lines, or even the
same line. The algorithm ensures that such races are benign, as both can only set
the line to ‘live’ and storing to a byte is atomic on the target architecture. However,
in Rust, it is strictly forbidden to modify a shared object’s non-atomic fields without
going through a lock. We are unaware of a reliable solution to this in stable Rust
releases, which do not support an AtomicU8 type, nor intrinsic atomic operations as
in the nightly releases.

Instead, we use the work-around shown in Figure 3.4. We generalize the line mark
table as an AddressMapTable. We wrap the necessary unsafety into the AddressMapTable
implementation which almost entirely comprises safe code. We acknowledge also
that for proper atomicity of the byte store (with respect to both the compiler and
target) we should also be using an atomic operation to store the value rather than
a normal assignment. Here we rely on the Rust compiler to generate an x86 byte
store which is atomic. Otherwise, there are reasonable compiler optimizations that
could defeat the correctness of our code [Boehm, 2011]. What is more, the target
architecture might not have an atomic byte store operation. The availability of LLVM
intrinsics in the non-stable nightly Rust releases would allow us to use a relaxed
atomic store to achieve the correct code, as shown in the comment. This exposes a
shortcoming in Rust’s current atomic types where we desire an AtomicU8 type, along
the lines of the existing AtomicUsize. This need is reflected in the recently accepted
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1 pub struct AddressMapTable {
2 start : Address,
3 end : Address,
4

5 len : usize,
6 ptr : *mut u8
7 }
8 // allow sharing of AddressMapTable across threads
9 unsafe impl Sync for AddressMapTable {};
10 unsafe impl Send for AddressMapTable {};
11

12 impl AddressMapTable {
13 pub unsafe fn set (&self, addr: Address, value: u8)
14 {
15 let index = addr.diff(self.start) >> LOG_PTR_SIZE;
16 unsafe {
17 let ptr = self.ptr.offset(index);
18 // intrinsics::atomic_store_relaxed(ptr, value);
19 *ptr = value;
20 }
21 }
22 }

Figure 3.4: Our AddressMapTable allows concurrent access with unsafe methods. The user
of this data structure is responsible for ensuring that it is used safely.

Rust RFC #1543: ‘Add more integer atomic types’ [Rust RFC 1543, 2016].

3.3.3 Evaluation

The two primary objectives of our proof-of-concept implementation were to establish:
(i) to what extent we are able to exploit Rust’s safety (hopefully minimizing the
amount of unsafe code), and (ii) the impact of Rust on performance. In this section, we
discuss our evaluation of our proof-of-concept collector, focusing on these concerns.

Safe Code

Our first major challenge was to map our collector design into the Rust language. As
we discuss in Sections 3.3.1 and 3.3.2, for the main part, the collector implementation
can be expressed entirely in safe Rust code. As shown in Table 3.1, 96 % of 1449
lines of the code are safe. This suggests that though GC is usually considered to be a
low-level module that operates heavily on raw memory, the vast majority of its code
can in fact be safe, and can benefit from the implementation language if that language
offers safety.

Language Files Lines of Code Unsafe LOC (%)

Rust 13 1449 58 (4.0%)

Table 3.1: Unsafe code is minimal in our GC implementation.
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The unsafe code amounts to 4.0 % and mainly comes from just two sources. The
first is where unsafe is required for access to raw memory, such as dereferencing
raw pointers during tracing, manipulating object headers, zeroing memory, etc. This
is unavoidable in memory manager implementations. Our experience demonstrated
that through proper abstraction, the unsafe code for accessing raw memory can be
restricted to a small proportion of the code base. The second source of unsafety is
due to Rust’s restricted semantics. Rust trades expressiveness for the possibility of
statically enforcing safety. Section 3.3.1 shows that for most of the cases, we are able
to adapt our collector implementation to Rust’s constraints. In the exceptional case
described in Section 3.3.2 where Rust stands in our way, we are able to encapsulate it
in a small amount of unsafe code.

Our experience demonstrates that a garbage collector can be implemented in a
safe language such as Rust with very little unsafe code. Furthermore, we can report
that, subjectively, the discipline imposed upon us by Rust was a real asset when we
went about this non-trivial systems programming task with its acute performance and
correctness focus.

Performance

Our second challenge was to deliver on our goal of high performance. Since at this
stage we are implementing a standalone garbage collector, not yet integrated into a
larger language runtime, it is hard to provide performance evaluation via comprehen-
sive benchmarks; instead we use micro benchmarks to evaluate the collector. We are
not interested in evaluating garbage collection algorithms per se (we take an existing
algorithm off the shelf). Rather, we simply wish to provide proof of concept for an im-
plementation of a high performance collector in Rust and show that it performs well
in comparison to an equivalent collector written in C. To this end, we are particularly
interested in the performance of critical hot paths, both for collection and allocation
since the performance of the algorithm itself is already established [Blackburn and
McKinley, 2008], and our prior experience demonstrates the overwhelming criticality
of these hot paths to performance.

Benchmarks. To evaluate the performance of our implementation in Rust, we
also implemented the collector in C, following the same Immix algorithm. We did
not try to make the two implementations exactly identical, but used the features
of the available language in a naturally fluent way. For most scenarios described
in Section 3.3.1 and 3.3.2, it is either unnecessary or simply impossible to write C
code the same way as Rust code. The C implementation allows us to set a baseline for
performance in an implementation language that is known to be efficient and allows
a head-to-head comparison for Rust performance. We took particular care to ensure
that the performance-critical hot paths were implemented efficiently in the respective
languages.

We chose three performance-critical paths of the collector to run single-threaded
as micro benchmarks: allocation, object marking, and object tracing. Each micro
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benchmark allocates 50 million objects of 24 bytes each, which takes 1200 MB of
heap memory; we use 2000 MB memory for each run so that the GC will not collect
spontaneously (we control when tracing and collection occur in the respective micro
benchmarks). In each micro benchmark, we measure the time spent on allocating,
marking, and tracing the 50 million objects. We use rustc 1.6.0 stable release for
Rust, and clang 3.7 for C, both of which use LLVM 3.7 as back-end. We run each
implementation with 20 invocations on a 22 nm Intel Core i7 4770 processor (Haswell,
3.4 GHz) with Linux kernel version 3.17.0. The results appear in Table 3.2.

C Rust (% to C)

alloc 370 ± 0.1 ms 374 ± 2.9 ms (101%)

mark 63.7 ± 0.5 ms 64.0 ± 0.7 ms (100%)

trace 267 ± 2.1 ms 270 ± 1.0 ms (101%)

Table 3.2: Average execution time with 95% confidence interval for micro benchmarks of
performance critical paths in GC. Our implementation in Rust performs the same as the C
implementation.

From the micro benchmark results, we can see that with careful performance
tuning, the Rust implementation matches the performance of our C implementation
across all the three micro benchmarks (identifying most performance critical paths in
a collector implementation). In our initial implementation (without fine performance
tuning), Rust was within 10% slowdown of C on micro benchmarks. We found it
encouraging, considering: (i) our source code in Rust offers stronger abstraction than
C, a low-level imperative language, and (ii) the source code enjoys Rust’s safety guar-
antees. We then fine-tuned the performance, examining and comparing assembly
code generated for each implementation, where necessary anticipating code gener-
ation from the Rust compiler and altering patterns in the fast path code to avoid
idioms with negative performance implications. Our micro benchmarks have tiny
kernels and are memory intensive, and one instruction may affect results. We found
that although rustc is aggressive it is quite predictable, making it relatively easy to
generate highly performant code. Lack of tools for finer control on the generated
code such as branch hints may be a drawback of the Rust compiler, but did not hinder
performance in the micro benchmarks.

Library-based Parallel Mark and Trace. We evaluate the performance scaling of
parallel GC in our implementation. As described in Section 3.3.1, we quickly imple-
mented the parallel mark and trace collector by completely basing its parallelism on
existing Rust crates: std::sync::mpsc and crossbeam:: sync::chase_lev. They pro-
vide the basis for all of the concurrency in our parallel collector. This implementation
approach is high-level and productive, but as we shall show, it is also performant.

We use a micro benchmark to trace 50 quad trees of depth ten to allow parallel
collectors to build a reasonable local work queue for thread-local tracing and to push
excessive references to the global deque. We use a large heap to avoid spontaneous
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Figure 3.5: Performance scaling for our fast implemented libraries-based parallel mark and
trace collector. Dotted line illustrates the performance if workloads are equally distributed
among threads with no overhead.

collections during the tree allocation. We run this with twenty invocations on the
same i7 Haswell machine, using from zero to seven GC worker threads, and measure
the tracing time. Note that zero means no parallel GC while one to seven reflect
the number of GC worker threads (with one additional controller thread). Seven
workers with one controller is the full capacity of our machine (four cores with eight
SMT threads). Figure 3.5 shows the results along with a line indicating hypothetical
perfect scaling (which assumes workloads are equally divided among threads with
no overhead compared to a single-threaded collector).

With parallel GC disabled, single-threaded marking and tracing takes 605 ms,
while with one worker thread, the benchmark takes 716 ms. The overhead is due to
sending object references back to the global deque through an asynchronous channel,
and stealing references from the shared deque when the local work queue is empty.
With two and three worker threads, the scaling is satisfactory, with execution times of
378 ms and 287 ms (52.8 % and 40.0 % compared with one worker). When the number
of worker threads exceed four, the scaling starts to fall off slightly. With seven worker
threads, the execution time is 166 ms, which is 23.2 % of one worker thread. The
performance degradation is most likely from two sources: (i) GC workers start to
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share resources from the same core after every core hosts one worker, (ii) having
one central controller thread to receive object references and push them to the global
deque starts to be a performance bottleneck. These results could undoubtedly be
improved with further tuning. However, as it is one tricky part of the implementation,
and we worked towards a working (and safe) implementation with limited time and
limited lines of code by using existing libraries, the approach itself is interesting and
demonstrates the performance tradeoff due to improved productivity. We believe the
performance scaling is good, and that having a language that provides higher level
abstractions can benefit a parallel GC implementation (and possibly a concurrent GC)
greatly.

GCBench. We compare our Immix implementation in Rust with the BDW collector
on the gcbench micro benchmark. We enable thread-local allocators and parallel
marking with eight GC threads on BDW. We run on the same machine for the com-
parison, and use a moderate heap size of 25 MB (which is roughly 2× the minimal
heap size to allow heap stress).

In a run of 20 invocations (as shown in Table 3.3), the average execution time
for BDW is 172 ms, while the average for our implementation is 97 ms (79 % faster).
We do not find the result surprising. Our GC implements an Immix allocator which
is mainly a bump pointer allocator, while BDW uses a free list allocator. Immix
outperforms freelist allocators by 16% in large benchmarks [Shahriyar et al., 2014]; we
expect the performance advantage is even bigger in micro benchmarks that allocate
in a tight loop. We ran our alloc micro benchmark for BDW, and we find that
the performance difference between our allocator and the BDW allocator is similar,
confirming our belief. Our GC implementation is different from the BDW collector
in a few other respects, which contribute to the performance difference: (i) Our GC
is conservative with stacks but precise with the heap, while the BDW collector is
conservative with both; (ii) Our GC presumes a specified heap size and reserves
contiguous memory space for the heap and metadata side tables during initialization,
while the BDW collector allows dynamic growing of a discontiguous heap.

We also compared the two collectors with a multi-threaded version of gcbench
(as mt-gcbench in Table 3.3). Both collectors use eight allocator threads, and eight
GC threads. The results show that our implementation performs 3× faster than BDW
on this workload. Our implementation outperforms the BDW collector on gcbench
and mt-gcbench (respectively by 79 % and 2×), which suggests our implementation
in Rust delivers good performance compared to the widely used BDW collector.

BDW Immix(Rust) % of BDW

gcbench 172 ± 0.8 ms 97 ± 0.3 ms 56%

mt-gcbench 1415 ± 3.1 ms 466 ± 1.9 ms 33%

Table 3.3: Performance comparison between our Immix GC in Rust and BDW on gcbench
and multi-threaded gcbench.
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We conclude that using Rust to implement GC does not preclude high performance,
and justify this with the following observations: (i) our implementation in Rust per-
forms as well as our C implementation using the same algorithm in performance-crit-
ical paths, and (ii) our implementation in Rust outperforms the widely-used BDW
collector on gcbench and mt-gcbench. This result shows the capability of Rust for
high-performance GC implementations, as a language with memory, thread and
type-safety.

3.4 Summary

Rust is a compelling language that makes strong claims about its suitability for
systems programming, promising both performance and safety. We found that the
Rust programming model is quite restrictive, but not needlessly so. We demonstrated
the feasibility of using Rust to implement an Immix GC, matching the performance
of an implementation in C. We found that the vast majority of the collector could
be implemented naturally, without difficulty, and without violating Rust’s restrictive
static safety guarantees.

Our experience was very positive: we enjoyed programming in Rust, we found
its restrictive programming model helpful in the context of a garbage collector im-
plementation, we appreciated access to its large range of libraries, and we found
that it was not difficult to achieve excellent performance. Based on the experience,
we further apply our experience to implement the entire Zebu VM in Rust. We be-
lieve the case study of a GC implementation is sufficient to demonstrate our point:
utilizing a thread-/memory-/type-safe language to implement low-level systems is
beneficial without necessarily compromising performance. Though the entire VM
implementation benefits from Rust, especially from the ownership model and thread
safety, this thesis does not further elaborate on our implementation details in terms
of utilizing Rust.

In the next chapter, we will discuss another important design point for a virtual
machine implementation, yieldpoints for thread synchronization.



Chapter 4

Yieldpoints as a Mechanism for VM
Concurrency

Yieldpoints allow a running program to be interrupted at well-defined points in its
execution, facilitating exact garbage collection, biased locking, on-stack replacement,
profiling, and other important virtual machine behaviors. Yieldpoints are critical to
the implementation of a virtual machine as a fundamental mechanism to support
thread synchronization, yet the design space is not well understood.

In this chapter, we identify and evaluate yieldpoint design choices. Section 4.1
motivates this chapter by introducing the importance of yieldpoints in a modern
virtual machine implementation. Section 4.2 presents the background, analysis and
related work associated with this chapter. Section 4.3 fully explores the design space
of yieldpoints, from two orthogonal perspectives, mechanisms and scopes. Section 4.4
presents our methodology, and evaluation on both taken and untaken yieldpoints
performance and time-to-yield latency. Note that we conducted the analysis and
experiments on Jikes RVM [Alpern et al., 1999], a high-performance Java virtual
machine, with real world benchmarks [Blackburn et al., 2006] for more sound per-
formance analysis. Section 4.6 concludes this chapter with the finding that different
designs of yieldpoints expose different trade-offs, however, the conditional polling
yieldpoint has the most desirable characteristics: low overhead, fast time-to-yield,
and implementation simplicity. The analysis and evaluation in this chapter allows
us to understand the background, the design space and the trade-offs of yieldpoints,
which further allows us the confidence to pick suitable designs for Zebu VM.

This chapter describes work published in the paper “Stop and Go: Understanding
Yieldpoint Behavior” [Lin et al., 2015]

4.1 Introduction

A yieldpoint is a frequently executed check by managed application code in high
performance managed run-time systems, used to determine when a thread must yield.
Reasons to yield include garbage collection, user-level thread pre-emption, on-stack
replacement of unoptimized code with optimized code, biased locking, and profiling
for feedback directed optimization. Yieldpoints ensure that each thread is in a state
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that is coherent for the purposes of the yield, such as knowing the precise location of
all references in the registers and stacks for exact garbage collection, and that relevant
operations such as write barriers and allocation have completed (i.e., are not in some
inconsistent partial state). These properties are less easily assured if threads suspend
at arbitrary points in their execution. Coherence is essential when the virtual machine
needs to introspect the application thread or reason about interactions between the
thread and the virtual machine or among multiple application threads. In the case of
exact garbage collection, yieldpoints are known as GC-safe points [Jones et al., 2011].
Compilers may generate a GC map for each yieldpoint, allowing the run-time system
to identify heap pointers precisely within the stacks and registers of a yielded thread.

To avoid unbounded waits, yieldpoints typically occur on loop back edges and on
method prologs or epilogs of the application, either in the interpreter or in code placed
there by the compiler. Consequently, yieldpoints are prolific throughout managed
code. Yieldpoints may also be performed explicitly at other points during execution,
such as at transitions between managed and unmanaged code.

Despite their important role, to our knowledge there has been no detailed analysis
of the design space for yieldpoints nor analysis of their performance. This study
examines both. We conduct a thorough evaluation of yieldpoints, exploring how
they are used, their design space, and performance. We include designs that to
our knowledge have not been evaluated before, as well as two designs that are well
known. We start by measuring the static and dynamic properties of yieldpoints across
a suite of real-world Java benchmarks. We measure1 their static effect on code size
as well as the dynamic rate at which yieldpoints are executed and the rate at which
a yieldpoint’s slow path is taken (making the thread yield). Statically, yieldpoints
account for about 5 % of instructions. The Java benchmarks we evaluate perform
about 100 M yieldpoints per second, of which about 1/20 000 are taken. We show
that, in our measurement, among the different uses of yieldpoints, by far the most
common reason for yielding is to perform profiling for feedback directed optimization
(FDO), which, in Jikes RVM, occurs once every 4 ms and triggers multiple yieldpoints
to be taken for sampling in each executing thread. By comparison, garbage collection
occurs far less frequently, and in most benchmarks lock revocation in support of
biased locking is very rare.

We examine the design space, including two major dimensions. The first dimen-
sion is the mechanism for deciding whether to yield, which may be implemented as:
(i) a conditional guarded by a state variable, (ii) as an unconditional load or store
from/to a guard page, or (iii) via code patching. The conditional yields when the
state variable is set and a branch is taken, the unconditional load or store yields when
the guard page is protected and the thread is forced to handle the resulting exception,
while code patching can implement a branch or a trap (both unconditional). The sec-
ond design dimension is the scope of the signal, which may be global or per-thread.
A global yieldpoint applies to all threads (or none), while a per-thread yieldpoint can

1We conducted the measurement and analysis on Jikes RVM, so the numbers are specific for Jikes
RVM. However, other virtual machines should follow a similar pattern, and our methodology can be
applied for measuring other systems as well.
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target individual threads to yield.
We identify a new opportunity for yieldpoint optimization. Rather than using

code patching to turn unconditional yields on or off (which requires that all yield-
points be patched) as Agesen [1998] did, we can use code patching to selectively
toggle frequently executed yieldpoints. We also show that a yieldpoint implemented
as an unconditional store can serve double-duty as a very low overhead profiling
mechanism. If the unconditional store writes a constant that identifies characteris-
tics of the particular yieldpoint (e.g., location or yielding thread), then a separate
profiling thread can sample the stores and thus observe the yieldpoints as they are
traversed [Yang et al., 2015].

We evaluate each of the design points. Among these designs, the most important
tradeoff is due to the choice of mechanism, with explicit checks incurring the highest
overhead in the common untaken case, around 2 %, but delivering the fastest time-to-
yield, while the unconditional load or store has a lower overhead in the common case,
1.2 % at best, but has worse time-to-yield performance. The code patching yieldpoint
is slightly different than the other yieldpoint designs. Code patching yieldpoints have
superior common case overhead, but the cost of patching all yieldpoints outweighs
any benefit on modern hardware. We also evaluate the tradeoffs inherent to using
code patching as an optimization.

Our analysis gives new insight into a critical but overlooked aspect of garbage
collector implementation, identifies a new yieldpoint optimization, and new opportu-
nities for very low overhead profiling.

4.2 Background, Analysis, and Related Work

We now describe yieldpoints in more detail and quantitatively evaluate how yield-
points are used.

4.2.1 Background

In principle, language virtual machines are concurrent. This is clear in the case of
languages such as Java that support concurrency, but even in the case where the
supported language offers no application-level concurrency, such as JavaScript, the
relationship between the application code and the underlying run-time system is
fundamentally concurrent. The concurrency may be explicit, with run-time services
executing in discrete threads or it may be implied, with the underlying run-time
services and the application interleaving their execution by time-slicing a single
thread. Yieldpoints are a critical mechanism for coordinating among application
threads and the run-time system.

Yieldpoints serve two complementary goals. First, they provide precise code
points at which the execution state of each application thread is observably coherent,
allowing the possibility of unobserved incoherent states between yieldpoints. For
example, by ensuring that garbage collection only occurs at yieldpoints, we are
assured that a multi-instruction write barrier will be observed in its entirety or not
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at all. Second, yieldpoints reduce the cost of maintaining metadata with which the
thread’s state may be introspected. In general, introspection of an application thread
depends on metadata (e.g., stack maps) to give meaning to the machine state of the
application at any point in time. For example, the type of a value held by a machine
register at a given moment will determine whether the value should be interpreted
as a pointer, in which case its referent must be retained by the garbage collector, or
a floating point number, in which case the value must not be altered. Because such
metadata is expensive both in terms of space and in the engineering overhead of
coherently generating and maintaining it, language runtimes typically only maintain
such metadata for a limited set of code locations.

When yieldpoints are used to coordinate garbage collection it is typically adequate
for the yield to have global scope — when activated, all application threads yield to
the collector. However, when yieldpoints are used for one-to-one interactions between
threads, such as for lock revocation in support of biased locking [Pizlo et al., 2011],
or to support work-stealing [Kumar et al., 2012], a per-thread scope is necessary for
good performance. These considerations affect the yieldpoint design space, which is
discussed in Section 4.3.

Yieldpoints are either injected into the application execution by the interpreter or
compiler, or they are explicit, called by the underlying runtime at key points such as
transitions into and out of native code. The focus of our study is injected yieldpoints,
which are prolific.

4.2.2 Analysis

We now present an analysis of the prevalence of yieldpoints, dynamically and stati-
cally, and the rate at which yieldpoints are taken. We use a suite of Java benchmarks
and instrument a virtual machine to count yieldpoints. Because the instrumentation
slows the virtual machine significantly, we use execution times for the uninstru-
mented virtual machine as our baseline when measuring rates. The details of our
methodology are presented in Section 4.4.1.

To measure the static impact of yieldpoints on code size, we compiled a large body
of Java code (the boot image for Jikes RVM) using Jikes RVM’s optimizing compiler
(with O2 optimization level) and found that the resulting machine code increased in
size from 13.6 MB to 14.6 MB (i.e., by 7.2 %) when a basic conditional yieldpoint was
injected on each loop back edge, method prolog and epilog.

We measure the dynamic impact of yieldpoints by instrumenting the injected code
to count the number of times injected yieldpoints are executed, and the number of
times yieldpoints are taken for FDO profiling, lock revocation, and garbage collection.
We used the execution time for uninstrumented code to determine yieldpoint rates2.

Figure 4.1 shows the rate at which yieldpoints are executed and taken across
the suite of Java benchmarks per millisecond. The green bars indicate the rate at

2The instrumentation slows down the execution (on average, 17.7% slow down). Because FDO
sampling occurs at fixed wall-clock intervals, more of them will occur during the benchmark execution,
which causes a bias for the sampling yieldpoint rate. We scaled them down proportionally.
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Figure 4.2: Cumulative frequency distribution of dynamic yieldpoint execution rates for each
of our benchmarks, showing that a small number of static yieldpoints contribute most of the
dynamic execution.

which yieldpoints are executed, taken or not. On average about 100 M yieldpoints
are executed per second; about one every 10 ns, which is roughly one every 40 cycles
on our 3.4 GHz machine. Of these, around 1/20 000 yieldpoints are taken. Sampling
for FDO (orange and red bars) dominates the reasons for yieldpoints to be taken.
Jikes RVM uses bursty sampling [Arnold and Grove, 2005], initiating sampling on
each thread once every 4 ms. Once initiated, samples are taken at the next N method
prologs, where N is 8. The degree of simplicity and longevity of the benchmarks
affects the precise number of samples taken. Our counts are totals across all threads,
so the multi-threaded benchmarks such as lusearch, sunflow, xalan and pjbb have
their counts inflated in proportion to the number of threads they are running. The
yellow bar indicates the number of yieldpoints due to garbage collection, and reveals
that only a small fraction of taken yieldpoints are due to garbage collection. The
difference between red and orange bars reflects the number of yieldpoints taken due
to lock revocation, revealing that this is very rare among our benchmarks.

We further identify every single yieldpoint inserted by the compiler and maintain
an execution count for each, and Figure 4.2 shows the cumulative frequency of yield-
point execution across different benchmarks. The figure suggests that among more
than 35 k yieldpoints inserted by the compiler for each benchmark, just a few hun-
dred account for most executions. On average, just 315 yieldpoints (∼1 %) account
for 99 % of all the yieldpoint executions, dynamically, and 681 yieldpoints (∼2 %)
account for 99.9 % of all executions. In the worst case (xalan), the same percentile
is 849, which is still a tiny fraction of the static yieldpoint count. This result is inter-
esting because it suggests that, despite the pervasiveness of yieldpoint insertion and
execution, less than 1 % of yieldpoints dominate the behavior. This can possibly be
exploited for a more optimized yieldpoint design as will be discussed in Section 4.5.

Summarizing, Figure 4.1 shows that: (i) yieldpoints are executed at a very high
frequency, (ii) they are relatively rarely taken, and (iii) that sampling for FDO domi-
nates garbage collection and lock revocation as a reason for yieldpoints to be taken,
while Figure 4.2 shows that a tiny fraction of yieldpoints dominate execution.
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4.2.3 Related Work

To the best of our knowledge, despite their importance to language behavior and
performance, no prior work has conducted a detailed study of yieldpoint design and
implementation.

Agesen [1998] focuses purely on mechanisms for GC-safe points, comparing an
unconditional store to a guard page (‘polling’) with a code patching mechanism on
SPARC machines. His code patching mechanism injects noop instructions to replace
all yieldpoints. To trigger the yield, the run-time system patches every yieldpoint
site, replacing the noop instructions at each site with a call. Agesen used a set
of benchmarks comprising specjvm, specjvm candidates, and two non-trivial multi-
threaded benchmarks. He reported that code patching for SPARC has a 6.6 % higher
space cost than an unconditional store, on average, but delivers a 4.8 % speedup. We
evaluate this design point on modern hardware and show that code patching costs
dominate.

Our work differs from this prior work in multiple ways. First, we provide a
detailed categorization of generalized yieldpoint mechanisms suited to a variety of
purposes in modern run-time systems. We consider garbage collection as one use of
yieldpoints, among others. The two implementations of GC-safe points measured by
Agesen [1998] are what we call a global store trap-based yieldpoint and global code patch-
ing yieldpoint. Second, our methodology allows us to evaluate different yieldpoint
implementations over a baseline that has no injected yieldpoints. This allows us to un-
derstand the performance overheads for each configuration. In contrast, the previous
work evaluated two implementations against each other with no baseline. Our selec-
tion of benchmarks is more mature, and contains a set of real-world multi-threaded
applications. Since yieldpoints are naturally designed for multi-threaded contexts,
our benchmark choice enables studies such as per-thread yield latency and worst-case
yield latency, which are important for real-time and concurrent garbage collection.
Third, we identify code patching as an optimization over other yieldpoint designs.
Finally, the previous work was evaluated on venerable SPARC machines of more than
fifteen years ago: what was true then may not be true now. Our experiments evaluate
and report for contemporary hardware.

Click et al. [2005] distinguish GC-safe points and checkpoints in their work related to
pauseless GC algorithms. GC-safe points are the managed code locations where there
is precise knowledge about the contents of registers and stacks, while checkpoints are
synchronization locations for all mutator threads to perform some action. Our study
projects a more detailed categorization of yieldpoints and their implementations.

Stichnoth et al. [1999] proposed an interesting alternative to the compiler injected
yieldpoints discussed here. They focus on maintaining comprehensive GC maps
that cover all managed code instruction locations so as to allow garbage collection
to occur at any location without the need for designated yieldpoints. They report
significant overhead for the resulting GC maps (up to 20% of generated code size)
even after efforts to compress the maps. This may not be desirable in practice, so
compiler-injected yieldpoints are widely used in language implementations.
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4.3 Yieldpoint Design

In this section we categorize different implementations of compiler injected yieldpoints
and describe the use of code patching as an optimization. Our focus is the use of
yieldpoints in managed language implementations, where applications must yield oc-
casionally to service run-time system requests. A given yieldpoint may be associated
with compiler-generated information that records GC stack maps, variable liveness,
etc. As an alternative to compiler injected yieldpoints, non-cooperative systems that
do not rely on compiler support may use operating system signals to interrupt a
native thread to ‘yield’ at arbitrary program locations [Boehm and Weiser, 1988]. This
approach injects no code in the application, and only requires a signal handler to
deal with the interrupt. However, the run-time system can make no assumptions
about where the yield occurs, and this further prevents any useful information to be
associated with the yielding location (such as stack maps for exact GC). For managed
run-time systems it is much more desirable to be able to exploit such information,
so we exclude the non-cooperative techniques from our categorization and focus on
discussing compiler injected yieldpoints for managed language run-time systems.

4.3.1 Mechanisms

Because yieldpoints are frequently executed and seldom triggered, the common im-
plementation pattern is to use the fast-path/slow-path idiom. The fast-path is pervasively
inserted into managed application code, and does a quick check to decide whether
there is any incoming request. If there is, the yieldpoint is taken and control flow goes
to the slow-path which further decodes the request, and reacts accordingly. If the
yieldpoint is not taken then execution continues at the next application instruction.
Control transfer to the slow-path may be via a direct or indirect conditional branch,
or by having the fast-path trigger a hardware trap that can be fielded by a matching
trap handler.

Conditional Polling Yieldpoints This yieldpoint implementation involves a con-
dition variable. The compiler injects a constant comparison against the value of
the variable and a conditional jump to the slow path on true. In normal cases, the
condition is not met, and the jump falls through to the next instruction. When the
yieldpoint is enabled the jump transfers control to the slow path to execute the yield.
Figure 4.3(a) shows the fast-path implementation for conditional polling yieldpoints.
Jikes RVM uses this mechanism [Alpern et al., 1999].

One advantage of conditional polling yieldpoints is that they provide flexibility
and allow easy implementations of yieldpoints for a finer scope. The compiler can
generate different conditional comparison instructions for yieldpoints at various loca-
tions, and at run time the variable can be set to different values to allow a subset of
the conditional comparisons to be triggered, so that only a subset of yieldpoints can
be taken. For example, the compiler emits cmp [offset] 0; jne call_yieldpoint;
for Group A and cmp [offset] 0; jgt call_yieldpoint; for Group B. At run-time,
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1 .yieldpoint:
2 cmp 0 [TLS_REG + offset]
3 jne call_yieldpoint
4 .normal_code:
5 ...

(a) Conditional

1 .yieldpoint:
2 test 0 [TLS_REG + offset]
3 .normal_code:
4 ...

(b) Trap-based Load

1 .yieldpoint:
2 mov 0 [TLS_REG + offset]
3 .normal_code:
4 ...

(c) Trap-based Store

Figure 4.3: Thread-local polling yieldpoints

if the conditional variable is set to -1, then only Group B takes the yieldpoints.
Moreover, the condition variable can be held in a thread-local variable, allowing

yieldpoints to trigger only for particular threads.

Trap-Based Polling Yieldpoints This yieldpoint implementation involves a dedi-
cated memory page that can be protected as appropriate. The compiler injects an
access (read or write) to the page as the yieldpoint fast-path (see Figures 4.3(b)
and 4.3(c)). In the common case the access succeeds and will not trigger the yield-
point. Enabling the yieldpoints is simply a matter of protecting the page (from read
or write as appropriate) to make the yieldpoint instruction generate a trap. Here
the slow path is the handler used to field the trap. A load yieldpoint on x86 can
be implemented as a cmp, or test to avoid the use of a scratch register. The store
implementation can be exploited to store useful profiling information such as the
address of the currently executing method, or the address of the yieldpoint instruc-
tion itself. The Hotspot VM uses trap-based load yieldpoints on a global protected
page [HotSpot VM, 2017].

Once again, the access can be to a page held in a thread-local variable, allowing
yieldpoints to trigger only for particular threads.

Code Patching Yieldpoints Besides the polling mechanisms described above, code
patching is another possible mechanism to implement yieldpoints. A common use
is NOP patching. The compiler injects several bytes of NOPs at yieldpoint locations,
which makes no meaningful change in the generated application code. To trigger a
yieldpoint, the run-time system simply iterates through the code space or a stored
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list of all yieldpoint code addresses, and patches code by replacing the NOPs with
other instructions that cause control to flow to the yieldpoint slow path. Intuitively,
this approach imposes the lowest fast-path overhead (both in terms of space and
time), but enabling yieldpoints is costly. Agesen [1998] reported the use of this
approach in 1998, and found it faster than conditional polling on a SPARC machine
of that era. Our evaluation on modern hardware shows that the cost of patching
the instructions dominates any potential advantage. A similar mechanism is often
used for watchpoints, which we consider a finer-grained subtype of yieldpoints —
watchpoints can be turned on and off per group, as will be discussed below.

4.3.2 Scope

Besides categorizing yieldpoints from the perspective of implementing mechanisms,
we also categorize yieldpoints by different levels of scope. From coarser to finer levels,
we discuss three scopes: global, thread-local, and group-based.

Global Yieldpoints These are turned on and off all at once to trigger a global
synchronization of all application threads. Global yieldpoints are useful for global
events such as stop-the-world GC. Yieldpoints of this scope can be implemented with
different mechanisms: using a global conditional variable, a single global protected
page, or an indiscriminate pass of patching through the whole code space.

Thread-Local Yieldpoints These can be turned on and off for a single thread or a
group of threads. They can be used for global synchronization if the targeted threads
include all the running threads. Yieldpoints of this scope are useful for targeted per-
thread events, such as pair handshakes between two threads. Yet they provide flexi-
bility as they can also be used for global events. As noted above, using a thread-local
condition variable or thread-local protected page enables thread-local conditional
polling or trap-based polling, respectively. However, there is no straight-forward
implementation of a thread-local unconditional code patching yieldpoint [Agesen,
1998], since there is no easy guarantee of the patched code being executed only by
certain threads.

Group-based Yieldpoints (Watchpoints) These are grouped, and can be turned on
and off by group. They are also known as watchpoints, as we discussed in Chapter 2,
Section 2.2.5 for WATCHPOINT in Mu. This type is useful as guards for purposes
such as speculative execution. For example, in places where the compiler makes an
assumption regarding type specialization or an inlining decision, it inserts a group-
based yieldpoint before the specialized or inlined code. Whenever the run-time
system notices that the assumption breaks, it enables that group of yieldpoints to
prohibit further execution of the code under the false assumption. Code that reaches
the enabled yieldpoints will take a slow-path, where the run-time compiler can make
amends and generate new valid code. Code patching is the most straight-forward
mechanism implementing group-based yieldpoints, since it naturally needs to know
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the offset of each yieldpoint. To adapt to group-based scope, it simply records and
patches yieldpoint addresses by group. Conditional polling also fits well in group-
based scope by using different conditional variables or different conditions per group.
Trap-based polling does not work well with group-based scope, as each group would
need its own protected page, and the memory consumption for a large number of
protected pages can be significant.

Summary In this thesis, we evaluate global and thread-local versions of polling
yieldpoints, i.e.,

[
Global, Thread-Local

]
×
[
Conditional, Trap-based Load, Trap-based

Store
]

as they are most relevant to global run-time synchronization events such as
garbage collection. We also include the cost of the the fast-path of code patching
yieldpoints in our evaluation, which is several bytes of noop.

4.4 Evaluation

We present our methodology, and report the performance of each of the yieldpoint
designs. We start by evaluating the overhead of the common untaken case of each of
the yieldpoints. Next we evaluate the yieldpoints when they are taken with normal
frequency. Finally, we measure the time-to-yield (latency) for the different yieldpoints.

4.4.1 Methodology

In this subsection, we present the software, hardware and measurement methodolo-
gies we use. We base our methodology on similar work introduced by Yang et al.
[2012], adapting it to the task of measuring yieldpoints. The principal methodological
contribution of this chapter is an omitted yieldpoint methodology, which allows us
to use a system with no injected yieldpoints as a baseline. We describe the omitted
yieldpoint methodology below.

Measurement Methodology We implement all yieldpoints in version 3.13 of Jikes
RVM [Alpern et al., 1999], with a production configuration that uses a stop-the-world
generational Immix [Blackburn and McKinley, 2008] collector. We hold heap size
constant for each benchmark, but because our focus is not the performance of the
garbage collector itself, we use a generous 6× minimal heap size for each benchmark
with a fixed 32 MB nursery.

We use Jikes RVM’s warmup replay methodology to remove the non-determinism
from the adaptive optimization system. Note that the use of replay compilation has
the important benefit of obviating the need for the adaptive optimization system to
perform profiling, which would otherwise make our omitted yieldpoints methodology
impossible. Before running any experiment, we first gather compiler optimization
profiles from the best performance run from a set of runs for each benchmark. Then,
when we run the experiments, every benchmark first goes through a complete run to
warm up the runtime (allowing all the classloading and method resolving work to be
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done), and then the compiler uses the pre-collected optimization profiles to compile
benchmarks and disallows further recompilation. This methodology greatly reduces
non-determinism from the adaptive optimizing compiler. Note that we use the replay
advice from the status quo build. However, since our different builds impose little
change in the run-time system, we expect the bias introduced by using the same
advice to be minimal as well.

Omitted Yieldpoint Methodology To evaluate the overhead of various yieldpoint
implementations, we developed a methodology with no injected yieldpoints, which
served as a baseline against which each of the yieldpoint implementations could be
compared. The methodology depends on two insights. First, we can disable two of
the three systems that depend on yieldpoints: sampling for feedback-directed opti-
mization, and lock revocation for biased locking. As mentioned above, the warmup
replay methodology provides a sound basis for empirical analysis such as this, and
happens to have the side effect of not requiring sampling for FDO. Biased locking is
an optimization that we can readily disable, removing the need for lock revocation at
the cost of modest performance losses on some multi-threaded benchmarks. Second,
explicit yieldpoints remain in place, even when we disable injected yieldpoints. Em-
pirically, explicit yieldpoints are sufficiently frequent that garbage collection — the
one remaining component dependent on yieldpoints — can occur in a timely manner.
We quantify the slop that removal of injected yieldpoints adds to reaching explicit
GC-safe points by measuring the time taken for threads to yield and comparing it
with total mutator time. The average effect on mutator time due to slower latency to
reach explicit GC-safe points is 0.9 %, which is mostly due to one benchmark which
triggers GC very frequently (lusearch, 9.1 %). For a fair comparison, in our measure-
ments, injected yieldpoints have an empty slow path and will not bring the thread to a
GC-safe point so that GC always relies on explicit yieldpoints, and the slightly longer
GC-safe point latency persists for all the experiments. The obvious alternative to our
approach would be to remove the need for garbage collection altogether by using
a sufficiently large heap. However, this would be impractical for benchmarks such
as lusearch which allocate prolifically, and would measurably degrade benchmark
locality [Huang et al., 2004].

Hardware and Software Environment Our principal experiments are conducted on
a 22 nm Intel Core i7 4770 processor (Haswell, 3.4 GHz) with 8 GB of 1600 MHz DDR3
RAM. To evaluate the impact of microarchitecture, we also use a 32 nm Intel 2600 Core
i7 2600 processor (Sandy Bridge, 3.4 GHz) with 8 GB of 1333 MHz DDR3 RAM. Both
processors have 4 cores with 8 SMT threads. Aside from the difference in Haswell and
Sandy Bridge microarchitectures and memory speeds, the machines are extremely
similar in their specifications and configuration. We use Ubuntu 14.04.1 LTS server
distribution running a 64 bit (x86_64) 3.13.0-32 Linux kernel on both machines.
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Benchmarks We draw the benchmarks from the DaCapo suite [Blackburn et al.,
2006], the SPECjvm98 suite [SPECjvm98], and pjbb2005 [Blackburn et al.] (a fixed
workload version of SPECjbb2005 [SPECjbb2000] with 8 warehouses that executes
10 000 transactions per warehouse). We use benchmarks from both 2006-10-MR2 and
9.12 Bach releases of DaCapo to enlarge our suite and because a few 9.12 benchmarks
do not execute on Jikes RVM. We exclude eclipse from the suite since our thread-
local trap-based implementation requires larger space for thread-local storage, which
makes eclipse run out of metadata space under the default configuration.

4.4.2 Overhead of Untaken Yieldpoints

We use the omitted yieldpoint methodology of Section 4.4.1 to measure the impact of
each yieldpoint design on mutator performance in the case where the yieldpoint
is never taken. This reflects the common case, since as Section 4.2.2 showed, only
about 1/20 000 yieldpoints are actually taken. We first evaluate the overheads for
thread-local yieldpoints before considering global yieldpoint designs.

Thread-Local Yieldpoints Figure 4.3 shows the code for three thread-local yield-
point designs. Figure 4.4(a) shows the overheads on the Haswell microarchitecture.
The geometric mean overheads are 1.9 % for the conditional, 1.2 % for the load trap,
1.5 % for the store trap.

Our evaluation on the Sandy Bridge hardware reveals some interesting differences
between microarchitectures. The geometric means for Sandy Bridge are 2.3 % for the
conditional, 2.1 % for the load trap, 1.6 % for the store trap. Thus the conditional and
trap-based yieldpoints are noticeably higher and more homogeneous on the older
machine. Interestingly, the load trap yieldpoint is significantly lower on the new
machine, from 2.1 % down to 1.2 %, while the improvements brought by the newer
micro-architecture on other implementations are marginal. This result highlights
the sensitivity of these mechanisms to the underlying micro-architecture, and the
consequent need to re-evaluate and rethink such designs in contemporary settings.

Global Yieldpoints Global yieldpoints are very similar to the thread-local yield-
points shown in Figure 4.3, only rather than referring to thread-local storage (via the
TLS_REG in Figure 4.3), they refer to a single global value for the conditional yield-
point and a single global guard page for the trap yieldpoint. Figure 4.4(b) shows the
overheads for the global yieldpoints on the Haswell microarchitecture. The geometric
mean overheads are 2.5 % for the conditional, 2.0 % for the load trap, 36 % for the
store trap! Each of these are higher than their thread-local counterpart. The difference
between the local and global yieldpoints is moderate for the conditional and the load
trap (respectively 0.6 % and 0.8 %). But for the store trap, the slowdown is extreme.
The reason is obvious. It is clear from Figure 4.4(b) that all multi-threaded bench-
marks account for much of the increase in store trap overhead. This is due to write
contention on the guard page caused by multiple user threads trying to write to the
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same cache line. These results make it clear that aside from the additional flexibility
offered by thread-local yieldpoints, they also offer substantially lower overheads.

We also measured the six-byte noop overhead, which acts as the fast-path of
one implementation of code patching yieldpoint. The noops can be patched into an
absolute call instruction on demand. The six-byte noop has the least overhead among
all the yieldpoints we measured, 0.3 % on Haswell, and zero measurable overhead on
Sandy Bridge. This only reflects the common case fast-path, it does not include the
cost of performing code patching.

These results indicate a number of interesting findings. First, the conditional yield-
point does have a reasonably low overhead but nonetheless is the worst performing
among untaken thread-local yieldpoints. Second, the overhead of the code patching
yieldpoint in the untaken case is (perhaps unsurprisingly) very low.

4.4.3 The Overhead of Taken Yieldpoints

In the previous section we looked at the overheads due to yieldpoints when they
are never taken. In practice, of course, yieldpoints are taken, even if rarely. We
now extend the same methodology as above, only that we allow yieldpoints to be
triggered normally by the underlying profiling system that dominates yieldpoint
activity (Figure 4.1). However, we implement an empty slow path activity: when the
yieldpoint takes its slow path, we simply turn off the yieldpoint and return to the
mutator rather than actually undertake profiling or any other task. Notice that in
the case of the conditional yieldpoint, this means that there is very little additional
overhead, whereas in the trap-based yieldpoints, the trap must still be taken and
serviced before returning.

Figure 4.5 shows the results for the Haswell micro-architecture. The geometric
mean overheads for the yieldpoints are 1.9 % for the conditional, 2.7 % for the load
trap, 3.0 % for the store trap. Notice that the total overheads are now dramatically
evened out compared to the untaken results seen in Figure 4.4. The conditional has
non-measurable extra overhead for taking yieldpoints. However, though clearly faster
than conditional yieldpoints in untaken cases, trap-based yieldpoints are now slower
due to the overhead associated with servicing the traps. These results undermine the
advantage of load and store trap-based yieldpoints when yieldpoints are required to
be taken frequently.

4.4.4 Time-To-Yield Latency for GC

A third performance dimension for yieldpoint implementations is the time it takes
for all mutator threads to reach a yieldpoint. This is of course dominated by the last
thread to come to a yieldpoint. Intuitively, a trap-based yieldpoint will perform worse
on this metric than a conditional polling yieldpoint because it is subject to the vagaries
of the operating system servicing the trap and any scheduling perturbations that may
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induce. We measure the time-to-yield latency for each GC by using thread-local
polling yieldpoints with multi-threaded benchmarks.3
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Figure 4.6: Time-to-yield latency for polling yieldpoints, measured in cycles (log-scale y-axis),
for each of the multi-threaded benchmarks.
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Figure 4.7: Time-to-yield worst-case latency distribution for each GC. The conditional yield-
point has a much tighter distribution, and the newer Haswell microarchitecture produces
tighter distributions than its older Sandy Bridge counterpart.

Figure 4.6 shows the thread yield latency (in cycles) for each GC. Every point in
the figure shows the latency from when the collector initiates the yield to when each
thread reaches a yieldpoint. The horizontal line indicates the 95th percentile among
the data points (278 k cycles, 665 k cycles and 659 k cycles, respectively, for the three
implementations on Haswell). Conditional polling has a substantially lower average

3For single-threaded benchmarks the only application thread yields immediately on a failed al-
location, so latency is not affected by the particular yieldpoint implementation, so we exclude the
single-threaded benchmarks.
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time-to-yield, but is also more tightly grouped. This is unsurprising, since trap-based
implementations require a system call to protect the polling page, and require signal
handling to take yieldpoints, while conditional polling involves a simple change on
the value of the polling flag, and a call.

Figure 4.7 shows the distribution of worst-case thread yield latency across all of
our multi-threaded benchmarks. Worst-case thread yield latency is the time from
when the collector initiates the yield to when the last thread reaches a yieldpoint. We
can see that on both machines, conditional polling has a much tighter distribution
and lower latency. We examined the worst (rightmost) results in each scenario and
found that the majority are from two benchmarks sunflow and lusearch. 15 out of
the worst 30 results are from sunflow and 10 out of 30 are from lusearch. For the
best-case time-to-yield latency (i.e., the fastest time from GC initiation to all threads
yielding) there is a clear distinction between conditional and trap-based polling. On
Haswell, conditional polling has the lowest yield latency of 109 k cycles while trap-
based polling is 174 k cycles for both load and store.

From these measurements, we see that conditional polling yieldpoints have a
markedly better time-to-yield latency than trap-based yieldpoints on average and at
the 95th percentile. However, the worst-case time-to-yield latency is not well corre-
lated with yieldpoint implementation, but rather affected by the operating system
and the benchmarks.

4.5 Future Work: Code Patching As An Optimization

We note that the unconditional code patching yieldpoint presents a severe tradeoff.
The common case cost of a noop-patched yieldpoint is very close to zero. However,
we measured the cost of patching and found that when patching is performed at
every timer tick, it adds on average 13.4 % overhead when all yieldpoints are patched.
We then measured the effect as we reduced the number of yieldpoints patched, and
found that it fell to 0.6 % when 681 (∼99.9 % in Figure 4.2) are patched and just 0.3 %
when 315 (∼99 %) are patched. This observation led us to consider code patching as
a possible optimization over conditional or trap-based yieldpoints.

When used as an optimization, code patching selectively overwrites only the
most frequently executed yieldpoints with no-ops. When a yieldpoint is triggered,
the optimized yieldpoints are rewritten to their original state (or to unconditional
yields). Once the yield is complete, the most frequently executed yieldpoints are
once again elided. The choice of which yieldpoints to optimize will depend on
the cost-benefit tradeoff between the patching cost and the cost of executing the
unoptimized yieldpoint. If the 300 or so most heavily executed yieldpoints could be
successfully identified and patched, it seems possible that the optimization would
be almost entirely effective and yet introduce only a tiny overhead due to patching.
Possible refinements to this optimization include parallelizing the code patching (also
applicable to the code patching yieldpoint), aborting patching if the yield succeeds
before all are patched, and ordering the patching so that the most frequently executed
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yieldpoints are patched first.

4.6 Summary

Yieldpoints are the principal mechanism for thread synchronization in a virtual ma-
chine to determine when a thread must yield. In this chapter, we have identified
and evaluated a range of yieldpoint mechanisms. We find that the trade-off between
common-case fast path execution and overheads in the uncommon case can be severe.
While an unconditional trap-based poll has low overhead in the common case, it is
costly when the yield occurs, resulting in slightly worse performance than a simple
conditional test, on average. An unconditional code patching yieldpoint presents an
even move extreme trade-off, with near zero common case overhead but substantial
patching overheads at every yield (as discussed in Section 4.5). We highlight the
micro-architectural sensitivity of these mechanisms, indicating the need for virtual
machine implementers to reassess their performance assumptions periodically. We
also identify that code patching presents an interesting opportunity for an optimiza-
tion, replacing a few of the most frequently executed yieldpoints with no-ops at times
when yields are not required.

The study in this chapter allows us the confidence to pick suitable mechanisms
for implementing thread synchronization for Zebu VM, which is one major part
of the concurrency requirement for a micro virtual machine. In this chapter, we
concluded that conditional polling has the most desirable characteristics for Zebu VM
as GC yieldpoints: low overhead, fast time-to-yield, and implementation simplicity.
Furthermore, we studied group-based yieldpoints, which are widely used in Zebu
VM as watchpoints. We will further discuss our implementation of watchpoints in the
next chapter (Chapter 5, Section 5.3.3).

In the next chapter, we will discuss our compiler design, with a focus on meet-
ing the requirements of a micro virtual machine, i.e., minimalism, efficiency and
flexibility.
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Chapter 5

A Micro Compiler

Micro virtual machines promise to simplify managed language implementations but
they depend critically upon an efficient execution engine. Such an execution engine
faces interesting constraints, including efficiency, language-neutrality, minimality,
support for features such as exact garbage collection, on-stack replacement, swapstack,
introspection, dynamic code patching, and capability of both just-in-time and ahead-
of-time compilation. Building a compiler under these constraints is challenging and
interesting.

This chapter presents our implementation of a compiler for the Zebu micro virtual
machine. Section 5.1 motivates our compiler design, and discusses constraints im-
posed by the micro virtual machine upon the compiler’s design and the rich run-time
behaviours that the compiler must support. Section 5.2 discusses related work for this
chapter. Section 5.3 presents solutions addressing some interesting design points. In
Section 5.4, we evaluate the performance of our compiler from two angles: (i) a full-s-
tack scenario – we retarget PyPy’s implementation language RPython to Mu [Zhang,
2015] to evaluate a real world managed language running on Zebu VM, in comparison
with its stock back-end (C), and (ii) a back-end specific scenario – we translate highly
optimized LLVM IR into equivalent Mu IR and evaluate our performance against the
LLVM back-end. We show that the results for both are promising. They suggest that
micro virtual machines not only simplify managed language implementations, but
that they can also be implemented efficiently.

5.1 Introduction

Compiler design is a key factor to the performance of a language virtual machine.
While the efficiency of the generated code is fundamental to a compiler’s design,
there are usually other constraints, for example, real-time credibility, power efficiency,
compilation time, memory footprint, etc. For the Mu micro virtual machine and our
implementation, Zebu VM, we face quite different but interesting constraints. We
expect an optimizing compiler that allows decent code quality and easy integration
with the runtime in both ahead-of-time and just-in-time compilation mode. We also
expect the design of the compiler to fulfil the design principles of Mu: minimalism,
efficiency, and flexibility. We elaborate on each point, and discuss how they affect our

65
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design.

Minimalism. Minimalism is the most important concern for our design, as it
defines a micro virtual machine. We make minimalism a must throughout our de-
sign. Minimalism leads to some desirable properties, such as faster compilation time,
smaller memory footprint, and the feasibility of being formally verifiable. For mini-
malism, our compiler explicitly avoids the inclusion of traditional front-end optimiza-
tions that can be done by the client above Zebu VM, such as common sub-expression
elimination and constant propagation. Further, we argue that some back-end op-
timizations such as software pipelining can be omitted because modern hardware
makes them less effective. In Section 5.3.1, we will discuss our choices of compiler
optimizations in detail.

Efficiency. Efficiency is often at odds with minimalism, especially for a compiler.
The more effort we spend optimizing, the more efficient the generated code may be.
When optimizations are missing, the code quality may suffer. However, there are
diminishing returns for back-end optimizations: a small set of optimizations are the
most effective ones while other optimizations provide limited improvement upon
them [Lee et al., 2006]. For our compiler, it is not our aim to achieve the best per-
formance possible. Instead, our goal is a sweet spot that represents a good balance
between efficiency and minimalism before reaching diminishing returns.

Flexibility. Mu does not impose unnecessary restrictions on the client. Zebu must
reflect this flexibility. We identify key mechanisms and reuse them to support this
flexibility. For example, we implement a more general SWAPSTACK primitive, in com-
parison with the prior work [Dolan et al., 2013], and our compiler reuses the primitive
to implement many of the Mu semantics, such as thread creation and destruction,
and stack manipulation (re-ordering stacks and swapping stacks). Another example
is the yieldpoint, as discussed in Chapter 4. Zebu use yieldpoints both for garbage
collection and WATCHPOINTS.

In the following sections, we will present related work, discuss our design under
these constraints, and evaluate our implementation.

5.2 Related Work

Prior work has discussed compiler designs under specific constraints, such as energy
efficiency [Saputra et al., 2002; Lorenz et al., 2002; Haj-Yihia et al., 2015], real-time
constraints [Hong and Gerber, 1993; Weil et al., 2000; AbouGhazaleh et al., 2006],
embedded environments [Kerschbaumer et al., 2009] and resource-constrained envi-
ronments [Shaylor, 2002; Debbabi et al., 2004; Gal et al., 2006]. KVM JIT [Shaylor,
2002] and Hotpath VM [Gal et al., 2006] are lightweight dynamic Java compilers, both
translating only a subset of bytecodes with low memory consumption (60 and 150
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kilobytes respectively), and showing speed-up against an interpreter. E-Bunny [Deb-
babi et al., 2004] is a non-optimizing Java compiler with one-pass stack-based code
generation. It features multi-threading support for the VM, efficient compilation time,
and low memory footprint, and shows performance improvement over KVM. Prior
work prioritized resource constraints and consequently compromised performance.
Micro virtual machines require different constraints compared to prior work, seeking
balance among minimalism, efficiency and flexibility. Thus performance is one of
our clear goals. This work proposes a compiler design that fulfils the principles of a
micro virtual machine compiler.

Dolan et al. proposed swapstack as a primitive for lightweight context switching
with compiler support. Swapstack unbinds a thread from one context and rebinds
it to another context. They showed that their lightweight context switching mech-
anism can be implemented fully in user space with the support of the compiler in
only a few instructions. This is impossible for library-based approaches, including
setjmp/longjmp, swapcontext or customized assembly code, which have no informa-
tion from a compiler and must conservatively save all registers. The design of Mu’s
thread sub-system is greatly influenced by this work. Mu not only pervasively uses
swapstack, but also provides richer semantics, such as KILL_OLD1 and THROW_EXC2.
This imposes different implementation constraints compared to Dolan et al.

Bootstrapping a virtual machine (especially a meta-circular virtual machine) with
a pre-compiled boot image is common [Alpern et al., 1999; Ungar et al., 2005; Black-
burn et al., 2008; Wimmer et al., 2013]. The popular approach is to use a specific boot
image writer to carefully turn live code and objects into a persistent image, and then
load the image with a boot image runner. Our work is significantly different: we
expect Zebu to be a part of the client implementation, and we do not intend to make
any assumption on how the client is going to utilize the boot image; so instead, we
generate the boot image as a standard position-independent binary (executable or
dynamic library) for the target platform so that the client can run or link against the
boot image in their preferred way.

5.3 Design

In the following subsections, we discuss some points of our compiler design that
address the constraints. To be specific, we will discuss five design points: selecting
optimizations, implementing a general swapstack mechanism, allowing efficient code
dynamism with code patching, supporting client introspection for abstract execution
state, and generating native and relocatable boot images.

1A swapstack instruction with KILL_OLD will kill the current stack after swapping.
2A swapstack instruction with THROW_EXC will raise the argument as an exception object with the

target stack after swapping.
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5.3.1 Optimizations

For Mu client languages, Mu IR is a dividing line that ensures only necessary in-
formation flows beyond it. It is a clean separation between the language and the
hardware. The Mu implementation knows the underlying machine, but is not aware
of the source language. This naturally separates compiler optimizations in the whole
implementation stack into three groups: language-level optimizations, IR-level opti-
mizations, and machine-level optimizations (Table 5.1).

We follow these principles to pick optimizations for Zebu. (i) For optimizations
that are specific to the client language, Zebu does not have the knowledge to apply
those optimizations effectively, and must not perform them due to our principles.
(ii) For optimizations that can be done either by Zebu or the client, the client should
be the one doing it, as the minimalism of Mu requires pushing work to the client
unless impractical. (iii) For optimizations at the machine-level, they can only be
done in Zebu, and Zebu must be responsible. If any machine specific optimization
is missing in Zebu, the entire implementation will miss the opportunity and incur a
corresponding performance penalty. It does not necessarily mean we have to include
all machine level optimizations, but we need to be vigilant when ruling out any of
them.

The most important optimizations performed by Zebu are instruction selection
and register allocation. We match IR trees with defined patterns, and prioritize the
first match. It is sufficient for our IR (e.g., Figure 5.1) and much more lightweight than
weight-based bottom-up rewriting pattern matching [Fraser et al., 1992]. For register
allocation, we currently adopt simple graph coloring that supports register classes
and coalescing [George and Appel, 1996] with careful tuning to favor allocation and
coalescing in inner loops. There are more advanced graph coloring algorithms [Smith
et al., 2004; Cooper and Dasgupta, 2006], linear scan algorithms [Wimmer and Mössen-
böck, 2005; Wimmer and Franz, 2010], or other algorithms [Lueh et al., 2000; Greedy
RA, 2011; Eisl et al., 2016], which are worthy of further consideration.

1 .typedef @point = struct<@int64, @int64>
2 ...
3 %iref_obj = GETIREF <@point> %ref_obj
4 %iref_y = GETFIELDIREF <@point> %iref_obj 1
5 %y = LOAD <@int64> %iref_y

(a) Common Mu pattern for field access.

1 mov [%ref_obj + 8] -> %y

(b) Resulting code after pattern matching.

Figure 5.1: Mu IR heavily relies on pattern matching.

Following our principles, we design the compiler pipeline around those key opti-
mizations, focusing on machine-level optimizations with very few IR-level optimiza-
tion (such as depth tree generation to get IR trees of deeper depth for better pattern
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matching). We avoided including common IR-level optimizations. Instead we plan to
provide an optimizer library available to the client, but above Mu to aid the client in
performing common optimizations over Mu IR without impinging on the minimality
and verifiability of Mu.

Section 5.4 presents an evaluation of our compiler. It shows that (i) our choices for
back-end optimizations in the Zebu compiler achieve promising performance, and
(ii) though pushing common IR level optimizations to the client makes Zebu minimal,
when the client is not cooperative in implementing those optimizations, it imposes
overheads. Providing an optimizer library along with Zebu seems a necessity.

5.3.2 Swapstack

Dolan et al. proposed the idea of implementing swapstack as a special calling conven-
tion with compiler support to allow lightweight context switching. The work exploits
compiler optimizations to reduce the cost of context switching by storing less state in
paused contexts and by passing parameters between contexts in registers. It inspired
the Mu’s design of swapstack.

However, the requirements for SWAPSTACK in Mu are different and more general in
a number of ways. (i) Besides a normal resumption when the invoking context passes
arguments to the invoked context (PASS_VALS), the resumption can also be exceptional
as the invoked context resumes with an exception thrown from the paused frame
(THROW_EXC). (ii) SWAPSTACK supports the KILL_OLD semantics, i.e., the instruction not
only swaps to a new stack, but also kills the old stack. We cannot kill the old stack
before switching to the new stack. After switching to the new stack, we still cannot
kill the old stack before preparing swapstack arguments, as the argument values may
get spilled on the old stack. This implies that we cannot implement SWAPSTACK as
simply as a special calling convention as in the prior work, because for us, there is not
a single point where the transition between stacks happens. (iii) TRAP and WATCHPOINT
provide the client the flexibility to choose the resumption (normally or exceptionally,
on the original stack or on a different stack). Thus, at compile time, Zebu does not
know the resumption point for TRAP and WATCHPOINT, and their implementations
are naturally more general and heavyweight than SWAPSTACK. (iv) NEWSTACK takes
an entry function as its argument, and allows execution with the function from its
entry when the stack is swapped to or is started with a new thread. However, the
function has to be compiled with the default Zebu calling convention (the same
as the target ABI defines), as it can also be called normally. This implies that our
swapstack calling convention needs to be compatible with the default Zebu calling
convention, otherwise we would need an adaptor so those functions can be called
normally. (v) Thread creation also implies a swapstack from its native stack (e.g., the
pthread stack) to a designated Mu stack, and we will need to be able to swap back
to the native stack for proper thread deconstruction.

For the requirements of swapstack in Mu, we proposed a more general swapstack
implementation,3 shown as pseudo code in Figure 5.2.

3This work is done in cooperation with Gariano, and is also described in [Gariano, 2017].
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Stack State

We define two states of a Mu stack: the active state when a stack is an active context
that is bound to a thread, and the ready state when a stack presents a paused context
that is no longer bound to any thread and is ready for resumption. prepare_stack
and restore_stack are two primitives that transform stacks between the two states,
which we use for all swapstack cases. Figures 5.2(a) and 5.2(b) show the primitives,
and Figure 5.2(c) shows the stack layout in the two states.

prepare_stack brings a stack from the active state to the ready state. prepare_stack
first bumps the stack pointer to reserve a return area on stack which is used to pass
extra parameters when the context gets resumed and some parameters cannot fit in
registers. The size of the return area is determined at compile time by inspecting
the resumption signature of the instruction ( the size is zero if all the parameters are
passed by registers). The macro then pushes the resumption address (the code to
execute after resumption) and the frame pointer, and saves the current stack pointer
with the current stack reference (stackref). All the necessary information to allow
resumption can be retrieved from a stackref.

The other macro restore_stack does the opposite – bringing a paused context
from the ready state to the active state. It unloads return values from the invoking
context and restores the invoked context to the active state for resuming execution.

Calling Convention

Our compiler treats swapstack as a special calling convention in the same way as
the prior work [Dolan et al., 2013] to exploit the existing register allocation pass to
only save live registers as stored contexts. However, different from the prior work,
we need to define two calling conventions, hot resumption and cold resumption, to meet
Mu’s requirement of a more general swapstack mechanism.

Hot resumption happens when both the invoking and the invoked context are
executing Zebu code (runtime code or compiled user code), where we can safely
assume argument passing by registers. This is the case for the SWAPSTACK instruction.
Cold resumption takes place when either of the contexts is executing non-Zebu code.
This happens when we swap from a native stack to a Mu stack for NEWTHREAD, or
when we swap after returning from a TRAP to the client. We cannot assume argument
passing by registers, as foreign code will not comply with our calling convention; as
a result, we pass arguments on the stack. We use the default Zebu calling convention
for hot resumption (the standard ABI for target platforms), with the exception that
return values are passed in argument registers [Dolan et al., 2013]. Cold resumption
is a compatible calling convention with no register arguments (and return values),
and it requires extra instructions to save and later load arguments from the stack
to argument registers. Using default calling conventions allows arguments from
swapstack to naturally feed to a normal function prologue, thus resuming at a stack
from a function entry does not need extra adapters to marshal arguments.



72 A Micro Compiler

Resumption

For Mu swapstack instructions, at compile time, the compiler knows whether the
instruction is intended to resume normally or exceptionally. For the two different
cases, the compiler generates different code sequences, as shown in Figures 5.2(d)
and 5.2(e).

The first part of the generated code is identical for both cases, which is the
sequence to initiate a stack swapping. It first transforms the current stack to the ready
state (prepare_stack), and prepares arguments for resumption. This step also marks
the instruction to clobber all general registers, and this will cause live values to be
spilled and saved to the current stack by the register allocator. Note that preparing
resumption arguments may still need the old stack, as some values may reside on
the stack. After preparing resumption arguments, general registers contain values
for resumption, and should be preserved until the execution reaches the resumption
address. At this point, the old stack is paused in a ready state, live values are spilled,
and resumption arguments are loaded — we are ready to switch to the new stack.
Stack switching is simply loading the stack pointer from the target stackref, and
now we are on a new stack in the ready state. If the instruction requires the KILL_OLD
semantics, the compiler will insert a runtime call here with a safe calling convention
that will not clobber argument registers to kill the old stack, and the compiler omits
the sequence for prepare_stack as the old stack will not be resumed.

For normal resumption, as the new stack is in ready state, we simply pop the
frame pointer and the resumption address, and jump to the resumption address
where the restore_stack sequence awaits. restore_stack will unload return values
if appropriate, and collapse the return area to make the stack back to the active state.
For exceptional resumption, we need to tidy up the stack layout so that we can throw
an exception as if there were a THROW instruction.

At the end, for both cases, the compiler emits a resumption point with restore_stack
so that others can resume execution on the old stack that we just put it to pause.

Mu Instructions with Swapstack

The following discusses how we use our swapstack mechanism to implement related
Mu instructions.

SWAPSTACK. SWAPSTACK always uses the hot resumption calling convention. The
compiler emits code for swapstack, which is the most lightweight swapstack in Zebu.
The swapstack implementation in Dolan et al. [2013] has the same semantics as our
SWAPSTACK with normal resumption and no KILL_OLD, for which, our implementation
is as lightweight as the prior work (See Figure 5.2(d)). However, our SWAPSTACK is
more flexible. When KILL_OLD is supplied, we need to kill the old stack after we have
prepared the arguments and have left the old stack. If the old stack’s destruction
needs a run-time call, a special safe calling convention is required to avoid clobbering
argument registers of the hot resumption calling convention. In Mu, SWAPSTACK



§5.3 Design 73

1 .macro prepare_stack
2 reserve return area on stack
3 push resumption address
4 push frame pointer
5 store SP to current stackref

(a) Prepare stack to ready state.

1 .macro restore_stack
2 resumption:
3 unload return values
4 collapse return area

(b) Resume stack normally.

frame data

...

return area

...

resumption addr

frame pointer

hi addr

lo addr

SP (active state)

SP (ready state)

(c) Stack layout for ready and active state.

Figure 5.2: Swapstack implementation in Zebu.
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1 prepare_stack (if NOT KILL_OLD)
2 prepare arguments for resumption
3 load SP from new stackref
4 kill old stack (safe cc) (if KILL_OLD)
5

6 // prepare resumption (running on the new stack)
7 pop frame pointer
8 pop resumption address
9 jmp resumption address
10

11 // resumption point (when this stack gets resumed)
12 restore_stack

(d) Swapstack normal resumption.

1 prepare_stack (if NOT KILL_OLD)
2 prepare arguments for resumption
3 load SP from new stackref
4 kill old stack (safe cc) (if KILL_OLD)
5

6 // prepare resumption (running on the new stack)
7 prepare stack for unwinding
8 throw exception
9

10 // resumption point (when this stack gets resumed)
11 restore_stack

(e) Swapstack exceptional resumption.

Figure 5.2: Swapstack implementation in Zebu (continued).
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supports resumption at the target stack by throwing and propagating an exception.
Figure 5.2(e) presents our implementation.

TRAP and WATCHPOINT. When a trap to the client is required (TRAP or enabled
WATCHPOINT), cold resumption is needed to swap to a Mu stack after returning from
client code. The Zebu runtime needs to prepare stacks for resumption as the client
asks, and does the swapstack in the runtime library code.

NEWSTACK and NEWTHREAD. We use cold resumption for both, as we are
swapping to a Mu stack from a native stack. This is also done in the runtime library
code.

5.3.3 Code patching

Allowing dynamism in the generated code during execution is essential to efficient
dynamic language implementation, which is one of Mu’s goals. Mu provides watch-
points and function redefinition to support code dynamism. These primitives give
clients the flexibility to efficiently implement optimizations, such as inline caching
and guarded specialization.

Both watchpoints and function redefinition can be implemented naively, for ex-
ample, implementing WPBRANCH as a conditional branch, or implementing any Mu
call as an indirect call to support function redefinition. However, this defeats the
very purpose of providing these primitives to support efficient code dynamism. Zebu
implements these features with code patching. When the compiler emits code, it
generates patchpoint tables for callsites, and for WPBRANCH. When a function is rede-
fined, or a watchpoint is enabled/disabled, Zebu will query related patchpoints, and
eagerly patch call/jump offsets. Zebu also implements lazy function resolution based
on the same patching mechanism.

As Mu only requires patching offsets, the implementation is straightforward. We
use the following two mechanisms to ensure that our patching is correct and matches
Mu’s semantics.

INT3-based Patching. We use INT3-based code patching on x86 to ensure that
the instruction being patched will not be executed in an incoherent state. The first
byte of the instruction will be patched as a one-byte instruction INT3, and then the
remaining bytes will be patched one by one. During patching, in case the instruction
gets executed, the INT3 will prevent execution for the rest of the instruction, and
trap to Zebu’s signal handler in which the instruction will be re-executed. When the
patching is done, the first byte is re-rewritten to the valid first byte for the instruction.
This is a well-known technique to patch multi-byte instructions atomically [INT3
PATCHING, 2013].

Global Guard Page. Mu allows a group of watchpoints with the same ID to
be enabled and disabled atomically. For example, when a watchpoint is enabled,
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we expect all the WPBRANCH instructions associated with the watchpoint to have a
consistent behaviour of branching to the enabled destination. However, patching the
instructions takes time, and is not atomic (as discussed in Section 4.5), which leaves
a possibility that patched instructions branch to the new destination (the enabled
destination) while unpatched ones still branch to the old destination. To avoid this
inconsistency, we insert a memory load instruction to access a per-watchpoint guard
page before watchpoint instructions as a barrier. When the group of watchpoints is
enabled or disabled, before patching the watchpoint instructions, the guard page is
protected so the load prevents the watchpoints being executed while being patched.
Only after the patching is finished, the guard page is unprotected and the execution
of watchpoints is again allowed. In this way, the watchpoints’ behaviour appears to be
changed globally atomically.

5.3.4 Keepalives and introspection

Mu provides introspection of execution states at designated points with keepalive
and Framecursor. Allowing arbitrary instruction and SSA variable introspection
would overly limit the compiler and its ability to optimize code. For this reason, Mu
limits introspection to keepalive variables.

The implementation naturally falls out in Zebu. The Zebu compiler tags keepalive
variables as an extra use of the given variables at those instructions. The extra use
will prevent the compiler from optimizing away the variable (such as the intermediate
values in Figure 5.1). Thus a kept-alive variable is always held in an explicit location
(in a register or on the stack). The extra use may keep the variable live longer and
result in register pressure. As a result, kept-alive values have longer lifetime, and
are more prone to be spilled. Thus using keepalives has a potential performance
overhead, and the client needs to be aware of this and only use it when necessary.

Zebu builds a stack map and a callsite table to support stack unwinding for both
zero-cost exception handling and stack introspection with keepalives. As keepalive
appears only in call-like instructions (which have corresponding entries in the callsite
table for exception handling to support unwinding, such as exception destination,
stack argument size and callee saved register locations), we augment the entries in
the callsite table to also include keepalive variables. The register allocator cooperates
to dump a register assignment map for compiled functions. As a result, we are able
to resolve from client-supplied SSA variables to physical registers, and then to stack
locations that store the registers.

5.3.5 Boot image

Managed languages are often criticized for having long start-up times to initialize
the runtime and load standard libraries. Boot images are commonly used by man-
aged runtimes to capture ahead-of-time generated code and virtual machine state to
expedite start-up. Mu supports boot image generation at the client’s request. Zebu
builds native and relocatable boot images in the standard binary format (as executables
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or libraries) for the target platform/OS. Zebu ensures that the boot image persists
the states at the point when boot image generation is requested. The boot image we
produce includes three persisted dimensions from a running Zebu instance: code,
reachable heap objects and a VM instance.

Code. The Zebu compiler supports different code emitters for a single target. We
implement a binary back-end for the JIT, and an assembly back-end for boot image
generation. When genearting the boot image, Zebu invokes the compiler in ahead-
of-time (AOT) mode to compile white listed functions (functions that are required at
boot time need to be compiled into the boot image). The resulting assembly files will
later be linked as a part of the boot image. We do not allow run-time modification of
AOT generated code after booting.

Heap. Zebu traverses its heap for boot image generation in the same way as it
does for garbage collection. The traversal returns a transitive closure of live objects
in the heap along with a map to help relocate references. For native pointers in our
heap, we rely on the client to supply a relocation map, as Zebu is oblivious of native
pointers and the native heap. The assembly back-end then cooperates to dump the
objects (and their metadata) as relocatable data. The persisted heap is considered to
be a non-moving, non-reclaimable immortal space, which is a part of the new heap
upon booting. The boot image objects can be modified by the running program and
traced by the garbage collector.

VM. Zebu allows the client to query (or modify if possible) declared Mu entities
such as types, values, functions and global cells. For example, a client may want to
declare common types, and create a boot image that contains those so that later it can
use the types without declaring them again. Zebu, written in Rust, naturally stores
those entities as Rust objects in Rust data structures (such as HashMaps). A Zebu VM
instance contains all the information about a running VM. We persist the entities that
the client is interested in by partially persisting the VM instance in the boot image.
Thus when the VM instance is loaded from the boot image, it contains the same data
as when we dump it. Note that we only persist data that is client-supplied (such as
declared types) or necessary for us to execute the code (such as stack maps), and
we do not dump the whole stateful VM. Run-time tables such as stack maps contain
addresses and need to be preserved in a relocatable way. Running threads and stacks
are not preserved. We implement a tool called Rust Object Dumper And Loader (rodal),4

and use it to generate a Dump trait implementation for all the Rust types we want to
persist. Rodal dumps the objects as defined in their corresponding Dump trait, and
generates assembly similar to a persisted Zebu heap. When the VM is loaded from the
boot image, those are normal Rust objects that can be mutated and destroyed.

4In early development, we dump Rust objects as text using the Rust serialization interface. Gariano
implemented rodal to allow dumping Rust objects in binary to significantly speed up the start-up time.
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5.4 Evaluation

In this section, we present our performance evaluation. We first evaluate a retargeted
RPython implementation that runs on top of Zebu with a set of micro benchmarks
(including a SOM language interpreter). This evaluates how Zebu performs with a
retargeted real-world client. Then we pick two micro benchmarks from our suite,
acquire highly optimized Mu IR for the micro benchmarks, and evaluate their per-
formance on Zebu. This evaluates the performance of the Zebu compiler in isolation,
independently of any Mu client. We now discuss both in detail.

5.4.1 RPython-Mu

Although the design and implementation of a client language on top of Mu is not
within the scope of this thesis, it is hard to evaluate Zebu effectively without a concrete
language client that is robust and performant enough to run some reasonably complex
workloads. We use the RPython-Mu client [Zhang, 2015], which is the initial step of
our PyPy-Mu approach as discussed in Section 2.4.1.

Methodology

We elaborate on our methodology before presenting the results.

Measurement RPython is a restricted subset of Python as a statically typed man-
aged language that is ahead-of-time compiled. RPython originally targeted C as its
back-end. We retarget it to Mu, and run it on top of Zebu. We disabled garbage
collection for our measurement of the compiler, and use sufficient heap. We measure
the time spent executing each benchmark kernel (excluding start-up time). We run 10
invocations for each benchmark, and report the average with 95-percentile confidence
intervals. We compare the performance of three builds:

(i) RPython-C. The stock implementation that uses C as the back-end. The gener-
ated C source code is further compiled by Clang at O3 optimization level. We
use this as our comparison baseline.

(ii) RPython-C (no back-end opt). We turn the back-end compilation for C into
two steps: we use Clang to apply O3 optimizations at the front-end to generate
highly optimized LLVM IR, and then use llc at O0 to generate the machine
code with no back-end optimization. We do not intent to compare our perfor-
mance with this build. But this allows us to tease apart front-end and back-end
optimizations, and provides us with a lower bound baseline to understand the
performance of RPython-Mu.

(iii) RPython-Mu. Our retargeted implementation. We must emphasize that
though the design of Mu requires the client to apply front-end optimizations to
be efficient, the retargeting work did not implement any optimizations specif-
ically for Mu other than a simple peephole optimization that includes one
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pattern. Though the retargeting still takes advantage of existing RPython opti-
mizations, it leaves a large blank area of missing optimizations: some common
IR-level optimizations by the stock C back-end are now missing, as Zebu is not
designed to do optimizations at this level (as discussed in Section 5.3.1), and
they are not implemented in the client.

Hardware and Software Our experiments are conducted on a 22 nm Intel Core i7
4770 processor (Haswell, 3.4 GHz) with 8 GB of 1600 MHz DDR3 RAM. We use Rust
1.21 (3b72af97e 2017-10-09) to compile Zebu. We use Clang 4.0 to assemble and
link the assembly files generated by Zebu, and also use it to compile the C source
code for the stock C back-end. We use Ubuntu 16.04.2 LTS server distribution running
a 64 bit (x86_64) 3.13.0-88 Linux kernel.

Benchmarks We source the following micro benchmarks for the evaluation: (i) mi-
cro benchmarks that test language features, such as alloc and except, (ii) micro
benchmarks that implement algorithms, such as fib and quicksort, (iii) benchmarks
from the computer language benchmarks game5 [Benchmarks Game] such as btree,
fannkuchredux, nbody, pidigits and spectralnorm, and (iv) a SOM language inter-
preter running its standard test suite (som).

Results

Figure 5.3 shows the results of our measurement with the RPython client. The
performance of RPython-Mu varies significantly from benchmark to benchmark, with
a geometric mean of 14.1 % slower than the stock RPython-C implementation.

The results of RPython-Mu are co-influenced by the following factors: (i) The rich
run-time semantics of Mu IR makes it a better target than C, allowing more efficient
implementation in some cases. For example, Mu provides abstractions for exceptions
and stacks, and internally Zebu can implement zero-cost exception handling and
implicit stack overflow checking with guard pages, while the stock implementation
can only implement them as explicit checks. (ii) The missing front-end optimiza-
tions hinder performance. Though the RPython compiler implements language-level
optimizations, it makes an assumption that their stock back-end (C/LLVM) will be
responsible for certain optimizations, for example, loop unrolling, loop strength re-
duction, vectorization, and load elimination. However, the design of Mu explicitly
disclaims responsibility for those IR-level optimizations, and our retargeted client
compiler did not implement the optimizations either. Thus, the performance is com-
promised at a certain level. Furthermore, lack of front-end optimizations will result
in less efficiency in our back-end code generation as well, as we face higher register
pressure and suboptimal instruction patterns. (iii) Our back-end intrinsically imple-
ments fewer optimizations than LLVM (as we aim for minimalism and do not intend
to match LLVM). The effectiveness of our limited set of optimizations affects the

5We use the Python implementation of the benchmarks as our RPython benchmarks. Due to the
difference of the two languages, only a subset can be run as RPython.
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Figure 5.3: Performance of RPython-Mu (lower is better). The baseline and the RPython-C
(no back-end opt) results illustrate a range of how back-end optimizations affect the overall
performance for the C back-end. RPython-Mu results show our compiler performance.

performance, and this is what we try to demonstrate in our performance evaluation
and will further demonstrate in the next section.

The performance of four benchmarks is dominated by the run-time system instead
of code quality from the compiler. alloc and btree are allocation-intensive, for
which allocator performance dominates. Section 3.3 has already established and
demonstrated the efficiency of our allocator, and the results that we are faster than
the stock implementation are within our expectation. fib is a recursive algorithm
that is call-intensive. The stock implementation does a stack overflow check and
a return value check in every invocation. We found that our zero-cost exception
handling and implicit stack overflow checks compensate for the possible inefficiency
from other sources and make our performance on par with the stock implementation.
except explicitly measures the time for exception handling after an exception is
thrown. Our implementation uses zero-cost exception handling, which favors the
fast path performance where no exception is thrown but imposes higher overhead
when an exception is thrown and we need to unwind and restore the stack. The stock
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implementation always checks the return value for exceptional cases, which results
in similar performance whether an exception is thrown or not.

For most of the benchmarks, our execution time is within 1.5× of the stock imple-
mentation, despite the fact that we clearly miss some effective front-end optimizations.
For example, for fannkuchredux and nbody, the lack of auto vectorization makes us
unable to utilize vector instructions on the target architecture. We also notice that,
very frequently, LLVM is able to reduce the number of indexing variables for loops
from multiple to one, which greatly helps register allocation in the loops. However,
such an optimization is missing for the RPython-Mu client compiler. Despite these
shortcomings, our compiler still delivers promising performance in comparison with
O0-level RPython-C (no back-end optimization). Though we deliver reasonable per-
formance for most of the benchmarks, two benchmarks are exceptional, quicksort
and som, which are respectively 2.5× and 2.3× of execution time of the stock imple-
mentation. We discuss these in more detail now.

The behavior of quicksort is interesting. We implement the benchmark with
a pre-initialized global array to sort. As the quicksort() and partition() func-
tions always use this global array as argument, the RPython compiler specializes the
functions to always load from the global on every use instead of simply referencing
the parameter. This results in excessive loads from the global array for both the C
back-end and the Mu back-end. The count of load instructions nearly matches the
count of computation instructions in partition(), which becomes a clear bottleneck
for performance. The C compiler (LLVM) can exploit the fact that the global array is
non-volatile, hoist the redundant loads into one and remain efficient. However, for
Mu, Zebu does not implement this optimization, and furthermore, this optimization
is not always valid in Mu’s semantics, as a global may be accessed and modified by
other threads. We would expect the client to be aware of this semantic difference, and
apply optimizations before handing code to Zebu.

som is the largest benchmark we include in our evaluation, featuring 3.4K lines
of RPython code, which is a SOM language interpreter that executes its test suite.
Surprisingly, RPython-Mu is slower than RPython-C with no back-end optimizations,
unlike all other benchmarks (excluding except for which the difference in exception
handling mechanisms determines performance). We believe this is for multiple rea-
sons. (i) The interpreter loop uses a cascading if-else instead of switch-case which
is much more efficient. The LLVM back-end for the stock implementation is able to
identify the pattern, and turn it into a jump table look-up. However, for RPython-Mu,
we lack this optimization. For each interpreter loop, we need to do a comparison and
branch for every operator code, instead of a single lookup and branch. (ii) som is also
a call-intensive benchmark. Over-specializing code across functions results in code
that Zebu cannot optimize, similar to the problem with quicksort.

In summary, we argue that Zebu delivers reasonable performance in comparison
with its stock implementation: on average 14.1 % slower, and mostly within 1.5×
of execution time of the stock implementation. Further, we believe this conveys a
clear message that RPython-Mu is missing optimizations Mu is not responsible for,
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and some of the optimizations greatly affect performance. We argue that Zebu itself
already includes sufficient optimizations to achieve a reasonable performance for
back-end code generation. We will further discuss this in the next section.

5.4.2 Back-end Code Generation

In the previous section, we evaluated and discussed the performance of RPython-Mu,
which involves both the RPython compiler and also the Zebu compiler. It gives us
a good indication of how a retargeted language implementation performs on Zebu
(despite the fact the retargeted implementation is not ideal as it misses lots of front-
end optimizations that Zebu expects). In this subsection, we specifically evaluate
back-end code generation of the Zebu compiler.

Methodology

In order to evaluate the back-end, we rule out the influence of a language client by
providing equivalent and highly optimized IR to LLVM and Zebu. We achieve this
by deriving optimized LLVM IR from C implementations of the benchmarks (with
O3 optimization), and then deriving Mu IR from the LLVM IR by a translation tool
that does simple one-to-one mapping. We feed the highly optimized LLVM IR to the
LLVM back-end, and feed the derived Mu IR to Zebu. In this way, the only factor
that affects the performance is the back-end code generation, i.e., the Zebu compiler
vs. LLVM back-end.

However, it is not always practical to derive equivalent Mu IR from LLVM IR, as
the two IRs are different. For example, LLVM may generate platform-specific intrin-
sics in its IR that Mu does not know. Another example is that, LLVM’s getelementptr
is a super instruction that matches to different Mu instructions (GETFIELDIREF, GET-
ELEMENTIREF and SHIFTIREF), based on their actual uses, which we find it hard to
translate automatically (without further analysis and semantic information). In this
subsection, we show evaluation on two micro benchmarks from the previous suite,
quicksort and spectralnorm, for which we managed to derive equivalent Mu IR
with limited manual alternation.

We use the same measurement methodology and the same hardware/software
environment as the previous experiments (described in Section 5.4.1).

Results

Table 5.2 shows the average execution time for two micro benchmarks that are im-
plemented as equivalent and highly optimized IR for each system. We also include
the execution time of the same benchmarks written in RPython that we used in the
evaluation in the previous subsection as a comparison. We found that in our eval-
uation, Zebu delivers reasonable performance in comparison with LLVM back-end
code generation (2% and 25% slower), despite Zebu’s minimalist implementation.
We view this result as promising. The result also shows that RPython is an efficient
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LLVM Zebu RPython-C RPython-Mu

quicksort 443 ± 1.8 ms
552 ± 3.5 ms

(125%)

548 ± 21 ms

(124%)

1375 ± 59 ms

(310%)

spectralnorm 5620 ± 30 ms
5740 ± 47 ms

(102%)

5671 ± 257 ms

(101%)

5597 ± 45 ms

(100%)

Table 5.2: Average execution time with 95% confidence interval for back-end code generation.
We also include data from two RPython builds on the same benchmark for a comparison.

language in comparison with C (24% and 1% slower than C/LLVM in the two micro
benchmarks).

It is worth mentioning that, for spectralnorm, Zebu matches the LLVM perfor-
mance in terms of back-end code generation, and RPython-Mu also matches RPython-
C. spectralnorm is a computation-intensive benchmark with nested loops. Our reg-
ister allocator with heuristics that favor better allocation for inner loops helps us in
this case. The RPython results demonstrate that the front-end opitimizations missing
from RPython-Mu are not important here. We will focus on discussing quicksort,
for which the four systems behave quite differently.

quicksort is one of the benchmarks in the RPython-Mu evaluation where we are
much slower than the stock implementation (2.5× RPython-C). We have mentioned
that the RPython compiler over-specializes code and yields code that is intrinsically
inefficient for Zebu. With highly optimized IR, the performance difference drops
from 2.5× down to 25%. By comparing the generated code, we find that the remain-
ing slowdown is from the following sources: (i) The register allocation is different.
As we have discussed in Section 2.2.7, our local SSI form breaks down long-lived
variables into smaller live ranges. In practice, we found that though the shorter live
ranges eliminate the two spilling occasions that happen for LLVM (Zebu does not
spill registers for quicksort() with partition() inlined), it essentially introduced
more register shuffling (especially near call instructions), i.e. eight more move in-
structions. We are uncertain about the performance implications of this difference.
(ii) Zebu is not completely eliminating unnecessary branch instructions. We have a
peephole optimization that eliminates instructions that branch to the next instruction,
or branch to another branching instruction. Either of the two optimizations may cre-
ate opportunities for the other, and it would be more effective if we alternate the two
optimizations until the code is stable. However, we have not implemented this yet,
and we noticed several jump instructions that could have been eliminated otherwise.
(iii) Zebu is not fully exploiting x86_64 addressing modes as our depth-tree genera-
tion obscures some opportunities. Zebu turns sequential IR inputs into a depth tree,
and finds tree patterns for addressing modes. However, our tree generation heuristics
only make computation instructions whose result is used exactly once the child of
another instruction node. If the result is used more than once, we compute and store



84 A Micro Compiler

the result. This heuristic works well in most cases as it avoids redundant computation.
However, for example, if a memory operand derived from base and offset is used
multiple times, we will still compute the derived address, store it in a variable, and
use the variable wherever the memory operand is used. This essentially introduces
one more instruction to compute the address, and one more live register. A better
approach would be to implement a special heuristic for addressing-related instruc-
tions to exploit addressing modes on instructions if possible and avoid computing
addresses unnecessarily. (iv) Zebu does not fully perform some performance tricks
for x86_64 code generation. For example, it is preferable to use lea instead of add in
some cases to allow concurrent micro-op execution. In summary, we believe the gap
between Zebu and LLVM on quicksort can be further closed with fine tuning.

5.4.3 Conclusion

In this section, we evaluated our Zebu compiler under two scenarios. First, we
presented the performance with a retargeted RPython implementation that runs
on top of Zebu. Our retargeted implementation is faster or on par with the stock
implementation in 4 out of the 10 benchmarks, and within 1.5× of the execution
time of the RPython-C implementation in 8 out of 10 benchmarks. We identified
that our retargeted implementation lacks essential compiler optimizations that Zebu
requires to be efficient. Then, we conducted a head-to-head comparison between
Zebu and the LLVM back-ends by feeding them with equivalent and optimized IR.
We evaluated with two benchmarks drawn from the previous set. We showed that on
one benchmark, we match LLVM performance, and on the other, we are 25% slower
(for the same benchmark in RPython, we are 2.5× slower than the baseline). We also
believe this gap can be further closed relatively easily. Through our evaluation in
the two scenarios, we find that the Zebu compiler, which is designed with specific
constraints, delivers reasonable performance even in comparison with a state-of-the-
art heavy-weight compiler framework, LLVM. Some of the benchmarks also show that
the rich run-time support from Mu actually gives us an edge over an implementation
based on LLVM.

5.5 Summary

Code execution is a key part of implementing a micro virtual machine. Designing
a compiler for Zebu is challenging, as we face some interesting constraints. In this
chapter, we elaborated our approach to a micro compiler design that focuses on
minimalism, efficiency and flexibility. We discussed five design points: selecting
optimizations, implementing a general swapstack mechanism, allowing efficient code
dynamism with code patching, supporting client introspection for abstract execution
state, and generating native and relocatable boot images. We evaluated our compiler
with a retargeted RPython implementation and also evaluated our compiler alone
with highly optimized IR. We find the results in both scenarios encouraging, and
our compiler delivers reasonable performance in most cases. However, we also find
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some improvements we can make to the compiler, and confirmed that our retargeted
implementation missed some essential IR-level optimizations. This suggests the
necessity of providing an optimizer library along with Mu micro virtual machines.

It is worth mentioning that our evaluation is based on a statically typed managed
language (RPython), and many aspects of our compiler are not yet evaluated. As
the PyPy-Mu project progresses more, we will be interested to see how Mu and our
implementation fit in as the back-end for a trace-based just-in-time compiler for a
dynamic language. We will discuss this further in future work in the next chapter.
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Chapter 6

Conclusion

Building an efficient managed language implementation is difficult, requiring abun-
dant expertise and resources. To alleviate the difficulty, the developers may choose to
base their implementation on existing frameworks. However, the most widely used
frameworks were not designed to facilitate managed language implementation, and
carry intrinsic pitfalls that prevent efficiency. The Mu micro virtual machine was
proposed by Wang et al. to address this issue. Mu is a minimal abstract machine
that encapsulates three key services that are both important and hard to build in a
managed language implementation, i.e., garbage collection, concurrency and code
execution. Mu is an open specification that defines the abstract machine. This thesis
discussed the development of an efficient implementation of the Mu micro virtual
machine.

We aim for minimalism, efficiency, flexibility and robustness for our design and
implementation. We pick one design point from each of the key services that Mu
provides and discuss how our design answers to our constraints: (i) utilizing a mem-
ory-/thread-safe language to implement a high-performance garbage collector and
the virtual machine, (ii) analysing a widely used thread synchronization mechanism,
yieldpoint, and exploring and evaluating its design space, and (iii) proposing and
evaluating a micro compiler design for our micro virtual machine. Our implementa-
tion not only delivers efficiency, but also fulfils other properties that we desire for a
micro virtual machine.

The implementation language is important for system development, as it affects
the overall properties of the implementation. We choose Rust for our implementation
language. Rust is an emerging language that provides not only memory and thread
safety but also efficiency, which are always desirable for system developers. However,
the safety offered by the language restricts its semantics and expressiveness. Whether
it is a suitable language for implementing a virtual machine, and whether it remains
efficient in our scenarios, is unknown. We use our garbage collector as a case study
to demonstrate that though Rust has restricted semantics, it is possible to write a
high performance garbage collector in Rust and use the language to make safety
guarantees in most of the code. We further apply this approach to implement the
entire micro virtual machine in Rust.

Concurrency is essential for an efficient managed language implementation, in-
cluding both language-level concurrency, and intra-VM concurrency. Yieldpoints are
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an important and popular mechanism to support thread synchronization, as they
provide known locations and coherent virtual machine states when a thread yields.
Despite the fact that yieldpoints are widely used, they were not fully analysed and
evaluated in the literature prior to this work. We presented a thorough discussion
and categorization on their design space, and conducted performance evaluation
on different yieldpoint implementations. We showed the intrinsic characteristics of
yieldpoints, such as frequency, distribution and static code size, and also showed the
taken and untaken performance and time-to-yield latency for each implementation.
We found that the conditional yieldpoint has the best taken performance and time-
to-yield latency, and is flexible and easy to implement. We also show that the code
patching yieldpoint with group based scope (also known as watchpoints) can serve
as efficient guards in managed language implementation. We utilize both designs in
our micro virtual machine implementation.

The compiler design is one key part of our micro virtual machine implementation.
Our compiler faces interesting constraints, including minimality, efficiency, flexibility,
language neutrality, and support for very rich run-time features. Building a compiler
under these constraints is challenging and interesting. We presented our compiler,
and discuss on how the constraints affect our design, and how we implement some
key mechanisms that lay the foundation for our micro virtual machine. We evaluated
our compiler in two scenarios: with a retargeted language client, and alone for back-
end code generation. We found that though our compiler is minimal, it delivers
promising performance in most cases, even in comparison with the state-of-the-art
compiler framework, LLVM. We find the results encouraging.

In all, this thesis presents our design of a Mu micro virtual machine implementa-
tion. We discussed three major design points, one for each key service Mu provides,
and demonstrated our performance for each case. This thesis provides a concrete,
practical and efficient design for a micro virtual machine implementation, and further
established the concept of micro virtual machines as a solid foundation for managed
language implementation.

6.1 Future Work

Micro virtual machines and Mu are an ongoing topic of research. The Zebu VM pre-
sented in this thesis is an important part of the research. There are many interesting
future works that Zebu leads to. We briefly discuss a few.

6.1.1 PyPy-Mu on Zebu

As discussed in Section 2.4.1, the first step to get PyPy running on Mu is finished:
RPython was retargeted to Zebu with the capability of running non-trivial programs,
and the performance was evaluated in this thesis (Section 5.4.1). The next step
is to retarget the PyPy meta-tracing just-in-time compiler to Zebu, with possible
utilization of many just-in-time features that Mu provides, such as watchpoints and
stack introspection. We are eager to see how Zebu performs for a dynamic language.
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Future work for Zebu on this track is to provide back-end and run-time support for
the retargeted PyPy JIT, and to establish efficiency in just-in-time scenarios (generated
code quality, run-time performance and compilation time).

6.1.2 Mu IR Optimizer Library

Micro virtual machines provide abstractions over some common services that all
managed languages would require, and relieves the developers from implementing
all the low-level details by themselves. However, the design philosophy of micro
virtual machines to pursue minimalism pushes some non-trivial optimization tasks
to the client side. It is beneficial for micro virtual machines for implementation and
verification purposes, however, it adds burden to the client developers, as they are
still required to implement those optimizations that are common to various languages.
As a solution to this, we plan to provide an optimizer library for Mu IR (similar to
opt in LLVM framework). The idea of having libraries to further facilitate the clients’
development was originated from Wang [2017], and our performance evaluation on
a retargeted language implementation further confirms its necessity. The optimizer
library is not a part of the micro virtual machine implementation, as it is optional, and
does not necessarily follow any constraint of a micro virtual machine. The client may
choose to use the library, or implement the optimizations by themselves (including
ignoring the optimizations). We plan to reuse Zebu’s code (such as data structures
for Mu IR and the compiler pass manager) to implement the optimizer library, and
allow the client to choose optimizations they would like to include and the order to
run. We will be interested to re-evaluate the experiments in Section 5.4.1, and see
how they perform when the missing front-end optimizations are performed by the
optimizer.

6.1.3 Performance Re-evaluation of GC and Yieldpoints

We evaluated our prototype GC and yieldpoints mechanisms as exploratory work
before we designed and implemented the counterparts in Zebu. Both works are infor-
mative and shaped the implementation for Zebu, but the evaluations had limitations.
Having RPython and the full Python in the future running on Zebu would allow us
opportunities to re-evaluate both systems.

In Section 3.3.3, we evaluated the performance of our prototype garbage collector
with a focus on comparing the implementations in Rust and in C. We evaluated
with micro benchmarks (including gcbench) to demonstrate the efficiency. As the
prototype was a standalone garbage collector and was not integrated with a language
runtime (as the integration would require significant efforts [JEP-304, 2018]), we were
unable to measure its performance with sophisticated benchmarks. Zebu’s GC was
evolved from the prototype. With Zebu being able to run more sophisticated Python
benchmarks in the future, it would be interesting to re-evaluate the GC performance
on Zebu to show the GC performance with a safe language (Rust) in larger macro
benchmarks.
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In Section 4.4, we performed a head-to-head comparison between different yield-
point mechanisms on JikesRVM. The results showed the characteristics of different
yieldpoints on different micro architectures, and helped us quantitatively understand
yieldpoint behaviors. However, as they were measured on JikesRVM, the numbers
are biased towards JikesRVM. For example, VM-specific policies such as where the
compiler inserts yieldpoint and the purpose of yielding may affect yieldpoint bahav-
iors. An re-evaluation for yieldpoints on Zebu would show the characteristics of
yieldpoints across different virtual machines, and how VM policies affect yieldpoint
behaviors.

6.1.4 Verified Mu

Trustworthy computing systems are desirable. Works in Klein et al. [2009] provided
a trust-able operating system kernel, seL4, as the bottom layer of a trustworthy
computing stack. A trust-able language virtual machine could further extend the
stack towards the application layer.

The Mu micro virtual machine is designed to be verifiable, which adds a further
advantage of the micro virtual machine approach in comparison with the existing
approaches discussed in Section 2.1. First, Mu’s semantics are non-ambiguous, which
makes it possible to reason about the semantics and to provide a formal specification.
Initial works1 have been progressing on this direction to provide a formal specification
for Mu in the HOL interactive theorem prover. Secondly, the minimalism makes the
scope and the lines of code of the virtual machine small enough to be practically
verifiable. This thesis has further confirmed this point by implementing an efficient
Mu within limited lines of code. Potential future work on the verification track could
be a verified implementation of Mu. Furthermore, initial works have been started to
explore the possibility of running micro virtual machines on top of the seL4 micro
kernel. This investigates the viability of combining micro virtual machines as another
trust-able layer with the trust-able operating system kernel seL4.

1The piece of work and the works described later in this section do not involve the author of this
thesis, and are conducted by multiple researchers that we do not elaborate here.
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