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Abstract

Garbage collection (GC) is a performance-critical component in systems from the dat-
acenter to the phone, and improving GC performance remains a problem. However,
GC developers often rely on analysis methodologies with coarse-grained attribution,
received wisdom and intuition to make performance-critical design decisions. This is
likely because of limitations in existing tooling and the complexity of GC in a land-
scape where hardware and software is rapidly changing. The dynamically changing
environment amplifies the weakness of this approach, potentially invalidating prevail-
ing folklore and understandings. Improved microarchitectural support and tooling
now exists, making it possible and more accessible for GC developers to understand
the cache performance problems of GC deeply.

My thesis is that, by leveraging new hardware tools and methodologies, a deeper
microarchitectural examination can localise GC performance problems and provide new

insights.

In this thesis, I perform novel microarchitectural analysis for GC. To do this, I
develop a methodology which allows for fine-grained attribution of load latency to
different software functions and cache levels. I apply this alongside the existing arse-
nal of analysis techniques to gain a deeper understanding of the microarchitectural
performance of the Immix collector on an Intel Coffee Lake machine. Armed with
these insights, I also examine the performance of existing hardware and software
prefetching schemes for GC.

I find that L1 misses are uncommon but expensive, accounting for only 2.0 % of
loads but 14.9 % of load latency, and demonstrate that mitigating L1 misses is crucial
for reducing load latency. I also discover that during collection, heap accesses are
surprisingly only responsible for 3.2 % of loads and 10.9 % of load latency, indicating
limited headroom for heap-targeted optimisations.

I identify that the tracing loop accounts for 7.8 % of latency cycles from L1 misses,
and find that the addition of software prefetching covers almost all of the available
headroom, leading to a 9 % speedup of GC on Coffee Lake and 18 % speedup on an
AMD Zen 4 machine. Unexpectedly, I also find that software prefetching leads to
improvement in the load latency of L1 hits.

Finally, I demonstrate that hardware prefetching is effective for each of the canoni-
cal collection algorithms I study, but sensitive to the locality properties of the collector
and workload.

Through a novel approach to GC microarchitectural analysis, I am able to uncover
various new insights on GC load performance, and efficacy of software and hardware
prefetching for GC. I also expose surprising contradictions to existing GC under-
standings, emphasising traditional understandings of GC hardware behaviour may
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no longer be true. This new analysis opens up many new questions and interesting
problems for future work, and reaffirms the continued need for comprehensive anal-
ysis of GC performance in a world where software, hardware and workload changes
and complexities outpace the understandings of the GC community.
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Chapter 1

Introduction

Garbage collection (GC) automatically manages memory used by a program, identi-
fying objects in-use and reclaiming unreachable objects. Without GC, programmers
must manually manage objects, which is tedious, error-prone, and a major source of
critical security problems. GC underpins most widely used managed programming
languages, such as Java, C#, Ruby, Haskell and JavaScript. With increasing societal
emphasis on security, managed languages are continuing to gain popularity, pre-
dominantly due to safety and productivity benefits of GC [The White House, 2024].
Popular web services like Shopify, GitHub and Airbnb are built by GC-backed frame-
works, while Android OS and Twitter are examples of Java-based products. Thus,
GC is ubiquitous, and performant GC permits improved user experiences such as
responsive websites and applications, and energy efficient devices.

Despite the ubiquity of GC, and the maturity of GC research, the cost of GC
remains surprisingly high [Cai et al., 2022; Blackburn et al., 2025]. Consequently, the
development of high performance GC algorithms and optimised, robust implemen-
tations of performant GC are both increasingly important and relevant orthogonal
concerns.

Prerequisite to this is comprehensive evaluation and understanding of perfor-
mance of existing GCs, and more importantly, insight into why GC might perform
this way. However, constant seismic changes in the hardware, software and workloads
greatly affects the behaviour and performance of GC. Workloads are increasingly
server-based, and differ in design and behaviour from traditional C-style programs,
making use of object-oriented paradigms and languages, like Java, with parallel pro-
gramming abstractions and concurrency primitives [Blackburn et al., 2025]. Modern
speculative, out-of-order, superscalar CPUs also have sophisticated cache hierarchies,
and compilers are complex and optimised through decades of development.

As a result, GC developers often rely on received wisdom, analysis techniques
with coarse-grained attribution, such as performance counters, and intuition to make
performance-critical design decisions. This approach has numerous limitations. The
aforementioned technological shifts in both hardware and software can render folk-
lore as less relevant, and thus, at a minimum, reevaluation of prior work is necessary.
Additionally, while useful in gaining high-level insights on how GC performs, anal-
ysis with only coarse-grained attribution limits the scope of understanding as it
lacks the ability to thoroughly diagnose why GC performs the way it does. These
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limitations can lead to evaluation criteria used by GC researchers which are insuffi-
cient, unrepresentative or even incorrect, leading to misguided design choices. Ulti-
mately, it can hinder the development of performant, low-cost GCs. Therefore, both
methodological development for GC analysis and reevaluation of GC performance
are needed.

Recent software-focused methodological advancements, such as tracing and dis-
tillation, have partially addressed this issue [Huang et al., 2023; Cai et al., 2022].
However, there remains a methodological gap for comprehensive microarchitectural
exploration of GC. This is significant because microarchitectural optimisations, such
as prefetching, can lead to significant improvements in GC performance [Garner et al.,
2007; Atkinson, 2023]. Therefore, understanding the microarchitectural behaviour of
GC is key to unlocking greater GC performance. The limitations of existing method-
ologies are exposed in existing work, such as Blackburn et al. [2004a], Carpen-Amarie
et al. [2023] and Papadakis et al. [2023], which provide insight into the hardware
perspective, but offer limited fine-grained observability. This is because they pre-
dominantly rely on methodologies which examine performance using topdown ap-
proaches or performance counters which have coarse-grained attribution of latencies
and can only measure metrics across the entire GC execution.

The addition of data linear address (DLA) facilities for Processor Event Based
Sampling (PEBS) to newer Intel machines provides hardware support for detailed
measurement of load-specific information, such as the linear address of the target of
the load operation, the load latency and the cache level the load hits at, which I will
exploit [Intel Corporation, 2016].

1.1 Problem Statement

Due to the fast-changing nature of hardware, software and workloads, and method-
ologies which focus only on coarse-grained attribution, the GC community has a
limited understanding of the behaviour of GC at a microarchitectural level. This can
have deep consequences for GC development, leading to misguided design choices
and missed optimisation opportunities. Improved microarchitectural measurement
tools now exists, providing an avenue for revalidation of existing wisdom and discov-
ery of new results. This thesis aims to leverage improved microarchitectural support
to understand GC microarchitectural performance in a new light.

1.2 Contributions

The contributions of the thesis are as follows:

1. I develop a novel methodology for comprehensive microarchitectural GC anal-
ysis with fine-grained attribution of load latency to different cache levels and
software functions, and enables isolated measurements of performance on ac-
cesses to heap objects.
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2. I leverage this to perform a thorough and principled microarchitectural analysis
of GC load performance for the Immix collector, reevaluating the conventional
wisdom on GC performance, uncovering new insights into GC performance,
and exposing new opportunities for optimisations. This opens up many new
questions and rich, interesting problems for future work.

3. Using these insights, I analyse the performance of a software prefetching scheme
for the Immix collector in MMTk. Software prefetching is used to improve cache
performance by loading objects into the cache ahead of time, and is helpful for
tracing GC, which suffers locality issues from irregular pointer chasing. I also
demonstrate that adaptive software prefetching schemes which dynamically
adjust to variations in workloads and hardware characteristics are not profitable.

4. I perform microarchitectural analysis of the efficacy of hardware prefetchers for
GC, revealing the effects of workloads and collector algorithms on hardware
prefetching performance.

1.3 Thesis Structure

In Chapter 1, Chapter 2 and Chapter 3, I analyse and dissect the existing literature,
with a focus on microarchitectural GC analyses and prefetching. I explain the current
gaps and how my work fits in.

Chapter 4 details the hardware and software execution methodologies used through-
out the thesis.

In Chapter 5, I introduce novel methodology for microarchitectural GC analysis
with fine-grained attribution. I perform microarchitectural analysis for the Immix
collector, uncovering interesting new insights and finding surprising contradictions
to existing work. In particular, I find that the tracing loop is a key optimisation target.
This leads me to analyse the performance software prefetching for MMTk’s tracing
loop in Chapter 6. The insights from the microarchitectural analysis also motivates a
case study in hardware prefetching, presented in Chapter 7.

Finally, in Chapter 8, I discuss numerous interesting questions and problems for
future research, and in Chapter 9, I summarise the findings and takeaways of the
thesis.
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Chapter 2

Background

In this thesis, I follow the convention in the literature, and refer to the garbage
collector as the collector and the user application as the mutator. Mutators execute
application code, allocating and modifying objects and mutating the heap, while
collectors perform automatic memory management for the mutator. Collectors pro-
vide the mutator with guarantees of safety (the collector never reclaims live objects)
and liveness (collection terminates), allowing the mutator to avoid the tedious and
error-prone task of manual memory management. In this chapter, I introduce all the
relevant background information for my thesis.

In Section 2.1, I will introduce the taxonomy of collectors, and discuss different
choices for heap layout and the fundamental heap operations of allocation, identifica-
tion and reclamation. In Section 2.2, I introduce the Memory Management Toolkit
(MMTk), which is a platform for building efficient, flexible and robust collectors, and
explain the work packet system which lies at the heart of MMTk. Next, Section 2.3,
I give details on tracing, which is the most widely used strategy for reclamation. I
survey the key tracing collectors used in this thesis, and discuss their behaviour and
performance.

The heart of this thesis focuses on understanding the microarchitectural behaviour
of GC using hardware-supported measurement techniques. Therefore, in Section 2.4,
I explain the memory cache subsystem which underpins modern processors and
allows for reduced load latencies. Then, in Section 2.5, I discuss Processor Event
Based Sampling (PEBS) and how it can be leveraged for measuring latency and other
characteristics of loads. Finally, I discuss prefetching, which is an important technique
in used to improve load latencies by reducing cache misses.

2.1 Taxonomy of Collectors

In this section, I discuss the taxonomy of collectors. Managed languages perform
dynamic allocation in the heap, which collectors are responsible for managing. They
do this by performing three key heap operations: they allocate objects, identify objects
in-use and reclaim the space occupied by unreachable objects. I identify collector
algorithms by their heap organisation and how they perform the heap operations
[Blackburn and McKinley, 2008].
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2.1.1 Heap Layouts

As in standard GC terminology, I refer to heap organisations as spaces. Spaces may be
further split into partitions. Spaces are classified into three types: monotone, freelist
or regions.

Monotone spaces are contiguous ranges of memory with a single boundary that
separates live and free memory. They are typically reclaimed en masse.

Freelist spaces stores blocks of free heap memory into a freelist. Allocators acquire
memory from the freelist, and reclamation returns memory to the freelist.

A region-based organisation splits the heap into multiple monotone spaces, called
regions. This allows for partial reclamation of a space. A number of production
collectors, including G1, ZGC and Shenandoah, use a single fixed-size region [Liden
and Karlsson, 2018; Flood et al., 2016].

Note that any collector implementation may have multiple heap organisations by
segregating objects using characteristics such as object lifetime, size, type, and write
activity. These spaces may be collected separately for improved performance. An
example is that many collectors handle large objects separately. This is because of the
costs associated with copying large objects and potential differences in hardware and
operating system support for allocation of smaller objects.

The choice of space often informs which heap operations are most suitable. I
discuss these operations in the next section.

2.1.2 Heap Operations

Garbage collectors rely on three key operations to manage the heap.
Allocation refers to the provision of memory to the mutator. Two approaches are

bump pointer allocation, where heap space is allocated contiguously by bumping a
pointer along the address space, or freelist allocation, where the collector maintains a
list of free blocks of memory which can be allocated.

An optimisation on freelist allocation is segregated size free lists, where the collector
manages a list for each size class separately [Jones et al., 2011]. The size choice here
is dependent on typical workload behaviour. For example, Java objects are typically
small, so many collectors use freelists in multiples of 4. Freelists may suffer from
both internal and external fragmentation, and increasing the number of size classes
can improve internal fragmentation at the cost of worsening external fragmentation
[Jones et al., 2011].

In the identification phase, the collector is responsible for finding all live objects.
Objects are live if they are transitively reachable from the mutator roots (i.e. stack and
local/global variables), and dead otherwise. One common approach for identification
is performing a transitive closure from a root set marking all live objects. This is
known as tracing.

Reference counting can also be used to indirectly identify dead objects. To do this,
reference counting collectors maintain a reference count for each object, incrementing
when a reference to it is created, and decrementing when one is deleted. Any object
with a reference count of 0 is reclaimed.
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Finally, reclamation, which is tied closely to identification, is responsible for re-
cycling the memory of unreachable objects. Non-moving collectors simply reclaim
all the dead objects by checking mark bits. Copying collectors may also attempt to
perform defragmentation. When copying, objects can be reorganised in the same
space (compaction) or evacutated to a different space.

2.2 Memory Management Toolkit

In my work, I leverage MMTk, which is a robust, efficient, portable, and flexible
platform for building collectors. MMTk defines different heap spaces and policies
on how to perform the heap operations; these reuseable components are brought
together to define collector algorithms. Algorithm implementations are separate from
bindings, which implement the required language specific functionalities, making
MMTk language and VM agnostic. This allows easy integration of high performance
collectors into various production language runtimes. This makes MMtk an ideal
platform for researchers to test GC techniques in a production-level environment.
Moreover, optimisations in MMTk can be high impact, improving multiple algorithms
across runtimes.

MMTk was first implemented in JikesRVM and later rewritten in Rust for im-
proved performance, safety, and better integration with a wider range of languages
[Blackburn et al., 2004b; Lin et al., 2016]. MMTk currently officially supports Open-
JDK, Julia, CRuby, and JikesRVM runtimes and has unofficial ports to other runtimes
including Android and GHC.

2.2.1 Work Packets in MMTk

In MMTk, almost all collection work is performed by stateless workers executing
self-contained work packets [Xu et al., 2022]. Work packets contain items of the same
type and a function pointer instructing the worker on how to process the packet.
Each packet has a set of preconditions which dictate when it may be executed.

Work packets are organised into work buckets by preconditions, and each bucket
opens when the preconditions are met. Once a bucket is open, its work packets
are now available to the workers. For example, the packets for performing the
transitive closure are in a bucket that cannot open until all root scanning packets have
completed.

Worker threads first acquire work packets from a global pool and then consume
and produce further packets into thread-local pools. If both the global and thread
local pool is exhausted, a worker steals work from other thread local pools. The
scalability and performance of the system lies in the distribution of work among
packets and packets among workers [Huang et al., 2023].
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2.3 Tracing Collectors

Tracing GC identifies live objects in the tracing loop, performing a transitive closure of
the heap, starting at the roots and marking and scanning objects.

2.3.1 Heap Objects

To understand tracing, I must first understand how heap objects are encoded [Atkin-
son, 2023]. An object consists of a header and a number of fields. Each field contains
either a scalar, which is an immediate value (e.g. an integer) stored directly in the
field, or an object reference, which is a pointer to another heap object.

A slot is any memory location which can hold a pointer to an object. Examples of
slots include the reference field of an object and the word holding a pointer from the
stack.

2.3.2 Tracing Loop

To trace an object, the collector is responsible for three main actions: it must load the
address of the object from the referring slot, mark the object, and if unmarked, scan
the object to determine which fields contain further references.

To do this, collectors keep track of untraced objects using a queue or stack. The
choice of data structure dictates the traversal order; stacks result in depth first traver-
sal (DFS), while queues are traversed with breadth first search (BFS). For this reason,
stacks are typically preferred since parent/child pairs are processed close together.
This affords better locality as these pairs are also typically allocated close together.
More advanced tracing collectors may use work packet systems which may combine
multiple data structures. MMTk’s work packet system, which was discussed in Sec-
tion 2.2, can be regarded as "approximate" DFS. This is because work packets perform
local BFS, however the execution of packets has no ordering.

Tracing loops are classified based on two main factors: the timing of the mark and
the type of items in the queue/stack [Atkinson, 2023]. Node-ordered tracing performs
marking before placing into the queue/stack. In particular, it does not queue objects
which are already marked. Edge-ordered tracing unconditionally queues objects, and
marks on dequeue.

The type of items also determines the behaviour of the loop. Commonly, collectors
will place object references (load slot, then queue the object reference), slots (queue
slot), or tuples which hold (slot, object reference) pairs into the stack/queue.

The MMTk work packet system (see Section 2.2.1) uses a dual-queue and dual-
loop algorithm where packets contain lists of slots (this is the "edge queue") [Atkinson,
2023]. The first loop is responsible for dereferencing the slot to obtain the object ref-
erence and for marking the object. Unmarked objects are then added to a secondary
"node queue". This second loop is responsible for scanning each object and enqueue-
ing newly discovered objects into a new work packet, which, when full, it added to
the appropriate work bucket.
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2.3.3 Copying Collectors

Non-moving tracing collectors suffer space inefficiencies caused by fragmentation.
This can be a performance problem when the mutator has a large liveset as many ex-
pensive but ineffective collection cycles may be triggered. Copying collectors attempt
to address this issue by reorganising the heap during the collection cycle [Jones et al.,
2011]. This helps to minimise fragmentation and improves locality during tracing,
since objects which are allocated close in time are typically placed next to each other
in space.

Copying can occur in the same heap space (compaction) or into a different space
(evacuation). Compaction is generally more space-efficient as it does not need to split
the heap into multiple spaces.

Note that collectors may combine multiple copying algorithms or implement them
to varying degrees. For example, Immix performs opportunistic evacuation [Blackburn
and McKinley, 2008]. Copying GCs may also have mark-compact fallbacks which
occasionally perform an expensive GC to save space [McGachey and Hosking, 2006].

2.3.4 Generational Collection

Full heap collection is expensive, especially when the heap is large. Generational
collection attempts to exploit the weak generational hypothesis, which is the empirical
observation that most objects die young, by splitting the heap into separate spaces
based on age [Ungar, 1984]. Objects are allocated in the nursery and promoted to the
mature space when they survive a certain number of GCs. Minor collections occur
in nursery frequently. Occasional full-heap major GCs occur periodically, or when
nursery collection is insufficient. Write barriers are used to track references crossing
the space boundary to ensure correctness.

2.3.5 Relevant Collection Algorithms

In my thesis, I use four canonical collectors, characterised in Table 2.1.

Table 2.1: Characterisations of the four GC algorithms used throughout the thesis.

MarkSweep Immix SemiSpace MarkCompact

Heap layout Segregated size freelists Two-level region Two monotone heaps Single monotone heap

Allocation Size fit Bump pointer Bump pointer Bump pointer

Identification Tracing Tracing Tracing Tracing

Reclamation Free to list Free to region, opportunistic evacuation Evacuation Compaction

I also use two modified versions of Immix, which are GenImmix, the generational
counterpart of Immix, and NMImmix, which is a non-moving version of Immix which
does not perform defragmentation.

For most key experiments, I predominantly use the Immix collector [Blackburn
and McKinley, 2008], which I now explain in greater detail. The Immix algorithm
uses a two-level region hierarchy of coarse blocks, which are made up of fine-grained
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lines. Bump pointer allocation occurs for lines first into fullest blocks. Immix uses free-
to-region reclamation with opportunistic copying for defragmentation. This moves
blocks with the most empty lines into blocks with the most full lines.

The Immix algorithm provides a balance between space efficiency, low collection
overhead, and improved mutator locality and performance.

This is in contrast to the other collectors, which all sacrifice one of these objectives.
MarkCompact allocates contiguously, and upon collection, performs three passes

of heap. These are responsible for object marking, pointer forwarding, and en masse
compaction of live objects to one end of the heap respectively [Cheney, 1970; Jones
et al., 2011]. It addresses defragmentation, which provides good mutator locality,
and is the most space efficient, since it compresses all objects to one end of the
heap. However, it has overwhelming collection times due to the high overheads of
compaction, which requires multiple heap passes.

Meanwhile, the SemiSpace algorithm, relies on evacuation of objects to a new
space for defragmentation [Jones et al., 2011]. To do this, it uses two identical spaces,
known as the "to" and "from" spaces. Allocation occurs contiguously into the "from"
space only, and upon collection, when an object is traced, it is copied into the "to"
space and all references to the object are updated (this is known as forwarding). Then,
the two semi-spaces are swapped and allocation recommences in the new "from"
space. SemiSpace addresses defragmentation, and therefore has good mutator locality
and performance. It also only requires a single heap pass, so it typically has lower
collection times than MarkCompact. However, this comes at the cost of a 2× space
overhead.

Finally, MarkSweep simply marks all live objects and frees any unmarked objects
to the appropriate free list [Jones et al., 2011]. This means that it does not address
defragmentation, which can harm mutator performance, but it has the smallest collec-
tion overhead. Consequently, MarkSweep is most performant for small heaps, where
collection time dominates, but less performant on large heaps, due to worse mutator
cache locality.

2.4 Memory Caches

GC performance is dominated by the tracing, which makes intensive use of memory,
and minimising cache misses and their associated latency penalties are key to min-
imising GC overhead. At its core, this thesis explores the interactions between GC
and the cache. Therefore, it is important to understand the foundational principles of
memory caches, which I discuss in this section.

A memory cache system consists of a storage component, known as the cache,
which resides in faster memory (typically SRAM) and a collection of algorithms
which determine how data is organised, stored and replaced/evicted in the cache.
The purpose of a cache is to improve memory performance by storing frequently
accessed data closer to the CPU, thus reducing the memory access time. When
performing a memory access, the memory system first checks the cache and only



§2.4 Memory Caches 11

performs a load to main memory if the target is not found in the cache. This is known
as a cache miss (as opposed to a cache hit if the memory is found in cache). Caches
usually contain block-sized sections of memory, referred to as cache lines.

2.4.1 Locality

Well-written programs tend to exhibit a form of locality, where future access patterns
are closely correlated to access history. There are two main types of locality: spatial
locality, where accesses in nearby locations are often accessed close in time, and
temporal locality, which observes that locations are often accessed multiple times
in close succession. This is illustrated in Fig. 2.1. If programs accessed memory
completely randomly, caches would be unable to improve memory performance.
However, due to locality of programs, past accesses have good prediction value.
Thus, locality underpins cache efficacy.

Figure 2.1: This depicts a program with both temporal and spatial locality.

2.4.2 Placement and Replacement

Placement of blocks into a cache depends on constraints of the cache policy. Caches
often adopt a set-associative structure. This means the cache is divided into n sets
and each set contains m cache lines. Any memory block that is brought into the cache
is first mapped onto a set, and can be placed in any available line. When n = 1, the
cache is "fully associative", and when m = 1, the cache is "direct mapped". Note that
fully associative caches tend to have improved hit rates at the expense of increased
retrieval time, and direct mapped caches have the complete opposite tradeoff.
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When a cache miss occurs, the requested contents must be brought into cache.
Since caches reside in faster, more expensive memory, they tend to have limited
capacity. Therefore, if there is no space for cache placement, the cache must choose
an object to evict. This is known as the eviction policy. The choice of eviction policy
dictates the behaviour of the cache and is closely tied with cache performance. Typical
cache systems rely on heuristics which aim to minimise the average data access time.

2.4.3 Coffee Lake Memory Subsystem

In this thesis, I perform microarchitectural analysis using a pair of identical Intel Core
i9-9900K machines (Coffee Lake). I discuss the Coffee Lake memory subsystem in
this section.

The Coffee Lake machine has three levels of caches: L1, L2 and L3. Caches closer
to the CPU are smaller but faster. These will be referred to as higher levels of the
memory hierarchy.

The closest cache, L1, is split into L1D and L1I for data and instructions. In this
thesis, I focus on data accesses, so I do not discuss L1I further, and use L1 to refer to
the L1 data cache, unless otherwise specified. The next cache, L2, is shared between
data and instructions, but still private (i.e. separate cores have separate L2 caches).
The furthest cache, L3, is unified between all cores and shared between data and
instructions.

The specifications of the caches are given in Table 2.2.

Table 2.2: This table gives the cache specifications for the Intel Core i9-9900K Coffee Lake
machine. Note that the minimal load-to-use latencies are nominal values given by Intel for
Skylake microarchitectures (this is the same as Coffee Lake).

Cache level Capacity Associativity Minimal load-to-use latency (cycles)

L1D 32KB per core (8) 8-way 4

L2 256KB per core (8) 4-way 12

L3 16MB unified 16-way 44

All Coffee Lake caches are writeback caches, which means that on cache store hits,
lower cache levels are not updated. For example, on an L1 store hit, L2, L3 and
main memory are not updated. Instead, a dirty bit is used to mark that the entry is
inconsistent with the memory subsystem, and the new value is written to the lower
cache levels only on an eviction.

Upon dispatch of a load requests, the caches are searched from L1 to L3. If the
target data is not present in any cache level, a RAM access is requested. On the Coffee
Lake, an additional structure, the Line Fill Buffer (LFB), sits between the L1D and
L2 and tracks outstanding L1D misses. It also performs multiple optimisations, such
as merging in-flight stores to the same cache line [van Schaik et al., 2019]. Any L1D
miss cannot request data from the remaining memory subsystem until a slot in the
LFB becomes available.
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2.5 Processor Based Event Sampling

The heart of my work lies in microarchitectural analysis. To do this, I rely on Pro-
cessor Based Event Sampling (PEBS) provided by the Intel hardware. In this section,
I discuss what event based sampling is and explain how PEBS can be used to take
measurements of memory latency.

2.5.1 Performance Monitoring Unit (PMU)

Intel processors contain a piece of hardware called the Performance Monitoring
Unit (PMU) which is used to measure performance events [Intel Corporation]. This
mechanism is provided as a series of "counters" which are held in Model Specific
Registers (MSRs). Events can be captured via counting or sampling modes.

2.5.2 Counting vs Sampling

In counting, the PMU simply records the number of occurrences of an event during
the selected time interval. When sampling, the PMU repeatedly sets the counter to an
initial value and decrements the counter, periodically recording selected information,
such as the instruction pointer (IP) and register states, on underflow. The value of the
initial value is selected based on the desired sampling rate.

Counting ensures that all events are captured, however it lacks the ability to
capture additional information. On the other hand, sampling is able to associate
microarchitectural events with concrete execution contexts, allowing for greater ob-
servability of event correlations. However, it may suffer from sampling bias and can
have a higher overhead, depending on the sampling rate.

2.5.3 Interrupt Based Sampling vs PEBS

Sampling may differ in the mechanism in which counter underflows are handled.
In interrupt based sampling, the processor triggers the performance interrupt han-
dler. This approach can introduce an attribution issue called skidding, where the IP
stored in the sample refers to where the interrupt occurred rather than where the
counter overflowed [Bakhvalov, 2018]. The reason for this is that it is difficult to pre-
cisely attribute hardware events to instructions in a complex out of order superscalar
processor.

This issue can be mitigated through hardware support where the processor is
responsible for storing the IP (and other requested information) in a designated
memory buffer. This ensures the instruction pointer is never off by more than one
instruction. On Intel machines, this capability is known as PEBS [Intel Corporation,
2016].
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2.5.4 Memory Latency Measurements with PEBS

In Haswell, a pre-cursor to Coffee Lake, Intel introduced the data linear address (DLA)
facility which allows for detailed profiling of loads [Intel Corporation, 2016]. This
leverages PEBS and allows for load-specific information, such as the linear address
of the target of the load operation, the load latency and the cache level the load hits
at, to be recorded.

2.6 Prefetching

Tracing GC suffers from poor locality due to irregular pointer chasing when process-
ing the tracing loop. In this section, I discuss prefetching, which is an important
technique used to minimise cache misses by loading objects into the cache ahead of
time. This helps to overlap the memory latency with other productive work. There are
two forms of prefetching: hardware prefetching, which is done by the machine, and
software prefetching, which the collector can trigger using prefetch hint instructions.

2.6.1 Hardware Prefetching

Hardware prefetchers use the memory access history of programs to predict future
accesses and drive prefetching. Since they lack application-level insights, hardware
prefetchers generally focus on pattern matching against common access patterns,
such as array access with fixed stride.

Intel Coffee Lake Prefetchers

The behaviour of hardware prefetchers is dependent on the specific microarchitecture.
In this thesis, I focus on an Intel Coffee Lake machine. The machine specifications are
given in Section 4.2.

There are four prefetchers on the Coffee Lake microarchitecture, described in Intel
Corporation [2023]. I will summarise important details.

The L1 Data Cache Unit (DCU) Hardware Prefetcher is a stream prefetcher trig-
gered by an ascending request to a recent access. Upon occurrence, the prefetcher
assumes that the next access is part of a stream and fetches the next line.

The L1 DCU IP Prefetcher is a stride prefetcher which uses sequential load history
to determine whether to prefetch additional lines. For any loads where a regular
stride is detected, a prefetch is issued for the address which is the sum of the current
address and stride length. The prefetcher is able to detect stride lengths up to 2KB
both forwards and backwards.

The L2 Hardware Prefetcher is a stream prefetcher which monitors all L1 read
requests, including reads/writes/prefetches from L1D and code fetches from L1I, to
identify both ascending and descending streams. Upon identification of a stream,
it prefetches cache lines in the predicted direction. It may run up to 20 cache lines
ahead of the load request, and can maintain up to 32 different streams at once. This
prefetcher is unable to prefetch across 4KB page boundaries.



§2.6 Prefetching 15

Though the exact implementation of this prefetcher is not stated, bidirectional
stream prefetchers typically use a warm up window to determine the direction and
confirm the stream [Bertschi, 2022]. Consequently, these prefetchers are typically
more effective on longer sequences [Lee et al., 2012].

Finally, the L2 Adjacent Cache Line Prefetcher is a spatial prefetcher which at-
tempts to prefetch the pair line of each access. Here, pairs are defined as two lines
which complete to a 128-byte aligned chunk.

Note that both L2 prefetchers prefetch data to both the L2 and L3 caches unless
the L2 cache is heavily loaded with missing demand requests [Intel Corporation,
2023]. In this case, the data is only prefetched to L3. Moreover, to avoid evicting
useful cache lines, if the L2 stream prefetcher is far ahead1 of the access stream, it will
also only prefetch to L3. This means that the L2 prefetchers should improve cache hit
rates at both L2 and L3.

2.6.2 Software Prefetching

The software may also issue prefetch instructions which provide hints to the Memory
Management Unit (MMU) on where to prefetch. This is known as software prefetching.

This allows programmer or compilers to exploit application-level insights into
memory access patterns and offers finer-grained control.

The behaviour of a prefetch depends on the instruction used. On x64-64, there are
four instructions for prefetching loads, and they can be inserted using the _mm_prefetch
compiler intrinsic [mmp]. The PREFETCHT0, PREFETCHT1 and PREFETCHT2 instructions

target L1, L2 and L3 respectively. These instructions also prefetch data into lower
cache levels. For example, PREFETCHT1 prefetches into L2 and L3 but not L1. The
fourth instruction, PREFETCHNTA, performs a non-temporal prefetch. This is used to
indicate that the data will only be used once. This knowledge helps the processor
make adjustments to the cache replacement policy, thus minimising cache pollution.
The MMU may also place these prefetches outside the cache hierarchy but close to
the processor. Note that these are all hints, and the MMU can choose not to issue a
prefetch.

Factors Affecting Prefetch Efficacy

When devising a software prefetching scheme, there are multiple factors to consider.
First, the time gap (also called prefetch distance) between the prefetch and use of

data is crucial. If the prefetch distance is too small, the load latencies will not be
hidden entirely. Conversely, if the distance is too big, data can be prematurely evicted
before it is used, thereby failing to resolve the cache miss.

The tradeoff between coverage and accuracy also needs to be managed. This is be-
cause correct prefetches can help improve cache misses and load latency, but incorrect
prefetches can result in cache pollution, eviction of other useful data and saturation
of the memory bus [Atkinson, 2023].

1The optimisation manual does not state the specific distance
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Adaptive Prefetching Schemes

Software prefetching schemes may hold the prefetch distance constant (fixed-distance
scheme) or they may adaptively adjust the prefetch distance (dynamic prefetching).
Dynamic prefetchers can be difficult to implement, as they must be able to accurately
predict optimal prefetch distances from historical data points. However, they can
provide greater accuracy as they can accommodate different hardware and workloads,
and even account for variations across the execution of an application. Examples in
the context of GC include:

• Long-running workloads where the live set and object graph vary greatly across
GCs at different application stages, thus changing the optimal prefetch distance
may be different across GCs.

• Varied efficacy of software prefetching schemes for traversing pointer arrays on
machines with data dependent hardware prefetchers.

• Workloads with bursts of high memory bandwidth utilisation, where software
prefetching may even harm performance by saturating the bandwidth and pol-
luting the cache.

2.7 Summary

In this chapter, I gave an overview of GC, introduced MMTk as a platform for high
performance GC research, and discussed relevant tracing collection algorithms and
their performance characteristics. I also introduced the Coffee Lake memory subsys-
tem, discussing how cache performance directly relates to load latency, and explained
how PEBS can be used to measure and understand the performance of memory ac-
cesses. Finally, I discussed prefetching as a strategy for reducing cache misses and
improving load latency.



Chapter 3

Related Work

In this chapter, I discuss the current literature on microarchitectural analysis, software
prefetching and hardware prefetching for GC.

I explain how constantly changing hardware, workloads and software necessitates
deeper microarchitectural performance analysis for GC, and how improved microar-
chitectural support provides a yet to be exploited avenue to achieve this. This helps
to motivate my work on microarchitectural GC analysis (Chapter 5). I also expose the
gaps in the current literature on software and hardware prefetching for GC which I
attempt to resolve using microarchitectural analysis in Chapter 6 and Chapter 7.

3.1 Microarchitectural Performance Analysis for GC

Comprehensive evaluation and understanding of performance of GC performance
underpins the development of performant GC. On the software side, methodological
advancements such as tracing and distillation have helped to address this issue
[Huang et al., 2023; Cai et al., 2022]. However, methodologies for microarchitectural
exploration and cache focused evaluation of GC remain limited.

The effects of GC on cache performance have been studied as early as in Zorn
[1991], which simulated the data cache miss rate of both generational and non-
generational MarkSweep and SemiSpace algorithms, and in Reinhold [1994], which
estimated the data cache overhead of a Cheney-style SemiSpace collector. Both these
works focus only on simple data cache performance metrics and their findings likely
no longer apply because collector algorithms, workloads and hardware have all
changed substantially since.

Prevailing microarchitectural GC research relies on measurements such as perfor-
mance counters which only have coarse attribution. Blackburn et al. [2004a] measure
L1 and L2 cache misses, among other metrics, as part of work which quantifies GC
behaviour for semi-space, mark-sweep and reference counting collectors and their
generational counterparts using MMTk in JikesRVM [Blackburn et al., 2004b; Alpern
et al., 2000]. This is a precursor to my work, but takes measurements across the
full GC execution and therefore lacks fine-grained attribution. Moreover, this work
uses the SPEC JVM benchmarks, which are built off C based workload characteris-
tics. With the development of representative Java benchmark suites, such as DaCapo,
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which better incorporate rich object behaviours and have higher memory demands
[Blackburn et al., 2025]. This work also predates development of the Immix collec-
tion algorithm, which MMTk now uses for its superior performance across goals of
space efficiency, fast reclamation, and mutator performance when compared to the
canonical tracing algorithms analysed here [Blackburn and McKinley, 2008].

More recently, Carpen-Amarie et al. [2023] introduced methodology to quantify
the effect of concurrent GCs, with a focus on L3 misses. This provides an important
step towards a deeper microarchitectural understanding of GC, but does not examine
the whole memory subsystem. Furthermore, this work is limited in scope since it only
examines metrics across the entire execution of the workloads. In similar vein, Pa-
padakis et al. [2023] proposed a multifaceted profiling approach of Java benchmarks,
which includes examination of the frequency of L1 reads and writes, and measures
misses per kilo instructions and miss rates at all levels of the memory subsystem.
However, this work measures the entire application execution, and therefore does not
directly help with understanding GC.

The aforementioned methodologies can provide high-level understandings of GC
cache behaviours, however they are limited for GC observability and performance
analysis, as they cannot measure the cache performance at finer granularities, such
as for GC heap accesses only or focusing on the cache performance GC tracing loop.
Moreover, these studies focus predominantly on miss rates, which are correlated
to but do not directly translate to load latency. This is because accesses at each
cache level can vary in latency. Therefore, there remains a methodological gap for
comprehensive microarchitectural analysis of GC.

Intel machines provide support for processor event based sampling (PEBS) for
a key subset of hardware events (see Section 2.5). This triggers samples based on
events and provides the ability to samples to a precise program context. Since the
introduction of data linear addressing (DLA) in Haswell, there is additional capability
for measuring load-specific information of instructions, including the load latency
and the cache level where the cache hit occurred [Intel Corporation, 2016]. This allows
for fine-grained attribution of latencies to load events at different cache levels and
calling functions, thus providing an avenue for GC microarchitectural analysis.

There are many examples of comparable work outside GC. In Mohror and Roun-
tree [2012], the authors propose a methodology for determining the proportion of
memory accesses which hit at each level of the memory subsystem. IBS, AMD’s
equivalent to PEBS, was used to build a data profiler, DProf, which attributes cache
misses to data types and was used to locate and fix cache performance bottlenecks
in Linux [Pesterev et al., 2010]. Helm and Taura [2019] build PerfMemPlus, which
helps to identify the source of the most expensive memory accesses in a workload.
My thesis draws inspiration from the core ideas of these works and applies them to
the new domain of GC.
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3.2 Software Prefetching

Software prefetching in the context GC was initially researched by Boehm [2000], who
proposed a technique "prefetch on grey" which prefetches objects when they are first
visited and marked. This aims to reduce cache misses by increasing the probability
that objects reside in cache when they are popped from the mark stack. Boehm [2000]
also linearly prefetches a few cache lines ahead of object scanning to reduce cache
misses for scanning large objects and bring adjacent objects into the cache.

For collectors with FIFO tracing loops, a further optimisation called "buffered
prefetching" was introduced by Cher et al. [2004]. This prefetches objects upon
retrieval from the mark stack and moves them into a prefetch buffer. Scanning then
occurs via the prefetch buffer, ensuring that prefetching adheres to the FIFO traversal
of objects and enforcing consistent and timing-controlled prefetching.

Paz and Petrank [2007] also explored software prefetching in the context of a refer-
ence counting collector. Reference counting collectors are responsible for maintaining
reference counts for objects. This allows objects to be reclaimed when their reference
counts are decremented to zero. By exploiting five key opportunities for prefetching
in the reference counting collector in JikesRVM, the authors were able to speed up
GC performance by 8.7 %.

In Garner et al. [2007], the authors explore the combination of edge enqueueing
and buffered software cache prefetching for MMTk in JikesRVM, focusing on mark-
sweep collection [Blackburn et al., 2004b; Alpern et al., 2000]. Based on this, Atkinson
[2023] performs a comprehensive reevaluation of software prefetching for tracing
collectors using modern hardware and the Immix collector on the DaCapo workloads
[Blackburn and McKinley, 2008; Blackburn et al., 2025]. To do this, Atkinson [2023]
introduces a novel framework, the auxiliary tracing loop, for evaluating the efficacy
of prefetching on variations of tracing loop designs. Atkinson [2023] also determines
an optimal prefetching scheme for the dual-queue, dual-loop tracing algorithm used
in MMTk. This work provides a strong basis for understanding software prefetching
for tracing GC, but lacks evaluation within the context of fully-functional collector.
Moreover, the focus of this work is evaluation of prefetching schemes rather than
understanding their performance. I attempt to leverage microarchitectural analysis
to fill this gap.

3.3 Hardware Prefetching

To the best of my knowledge, evaluation of how hardware prefetchers perform for GC
is limited. Therefore, the gap I attempt to fill is evaluation of hardware prefetching
for GC, and use of microarchitectural analysis to understand the performance more
deeply. I discuss adjacent prior work from other applications below and how they
relate to hardware prefetching on GC.

In Lee et al. [2012], the authors simulate hardware prefetchers and construct
methodology for classification of ineffective hardware prefetches as incorrect, early,
late or redundant. This work is significant in gaining a deeper understanding of
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how hardware prefetchers work and their benefits and limitations. However, the
analysis is performed solely on the SPEC CPU 2006 benchmarks, which tend to have
different characteristics to complex, real-world object-oriented workloads like ones
provided by the DaCapo and Renaissance suites [Blackburn et al., 2025; Prokopec
et al., 2019]. Moreover, the addition of GC may affect the efficacy of the hardware
prefetchers, since GC behaves differently to standard applications, which this work
cannot account for.

Other relevant prior work includes Yang et al. [2011], where the authors evaluate
the direct and indirect costs of two existing designs of zero initialisation: hotpath
zeroing, which zeroes upon allocation, immediately prior to the first use, and bulk
zeroing, which initializes blocks of free memory to zero prior to returning to the
allocator. They find that the hardware prefetcher is integral to the performance of
hotpath zeroing. This is because by interspersing zeroing with allocation, hotpath
zeroing places less pressure on the memory bus, allowing the hardware prefetcher to
more aggressively reduce cache misses on allocations. The methodologies from this
work are applicable to GC.

Finally, there exists prior work focusing on hardware prefetching for graph traver-
sals, which relates to GC since the transitive closure, which comprises of graph traver-
sal, makes up the majority of GC. Beamer et al. [2015] measure the performance of
graph processing and find that the Ivy Bridge hardware prefetcher is able to prefetch
aggressively and effectively when the memory bandwidth utilization would other-
wise be low, but ceasing prefetching when the existing memory bandwidth is already
high. Kaushik et al. [2021] implement and measure a data dependent prefetcher for
graph traversals, and find it improves over conventional stride prefetching by 25 %.

3.4 Summary

GC has significantly evolved, with increased heap sizes, considerable hardware par-
allelisation capabilities, pointer compression and newer, more complex collection
algorithms. Modern superscalar CPUs have complex cache hierarchies and specu-
lative, out of order processing which makes performance more difficult to reason
about. Increased focus on safety and security has also led to widespread popular-
ity of garbage collected languages, and production workloads are increasingly rich,
complex and parallel. This constantly changing software and hardware landscape
necessitates both reevaluation of existing folklore and fresh research of new optimi-
sation opportunities. Many of the related works discussed in this chapter help to
bridge this gap.

However, these works either focus on fields outside of GC (in the case of hardware
prefetching), or on evaluation of overall GC performance (in the cases of microarchi-
tectural analysis and software prefetching). Therefore, there remains a need for
methodologies which allow for comprehensive GC analysis through the microarchi-
tectural lens, with a focus on observability at finer granularities rather than perfor-
mance evaluation. In other words, I wish to understand why rather than if different
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components of GC are effective or ineffective. This is made possible by improved
microarchitectural support, such as PEBS with DLA, and I seek to leverage this.
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Chapter 4

Execution Methodology

The work of this thesis is grounded in empirical analysis and evaluations. In this
chapter, I will detail the standard execution methodology used. Since specific ex-
perimental methodology differs greatly depending on the experiment, I will explain
those where they appear.

4.1 Software Platform

I use a development version1 of the mmtk-corev0.30 release with the OpenJDK
runtime2 using the associated mmtk-openjdk binding3. I build MMTk in release
mode using v1.83.0 of the Rust compiler.

I use 20 diverse, real world, memory intensive benchmarks from 23.11.MR2 main-
tenance release of the DaCapo Chopin Benchmark Suite [Blackburn et al., 2025]. Batik,
jme and tradebeans are excluded because they do not perform GCs at a 3x minheap
size.

For most experiments, I use MMTk’s Immix collector. I use a moderate heap of
3x the minimum heap size (minheap). Descriptions of the benchmarks and their
minheaps on Immix are given in Table 4.1.

For simplicity, I use single-threaded GC by default. This is considered an accept-
able tradeoff for many reasons. Firstly, the work of this thesis focuses on predom-
inantly on understanding GC behaviour and using single-threaded GC allows for
evaluation of a high performance collector while reducing complexities for ease of
understanding. Additionally, GC performance in MMTk scales well [Huang et al.,
2023] and sanity checks on L1 hit rate and L3 miss rate, which are both commonly
used GC performance metrics [Papadakis et al., 2023; Carpen-Amarie et al., 2023],
show that single-threaded GC performs similarly at a hardware level (Table 4.2). The
number of GCs is also identical on all but 3 benchmarks, h2o, spring and tomcat, and
on these, the difference is under 2 %.

The Linux distribution used is Ubuntu 22.04.5 LTS with the 6.8.0-50-generic
kernel. When benchmarking, as many of the background daemons are disabled as

1commit 1abbc89
2commit 28e56ee
3commit 84545cc
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Table 4.1: This table describes the DaCapo Chopin benchmark suite, alongside the minheap
values for Immix [Blackburn et al., 2025]

Benchmark Description Minheap

avrora A simulation and analysis framework for AVR microcontrollers 9

biojava A generator for physio-chemical properties of protein sequences 192

cassandra A highly-scalable partitioned row store 152

eclipse An integrated development environment 250

fop An output-independent print formatter 29

graphchi An ALS matrix factoriser 184

h2 An SQL relational database engine written in Java 1959

h2o An Open source fast scalable machine learning platform 101

jython A python interpreter written in Java 400

kafka A distributed streaming platform 217

luindex A text indexing tool 27

lusearch A text search tool 25

pmd A source code analyser for Java 360

spring A PetClinic application running as a Spring microservice 139

sunflow A photo-realistic rendering system 44

tomcat A Tomcat servlet container 74

tradesoap A Tradesoap SOAP Daytrader benchmark 193

xalan An XSLT processor for transforming XML documents 23

zxing A multi-format 1D/2D barcode image processing library 468

Table 4.2: The L1 hit rates and L3 miss rates of single and multi-threaded Immix are similar.

Metric Single-threaded Multi-threaded

L1 hit rate 97.5 97.7

L3 miss rate 0.23 0.20

possible, and the system is essentially idle outside of the experimental processes. This
helps to reduce variance caused by background noise.

I use the running-ng v0.4.7 platform for benchmarking [Cai, 2024]. I apply the
following JVM arguments when executing benchmarks:

• -XX:+DisableExplicitGC: disables collections triggered by applications

• -XX:MetaspaceSize=500M: sets the metaspace size to avoid metaspace GC

• -XX:+UseThirdPartyHeap: ensures that OpenJDK uses MMTk for memory man-
agement
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For each benchmark, 5 iterations are run to allow the just-in-time (JIT) compiler to
warm up, with results recorded on the final iteration. Unless otherwise specified, 10
invocations are run. This was chosen because it still produces stable results without
dramatically increasing the total running time of experiments or the size of result files.
This was particularly relevant for experiments in Chapter 5, where experiments pro-
duced large sampling data files. For benchmarks with large error, more invocations
are repeatedly performed where effective for error reduction and time permitting.

For all experiments, I take the arithmetic mean over invocations. For direct mea-
surements, I compute the overall result as an arithmetic mean over benchmarks. For
normalised results, a geometric mean is taken as it is the mathematically equivalent
mean in logarithmic space [Fleming and Wallace, 1986].

4.2 Hardware Platform

The machines used in the evaluation are listed in Table 4.3. For the microarchitectural
analysis in Chapter 5, I predominantly use the Coffee Lake machine since my analysis
uses Processor Event Based Sampling (PEBS), which is only available on Intel. For
other key performance evaluations, I use both Coffee Lake ane Zen 4, as these are the
newest AMD and Intel microarchitectures. This allows for a better understanding of
the impact of the choice of hardware on results. For experiments that are not timing
sensitive, machines are used based on availability.

Table 4.3: Processors used in my evaluations.

Architecture Coffee Lake Zen 4 Zen 3 Zen 2

Manufacturer Intel AMD AMD AMD

Model Core i9-9900K Ryzen 9 7950X Ryzen 9 5950X Ryzen 9 3900X

Technology 14nm 5nm 7nm 7nm

Clock 3.6GHz 4.5GHz 3.4GHz 3.8GHz

Cores × SMT 8 × 2 16 × 2 16 × 2 12 × 2

L1D Cache 32KB × 8 32KB × 16 64KB × 16 32KB × 12

L2 Cache 256KB × 8 1MB × 16 512KB × 16 512KB × 12

L3 Cache 16MB × 1 32MB × 2 64MB 16MB × 4

RAM 128GB 64GB 64GB 64GB

Memory type DDR4-2666 DDR5-5200 DDR4-3200 DDR4-3200
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Chapter 5

Microarchitectural Analysis of GC

In Chapter 1 and Chapter 3, I discussed prior work on microarchitectural GC analysis
and prevailing folklore on GC behaviour. I explained how constant, substantial
change in hardware, software and workloads necessitates revalidation of the folklore.
Furthermore, these changes, in conjunction with improved hardware analysis support,
present an opportunity to uncover new GC understandings and discover potential
optimisations. Both require in-depth, fresh evaluation. To that end, in this chapter, I
introduce a new methodology which leverages PEBS (Section 2.5) to attribute latency
to different functions and cache levels, and isolate accesses to heap objects from other
loads. I combine this with existing performance analysis techniques like performance
counters to perform microarchitectural cache analysis. My work provides in-depth
analysis of the memory behaviours of high performance GC on modern hardware and
workloads. I debunk the common belief that GC load latency is dominated by heap
accesses, reveal potential missed opportunities in metadata-targeted optimisation,
and identify that the tracing loop is a key optimisation target.

Note that throughout this chapter, I focus on load performance since this is the
bulk of the memory latency and blind stores are uncommon. However, analogous
work is possible for stores (Section 8.1.1).

5.1 Preliminary Work

In this section, I use existing performance analysis methodologies to examine GC
behaviour on modern hardware and workloads. This work has two main goals.
Firstly, I examine TLB misses and verify that this is not a major limiting factor for GC
performance (for the workloads I evaluate). Next, I examine L1 and L3 misses, which
are traditionally used hardware metrics to analyse GC performance, and explain why
they do not suffice for microarchitectural analysis.

5.1.1 TLB Efficacy

First, I examine the TLB efficacy for loads. To do this, I use record samples of loads
performed by the collector and their associated TLB statuses using the perf mem
tool. I performed this on a Coffee Lake machine (Section 4.2) using the DaCapo
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benchmarks and the Immix collector (Section 4.1). I use a 3x heap size. This machine
has two levels of TLB (L1 and L2) and a miss at L2 triggers a full page table walk
[Intel Corporation, 2023]. The results are reported in Table 5.1.

Table 5.1: During collection time, page walks are uncommon and unlikely to dominate load
performance. This table shows the TLB hit rates and associated latency overheads during GC
time for the Immix collector on Coffee Lake. Results are reported as the geomean over the
DaCapo benchmark suite (2dp).

TLB level proportion of requests (%) attributable overhead (%)

TLB L1 or L2 hit 99.89 98.17

TLB (L2) miss 0.11 1.83

I find a miss rate of 0.11 % in the TLB, which accounts for 1.83 % of latency
cycles (table 5.1. These results indicate that address translation is unlikely to be a
dominating factor in load performance.

5.1.2 Examining L1 and L3 misses

I now focus on understanding GC performance across the memory subsystem. To do
this, I use performance counters to measure standard cache metrics:

• L1 hit rate: This metric gives the proportion of load instructions which hit the
L1 data cache. It is computed as L1 load hits

Total load instructions .

• L3 miss rate: This metric gives the proportion of load instructions to the L3
which miss. It is computed as L3 load miss

L3 load hits + L3 load misses .

• RAM access rate: This metric counts the proportion of total load instructions
which fall the through entire cache subsystem, requiring a RAM access. It is
computed as L3 load misses

Total load instructions .

This follows prior work, such as Papadakis et al. [2023] and Carpen-Amarie et al.
[2023], which predominantly focus on L1 and L3 misses as indicators of GC backend
performance.

To perform this experiment, I use the Coffee Lake machine and take the arithmetic
mean over the results of the DaCapo benchmarks (Section 4.2, Section 4.1). I include
the full suite of collectors, all at 3x minheap. The results are shown in table 5.2.

For each benchmark, I also record the number of GCs and GC time. This gives
a basic characterisation of the GC behaviour of the benchmark. These are shown in
Table 5.3 and Table 5.4.

These metrics give some insight into the cache performance of GC. I find that
all collectors have high L1 hit rates. Moreover, moving collectors, which I expect to
exhibit better locality during tracing, and therefore experience better cache perfor-
mance overall, indeed have higher hit rates, with MarkCompact hitting the L1 cache
in 98.8 % of loads. Interestingly, this effect is not seen when comparing Immix and
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Table 5.2: Key L1 and L3 cache metrics can give high-level insight into GC performance. This
table gives the L1 hit rate, L3 miss rate and RAM access rate of six collectors, reported as the
arithmetic mean over benchmarks. Results are rounded to 3sf.

Metric MarkSweep Immix GenImmix SemiSpace MarkCompact NMImmix

L1 hit rate 97.1 97.5 96.8 97.2 98.9 97.7

L3 miss rate 36.9 34.9 37.7 32.3 32.0 33.7

RAM access rate 0.241 0.204 0.136 0.102 0.0430 0.158

Table 5.3: This table shows the number of GCs (rounded to the nearest integer) performed
by each collector.

Benchmark MarkSweep MarkCompact Immix GenImmix SemiSpace NMImmix

avrora 4 3 14 7 4 3

biojava 19 20 39 48 25 20

eclipse 11 11 21 18 10 10

fop 5 5 11 10 5 5

graphchi 31 28 68 61 31 28

h2 3 5 7 7 4 4

h2o 111 84 126 154 72 62

jython 3 3 6 6 3 3

kafka 6 4 11 8 5 4

luindex 58 38 51 100 43 34

lusearch 775 422 1380 882 472 423

pmd 5 5 14 11 6 5

spring 44 43 56 51 27 28

sunflow 177 180 416 348 195 183

tomcat 55 43 64 77 36 36

tradesoap 2 1 1 3 3 2

xalan 164 87 196 214 104 86

zxing 1 1 2 2 1 1

NMImmix. However on all metrics, these two collectors perform similarly, indicating
that opportunistic copying may not occur frequently enough to noticeably improve
the cache performance. For loads which reach L3, all collectors require a further RAM
access for about one third of L3 loads, with less than 0.25 % of total loads reaching
RAM.

On the surface, these numbers are promising, and suggest good collector locality.
However, I find a number of issues with this approach which limit the ability to easily
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Table 5.4: This table shows the GC time of six key collection algorithms, normalised to
MarkCompact (2sf).

Benchmark MarkSweep Immix GenImmix SemiSpace MarkCompact NMImmix

avrora 0.11 0.088 0.25 0.18 1.0 0.088

biojava 0.12 0.13 0.0072 0.27 1.0 0.13

eclipse 0.089 0.11 0.15 0.14 1.0 0.089

fop 0.11 0.11 0.11 0.19 1.0 0.12

graphchi 0.07 0.069 0.036 0.13 1.0 0.069

h2 0.09 0.21 0.018 0.14 1.0 0.14

h2o 0.17 0.14 0.056 0.21 1.0 0.094

jython 0.033 0.038 0.019 0.051 1.0 0.038

kafka 0.076 0.059 0.026 0.088 1.0 0.056

luindex 0.11 0.075 0.019 0.18 1.0 0.062

lusearch 0.2 0.11 0.23 0.18 1.0 0.11

pmd 0.077 0.087 0.1 0.14 1.0 0.081

spring 0.25 0.29 0.015 0.21 1.0 0.15

sunflow 0.053 0.06 0.038 0.1 1.0 0.059

tomcat 0.22 0.19 0.013 0.25 1.0 0.15

tradesoap 0.3 0.14 0.04 0.36 1.0 0.34

xalan 0.14 0.076 0.24 0.17 1.0 0.074

zxing 0.026 0.03 0.013 0.13 1.0 0.028
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and comprehensively understand GC. First, this naive usage lacks granularity beyond
cache hit rates. This means that it is difficult to understand the exact cost incurred
at each level of the cache hierarchy. While this could be remedied with additional
counters, this approach can still only measure overall GC performance, which makes
it difficult to see understand performance at finer granularities and narrow down
culprits much further. Therefore, there is need for more comprehensive methodology,
which I will develop and use throughout the rest of the chapter.

5.2 Performing Comprehensive Microarchitectural GC Anal-
ysis with PEBS

The preliminary work used existing analysis methodologies to analyse cache be-
haviour for GC, and while I was able to gain good high-level insight into the memory
system, these approaches cannot perform more comprehensive cache analysis for GC.
In this section, I introduce a PEBS-based methodology for identifying and quantifying
the latency overhead of functions in a program. I leverage this to calculate the cache
hit rates and load latency overheads for a program and its constituent functions. This
allows us to perform novel GC performance analysis in Section 5.3.

PEBS is sampling based, and therefore suffers from the limitations of sampling,
including limited fidelity and sampling bias [Huang et al., 2023]. However, in out-
of-order (OoO) CPUs, in order to associate microarchitectural events with concrete
execution contexts, hardware support is necessary. Therefore use of PEBS is crucial
here, and in the following sections, I show that PEBS is able to yield important new
insights despite its limitations.

5.2.1 Methodology

In this section, I introduce a novel methodology for microarchitectural analysis of
load performance of GC. The high-level workflow is shown in Fig. 5.1.

Figure 5.1: This figure depicts the overall methodological workflow for microarchitectural
analysis of GC load performance. Different stages of the methodology are shown in blue,
intermediate data is shown in white, and the final analysis output is given in green.
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Recording Load Data

To generate a profile of memory load instructions, I utilise PEBS with data linear
addressing (DLA). As discussed in 2, DLA provides information about the memory
addresses and latency of accesses. This allows us to record data including the function
where the load was requested from, the requested address, the cache level where the
load was processed and the total load latency.

On the Coffee Lake machine, this is encoded via the load latency field, represented
by "weight" in the perf mem output. Intel defines the field as measuring the core
cycles (accounting for re-dispatches) between dispatch and the final data writeback
from the memory subsystem [Intel Corporation, 2016].

To do this, I use the perf mem tool with arguments -t load to restrict to load
data, -U to hide unresolved symbols and --ldlat 0 to set the minimum sample
latency to 0. It can useful to raise the sample latency for better fidelity on slow loads,
but for the purposes of understanding overall load performance, a representative
sample must be captured, so this sample latency should be at 0. The full command
is: perf mem -t load -U record -U --ldlat 0 -- <prog>.

Additionally, to ensure I can differentiate loads performed by collector and ap-
plication threads, I leverage the fact that perf mem attributes loads to threads, and I
modify MMTk to label the collector threads as MMTk Collector {tid}.

Extracting Load Data

In this section, I detail the specific data extraction process (in hopes that any interested
readers can replicate it themselves).

The raw data is output into a .data file. I extract it into csv format using the
python integration of perf provided by linux6.5. This provides a file perf-script.
py which reads the raw data into a csv.

Since the raw data is very large, I apply additional data processing by modifying
the function process_events:

• Using the command field ("comm"), I filter for samples where the calling threads
are MMTk collector thread. This limits the analysis to work performed by the
garbage collector.

• I extract the data for load latency ("weight"), associated symbol ("symbol"), load
address ("addr"). These will be used to for fine-grained attribution of load
latencies.

• I extract the cache access ("cache_level") field from "datasrc_decode". This is
useful for understanding performance at each level of the cache.

Each entry in the final result is therefore of the form: {"is_collector": False,
"weight": 9, "addr": 18446741874686296288, "symbol": "mmtk::policy::sft_map
::create_sft_map", "cache_level":"LVL L1 hit"}
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Multi-Tiered Microarchitectural Analysis

I introduce a novel approach to microarchitectural analysis. To do this, I first define
four derived metrics which form the basis for my analysis:

1. "Hit rate" is the percentage of accesses to a cache level which record a cache hit.
Specifically, "{cache_level} hit rate = number of {cache_level} hits

number of {cache_level} accesses "

2. "Load proportion" is the percentage of total loads attributable to a cache level.
It is computed as "{cache_level} load proportion = number of {cache_level} hits

total number of loads ". This
metric was used for microarchitectural analysis in Mohror and Rountree [2012].

3. "Latency overhead" is the percentage of total load latency attributable to a
cache level. The precise computation is "{cache_level} latency overhead =
sum of load latency of {cache_level} hits

total load latency ".

4. "Penalty" is the average latency (in core clock cycles) incurred at a cache level.
It is computed as "{cache_level} penalty = sum of load latency of {cache_level} hits

number of {cache_level} hits ".

Using the above metrics, my analysis occurs in three tiers of latency attribution:

• Overall GC performance: I compute hit rate, access proportion and the associ-
ated latency overheads for each cache level across all GC time. This is useful
because, as seen in Section 2.4.3, the load latency achieved is directly correlated
with the cache hit rates at each level of the cache.

• Heap access performance: Next, I examine performance separately for accesses
to heap objects (as opposed to GC metadata or C++/Rust heap/stack). I expect
this to be particularly relevant for workloads with large livesets and complex
object graphs.

• Function level performance: Finally, I examine attribute load latencies to func-
tions, allowing for microarchitectural analysis of individual functions perfor-
mance. This allows identification of performance potential optimisation targets.
The ideas of this analysis tier are similar to Helm and Taura [2019].

5.2.2 Methodological Contribution

Though my analysis methodology is targeted at GC, it is easily adaptable for mi-
croarchitectural analysis of other applications. There are three main advantages of
my approach, which also apply in the context of more general microarchitectural
analysis:

1. Targeted metrics: I provide a concrete methodology which allows GC develop-
ers to quickly gain new insights into cache performance through four important
derived metrics. These provide deeper insights than existing analysis method-
ologies which focus on cache hit rates.
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2. Localising performance problems: My methodology provides rich microarchi-
tectural analysis, allowing for attribution of load latency at both coarse and fine
granualities. This is done using location information such as the thread name,
function name, and memory addresses. This allows for analysis of GC perfor-
mance as a whole, as well as identification of potential targets for optimisation
and computation of optimisation headrooms. It also makes testing performance
optimisations easier, as it can separately analyse the performance of different
functions.

3. Improved accessibility: Precisely understanding hardware events is tricky on
modern CPUs where there is a multitude of PEBS support and limited practical
documentation. Events can also behave in non-obvious ways, which can lead
to incorrect measurements when used naively. For example, Helm and Taura
[2020] found that some Intel Skylake offcore events for total memory accesses
unexpectedly failed to include prefetches. By hiding the boilerplate, my method-
ology helps to address an accessibility issue, helping to make microarchitectural
analysis less tedious and error prone.

In the following two sections, I will apply the methodology to perform microar-
chitectural GC analysis for the Immix collector.

5.3 Microarchitectural GC Analysis of Immixwith Coarse-Grained
Attribution

In this section, I focus on the top two tiers of analysis, namely GC-level performance
and performance of heap accesses. I use the Coffee Lake machine, with reported
results taken as an average over the DaCapo Benchmark Suite.

Table 5.5 gives the results of both tiers of analysis. For ease of comparison,
all the data for GC-level performance is presented as raw results, while the load
proportion and latency overhead for heap accesses is given relative to the overall GC
performance.

Table 5.5: Despite a high L1 hit rate, a disproportionate number of cycles are spent resolving
L1 misses, half of which are to heap objects. This table shows the average cache performance
across the four metrics for the DaCapo benchmarks. Load proportion and latency overhead
for heap accesses are relative to the overall GC performance. All figures are rounded to 3sf.

Cache Level Hit Rate Load Proportion Latency Overhead Average Penalty
All Loads Heap Objects All Loads Heap Objects All Loads Heap Objects All Loads Heap Objects

L1 0.980 0.0223 0.980 2.28% 0.851 2.02% 8.89 7.85

LFB 0.352 0.343 0.00717 50.2% 0.0601 58.7% 90.2 103.5

L2 0.536 0.481 0.00637 45.8% 0.0100 43.1% 15.9 14.9

L3 0.623 0.554 0.0037 50.8% 0.0207 51.1% 59.3 58.4

RAM n/a n/a 0.00236 67.7% 0.0578 67.1% 268 260
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5.3.1 GC-level Analysis

First, I note that the hit rates (about 0.5 % higher) are similar to what I observed
through end-to-end performance counters Table 5.2. This provides a good sanity
check for the analysis, as no clear sampling bias is clear.

I observe that despite only missing the L1 cache 2.00 % of the time, a dispro-
portionate 14.9 % of cache latency cycles are spent resolving these misses (Table 5.5:
100 − 98.00 = 2.00 and 100 − 85.1 = 14.9). This indicates that minimising L1 misses
is important for improved load performance, and suggests that cache optimisation
techniques such as prefetching could be effective. This is particularly crucial for GC,
which is memory intensive and performs many heap accesses across a short period
of time.

Next, I note that while rare, RAM accesses are the most comparatively damaging,
occurring only 0.236 % of the time, but resulting in 5.78 % of latency overhead. The
average latency penalty is 4.52× that of an L3 hit, and 30.1× the penalty of an L1 hit.
This suggests that if an optimisation technique is able to reduce L3 misses, it would
likely improve GC performance.

Examining the latency penalties, I note that nominally, the fastest load-to-use
latencies on this machine are 4 (L1), 12 (L2) and 44 (L3) (Table 2.2). There may also
be delays if the memory queue is full. Moreover, L3 accesses may have high variation
depending on which core the hit occurs at. Keeping these numbers in mind, I expect
slight inflation over the nominal statistics, and therefore find that the numbers appear
to be reasonably consistent.

Another key observation is that LFB hits have a latency penalty which is higher
than L3 hits. Recall from Section 2.4.3 that an LFB hit simply means there exists
existing outstanding misses to the same cache line, so the LFB access latency can be
resolved via any of the lower cache levels (L2, L3 and RAM). While naively, since
L2 and L3 hits are more common, I might expect that the penalty of LFB hits would
be lower, since RAM accesses take longer to resolve, there is a larger window for
further accesses to the existing pending cache lines. This means the proportion of
LFB hits which wait for RAM accesses is likely higher than expected, thus this result
is plausible. Consequently, I expect that any cache optimisation which improves the
L3 hit rate would therefore also reduce the load latency from LFB hits.

5.3.2 An Initial Upper Bound for Optimisation Headroom

I can concretely compute an upper bound estimate for the optimisation headroom
which the top-level results suggest. To do this, I note that if I were able to convert
all L1 misses to L1 hits, then the expected average load latency would be 8.89 cycles,
while currently, the average load latency is 8.89 × 0.980 + 90.2 × 0.00717 + 15.9 ×
0.00637 + 59.3 × 0.0037 + 268 × 0.00236 = 10.31 cycles. This gives us about 13.8 % of
load latency optimisation headroom (8.89/10.31).
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5.3.3 Focusing on Heap Accesses

I now focus on the load performance of the collector threads when accessing the heap,
ignoring for now other access such as access to stack and metadata.

I find that around half of L1 misses and L1 miss latency overhead occurs on heap
accesses, which account for 48.09 % and 58.45 % of these respectively. This indicates
that a large proportion of the optimisation headroom may be attainable through
optimisations within MMTk targeting heap accesses. As above, RAM accesses and
LFB hits appear to be key bottlenecks. Interestingly, the latency for all other cache
levels are slightly improved, though this may simply be variance in access penalty.

5.3.4 Frequency of Heap Accesses

A surprising result is that only 2.23 % of L1 hits were heap accesses. In particular,
I compute that only 2.28 × 0.980 + 50.2 × 0.00717 + 45.8 × 0.00637 + 50.8 × 0.0037 +
0.00236× 67.7 = 3.23 % of total loads are accesses to heap objects. This number appar-
ently contradicts the intuition that GC threads spending most of the time accessing
the heap. I break down the plausibility and implications of this result in this section.

To understand how this result may be possible, I first acknowledge that there may
be sampling biases and other observer effects which I was unable to isolate. With this
in mind, I now focus on L1 hits which are not to the heap and examine the functions
which are the most commonly load sources (> 2 % of L1 hits). These are given in
Table 5.6.

Table 5.6: Seven key functions make up 93.0 % of L1 hits which are not accesses to heap
objects. All results are given as 3sf.

Function % L1 accesses

ProcessEdgesWork::do_work 31.7

side_metadata_access 27.3

trace_object 14.1

oop_iterate 7.2

get_descriptor_for_address 6.9

mark_lines_for_object 3.6

SweepChunk::do_work 2.2

In order to explore the results further, I must first explain each of the functions
featured in this analysis. This is given in Table 5.7.

I now attempt to understand what each of the functions may load outside of the
heap. This gives confidence in the plausibility of the result.

For side_metadata_access, these are clearly side metadata accesses. However,
I note that the number of side_metadata_access L1 hits may be slightly inflated
because the spin loop inside the access can may generate extra accesses if some
threads spin in the CAS loop, which is responsible for atomic marking, too long.
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Table 5.7: This table summarises the functions which, together, are responsible for majority
of load latency.

Function Purpose

ProcessEdgesWork::
do_work

This function is responsible for defining the work per-
formed during the tracing loop for tracing work pack-
ets. Each packet maintains a mark stack which collector
thread processes.

side_metadata_access This function is a wrapper for all accesses to the side
metadata.

trace_object This function traces an object, scanning it for additional
edges that need to be processed.

oop_iterate This function implements object scanning for the Open-
JDK binding.

get_descriptor_for_address This function retrieves the space descriptor for a given
address.

mark_lines_for_object This function marks all the Immix lines which an object
spans.

SweepChunk::do_work This function is responsible for sweeping chunks of
memory to the global pool during reclamation.

Additionally, in MMTk, this loop currently has an extra load in it which can be
removed (it loads the metadata once at L762, and loads the same value again in
the function call at L772). An unpublished evaluation by Wenyu Zhao found that
removing it leads to a performance improvement. This side metadata is likely also
be the source of the L1 accesses in trace_object, since it runs the same CAS for
marking. This indicates those numbers may also be inflated.

For ProcessEdgesWork::do_work, when tracing, the collector manages the mark
stack which reside in the ProcessEdges packets. These reside on the rust heap. Since
MMTk uses dual enqueuing, this may also double the stack size. Additionally, al-
though objects must be loaded to perform object scanning, once an object is marked,
revisits to this object can simply check the mark bit, which resides in side metadata,
and so do not require heap accesses.

For oop_iterate and mark_lines_for_object, I expect that the accesses are to
OpenJDK class metadata, since these functions must inspect that to determine the
object fields of objects. This metadata lives outside the heap.

For get_descriptor_for_address, it accesses the space descriptor map, which
records which space an object resides in. This is stored on the Rust heap. Finally for
SweepChunk::do_work, the collector touches metadata, including live and forwarding
bits.

This result has multiple implications for how GC developers understand and ap-
proach GC optimisations. An important design parameter of Immix is the line size,
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which was chosen with cache line locality in mind, and thus, it might be worth revis-
iting this design decision [Blackburn and McKinley, 2008]. Also, any optimisations
that focus on improving heap accesses, such as prefetching heap objects, are unlikely
to be particularly effective. This is significant as much optimisation effort is targeted
at heap accesses, in part due to prevailing wisdom that GC frequently accesses the
heap. Given the low frequency of heap accesses, these results indicate possible missed
opportunities in improving the latency of various metadata accesses or even moving
away from load latency targeted optimisations.

The analysis also amplifies potential latency issues in implementations. For exam-
ple, the high number of L1 hits in side_metadata_access and trace_object point to
frequent metadata accesses in the shared CAS loop; this makes identifying the extra
load much easier.

5.3.5 Impact of Workload

Having analysed the overall GC performance, I now examine the variance among dif-
ferent benchmarks and attempt to draw connections between the cache performance
and the workload characterisation. I focus on L1 misses. The GC latency overhead
attributable to each cache level is shown in Section 5.3.5.

Figure 5.2: L1 misses are responsible for around 15 % of the latency overhead on average,
however this number is sensitive to the choice of workload. This plot gives the breakdown
of the total latency overhead attributable to different cache levels, omitting L1. For cleaner
visualisation, I use percentages given to 1dp here.

I immediately notice three outliers in size: biojava, where L1 cache misses only
contribute to about 2.2 % of the latency overhead, and h2, where the latency overhead
contribution is around 26.8 %. I examine these benchmarks in further detail.

In Table 5.8, I present the results of the microarchitectural analysis for biojava.



§5.3 Microarchitectural GC Analysis of Immix with Coarse-Grained Attribution 39

Table 5.8: The efficacy of biojava is likely explained by a high L1 hit rate of 99.40 %. This table
presents the cache hit rates, load proportions, latency overheads and average penalties for
biojava. All figures are given to 3sf.

cache level hit rate load proportion latency overhead average penalty

L1 0.994 0.994 0.978 8.51

LFB 0.164 0.000932 0.00671 62.3

L2 0.888 0.00421 0.00706 14.5

L3 0.663 0.000351 0.00238 58.7

RAM n/a 0.000178 0.00603 292

I find that the small latency overhead is due to high hit rates at all cache lev-
els. In particular, biojava has a very high L1 hit rate of 99.40 %. This result makes
sense due to the characterisation and behaviour of the benchmark. Biojava simulates
physio-chemical properties of protein sequences. The accesses to the reference ar-
ray (biological sequences) exhibits regularity (streaming access), and there are only
few unique referent (nucleotides), which are likely to reside in the L1 cache. Conse-
quently, hardware prefetching is likely to be effective, further improving the cache
performance. Moreover, since the optimisation headroom for biojava is so small, soft-
ware prefetching schemes for the tracing loop are unlikely to be effective. I discuss
these in greater detail in Section 7.2.2 and Section 6.3.2.

Next, I examine h2 in greater depth. The results are shown in Table 5.9.

Table 5.9: h2 has an unexpectedly high number of LFB hits and RAM accesses, both with high
average penalties. This table presents the cache hit rates, load proportions, latency overheads,
and average penalties for h2, given to 3sf.

cache level hit rate load proportion latency overhead average penalty

L1 0.977 0.977 0.732 10.6

LFB 0.409 0.00937 0.105 158

L2 0.221 0.003 0.00336 15.9

L3 0.33 0.00348 0.0169 68.3

RAM n/a 0.00706 0.143 286

For both h2, RAM accesses are the likely culprit. I note that h2 is an outliers with
0.706 % of accesses reaching RAM, resulting in a latency overhead of 14.3 % from
these accesses alone. It also has a high number of LFB accesses (0.937 % of loads)
which occupies a further 10.5 % of the latency overhead. The LFB penalty of 158
cycles is also much higher than the average of 90.2 cycles across the entire benchmark
suite (Table 5.5), indicating that a large number of these hits likely need to wait for
RAM accesses. Therefore, in reality, the overhead due to RAM accesses (from both
true RAM accesses and LFB accesses which wait for RAM) is likely closer to 20 %.
I also note that the hit rates for LFB, L2 and L3 are lower than the average across
benchmarks.
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The benchmark characteristics may explain this behaviour. h2 performs queries
over an in-memory database with a very large object graph. This means that the
liveset is quite large and less of it will fit in cache. Additionally, this means there are
many work items, resulting in more accesses when handling work queues.

5.3.6 Examining Heap Accesses of Different Workloads

I now perform the per benchmark analysis focusing on heap accesses. Fig. 5.3 presents
the percentage of the total latency overhead attributable to heap accesses.

Figure 5.3: Despite only occurring 3.23 % of the time, accesses to heap objects are responsible
for 10.9 % of total load latency. Moreover, this varies for different workloads. For each
benchmark, this figure shows the percentage of total load latency cycles occupied by accesses
to heap objects for each cache level. Results are rounded to 1dp.

First, I note that for all benchmarks, L1 heap hits contribute to a very small
proportion of the latency overhead. This reinforces the previous result (Section 5.3.3
that while rare, heap accesses tend to exhibit much worse locality.

Next, examining outliers, I find that once again, biojava is an outlier in perfor-
mance, with around 2.5 % of load latency attributable to accesses to heap objects.
Moreover, the majority of this already small overhead is in L1 hits. This confirms that
any heap-based cache optimisations are unlikely to benefit biojava.

On the other end of the spectrum, eclipse, jython, pmd and tradesoap all have a
relatively high percentage of the total latency overhead attributable to L1 misses
on heap accesses. Here, the key reason is that heap accesses are responsible for a
larger proportion of the latency overhead of LFB hits and RAM accesses, as seen in
Table 5.10. This is compounded by the fact that for all of these benchmarks, LFB
hits and RAM accesses already account for a large proportion of the total latency
overhead (Section 5.3.5).
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Table 5.10: Focusing on outlier benchmarks, this table shows the proportion of the latency
overhead at each cache level which is attributable to heap accesses (3sf). For example, heap
accesses account for only 3.20 % of L1 latency experienced by GC when running the eclipse
benchmark, but 74.8 % of RAM latency.

cache level eclipse h2 jython pmd tradesoap mean

L1 0.0320 0.00857 0.0139 0.0215 0.0219 0.0202

L2 0.382 0.170 0.318 0.421 0.387 0.431

L3 0.363 0.354 0.593 0.581 0.502 0.511

LFB 0.750 0.457 0.692 0.696 0.671 0.587

RAM 0.748 0.453 0.807 0.775 0.748 0.671

For example, for eclipse, RAM accesses to heap objects are responsible for 5.6 %
of the total latency cycles. This is because RAM accesses already account for 7.4 % of
total latency cycles, and of these accesses, 74.8 % of them are to objects in the heap.

Interestingly, h2, which was an outlier in the overall GC latency overhead, was
closer to the mean when focusing on heap accesses. This is also explained by examin-
ing the proportion of the latency overheads of each cache level which was attributable
to heap accesses; h2 is well below average on every cache level here. This may be
due to relatively good cache locality on heap accesses, or relatively poor locality on
stack and metadata accesses. The latter seems plausible due to the frequency of large
work packets, which can result in a large number of non-heap memory accesses due
to queue operations. This may represent an opportunity for optimisation.

5.4 Fine-Grained Microarchitectural GC Analysis of Immix

I now perform fine-grained analysis and examine function level results. I hypothesise
that majority of the collector latency overhead occurs in the tracing loop, where the
irregular pointer chasing results in frequent accesses to metadata (for marking), heap
objects (for scanning) and other side structures (for processing tracing work queues).

I present the results for the functions which initialise the most load accesses in
Fig. 5.4, which presents the percentage of accesses at each cache level which each
function is responsible for, and Fig. 5.5, which presents the percentage of latency
overhead at each cache level which each function is responsible for. The percentage of
total load accesses and load latency respectively are given in the right-most column
of both figures. I focus on Fig. 5.5 since this maps directly to load performance, and
thus, collector performance, but Fig. 5.4 is included for completeness/reference.

Note that almost all of the functions are the same as in Section 5.3.4, so I refer to
the descriptions given there. The only difference is that the function is the aggregation
of all instances of the do_work function from other work packet types. I include it
mainly to illustrate that the bulk of loads when processing work packets occur during
tracing; this is unsurprising since tracing dominates GC time [Huang et al., 2023]. I
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Figure 5.4: Loads called from seven key functions dominate accesses to all cache levels. This
figure shows the breakdown of accesses at each cache level attributable to each function.
Results are given to 1dp.

Figure 5.5: Loads called from seven key functions dominate the latency overhead of all cache
levels. This figure shows the breakdown of the percentage of latency cycles at each cache
level attributable to each function. Results are given to 1dp.
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also include, in grey, the aggregation of all other load accesses.

5.4.1 Analysing Function Level Results

I now analyse the results of Fig. 5.4 and Fig. 5.5. I first observe that over half of the
total load latency is attributable to two functions, ProcessEdgesWork::do_work and
side_metadata_access. Naively, this seems to indicate that these should both be the
focus of optimisation efforts, however, the optimisation opportunities are actually
very different.

Focusing first on ProcessEdgesWork::do_work, I observe that it accounts for
33.6 % of load latency. Moreover, L1 hits from this function are responsible for approx-
imately 31.7 % × 85.1 % = 25.8 % of total load latency. Therefore, from this function
alone, there is about 33.6 − 25.8 = 7.8 % of load optimisation headroom. I will com-
pute this number more precisely when I examine ProcessEdgesWork::do_work in
depth in Section 5.4.2.

Next, I examine side_metadata_access, which accounts for 30.5 % of load latency.
However, L1 hits from this function are responsible for 33.8 % × 85.1 % = 28.8 % of
total load latency. This means the headroom is actually fairly small (30.5 − 28.8 =
1.7 %), and therefore, this is probably not a worthwhile optimisation target. This is
unsurprising since side metadata is very dense, so good locality is expected. The
hardware prefetcher is also likely to be effective here. Another contributing factor
could be that the removable load in the CAS loop, which I discussed in Section 5.3.4,
is inflating the number of accesses called from side_metadata_access.

trace_object, oop_iterate and get_descriptor_for_address are the next three
functions. They are all predominantly dominated by L1 hits, indicating that these
have good cache locality as well. Thus, they are also unlikely to be worthwhile
optimisation targets.

mark_lines_for_object is interesting. It contributes to 4.4 % of total load la-
tency, including 30.1 % × 6.01 % = 1.8 % of total load latency from LFB hits. Ex-
amining Fig. 5.4 tells us that only 25.1 % of LFB hits are from accesses called by
mark_lines_for_object, indicating that most likely, more than usual of these wait
for RAM accesses.

Indeed, checking the average penalty for LFB hits from mark_lines_for_object,
I find that it is 108 cycles, which is 19.7 % higher than the average LFB penalty (90.2
cycles, from Table 5.5) and 82.1 % higher than the average L3 penalty (59.3 cycles, also
from Table 5.5). This is slightly surprising since RAM accesses from this function
are very infrequent. One explanation could be that adjacent load requests occur
in high density. This would mean the first load would trigger a RAM access, but
the subsequent ones would be slow LFB hits. If the density is high enough, some
subsequent accesses may even need to wait for LFB slots, which would further worsen
the load latency.

From the analysis, I conclude that the best candidate for further optimisation
efforts is ProcessEdgesWork::do_work and the tracing loop. Indeed, this is the focus
of prior work, such as scalability studies and software prefetching for tracing collec-
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tors [Huang et al., 2023; Atkinson, 2023] and in Chapter 6, I will examine software
prefetching for the tracing loop.

5.4.2 Deep Dive: ProcessEdgesWork::do_work and the Tracing Loop

In this section, I explore the cache performance of ProcessEdgesWork::do_work fur-
ther. To do this, I examine the cache analysis results of ProcessEdgesWork::do_work
across different workloads and collector algorithms.

Impact of Workload

First, I examine the percentage of total loads and load latency which is caused by
ProcessEdgesWork::do_work. The results are shown in Table 5.11.

Table 5.11: For each benchmark, this table gives the percentage of total load accesses and the
associated percentage of load latency overheads which are attributable to ProcessEdgesWork
::do_work. Numbers are given to 3sf.

Benchmark L1 hit LFB hit L2 hit L3 hit RAM access Total
Access Overhead Access Overhead Access Overhead Access Overhead Access Overhead Access Overhead

avrora 32.6 29.5 0.123 0.454 0.385 0.639 0.210 1.13 0.0875 2.40 33.4 34.1

biojava 41.3 44.6 0.0398 0.342 0.367 0.601 0.0211 0.138 0.0155 0.531 41.8 46.3

eclipse 33.7 25.4 0.309 2.40 0.459 0.611 0.145 0.751 0.219 5.67 34.8 34.8

fop 30.7 24.3 0.254 2.21 0.517 0.777 0.263 1.47 0.233 6.42 32.0 35.1

graphchi 28.8 25.2 0.154 0.718 0.806 1.27 0.0750 0.420 0.125 2.81 29.9 30.4

h2 32.0 18.1 0.320 3.48 0.135 0.147 0.251 1.22 0.525 10.8 33.3 33.7

h2o 32.1 28.6 0.440 2.53 0.564 0.860 0.150 0.874 0.103 2.63 33.3 35.5

jython 28.4 20.0 0.379 2.59 0.452 0.613 0.377 2.12 0.304 6.41 29.9 31.7

kafka 28.5 21.2 0.313 2.56 0.417 0.590 0.331 1.89 0.207 5.13 29.7 31.4

luindex 30.4 26.0 0.285 1.09 0.613 0.985 0.144 0.856 0.0640 1.89 31.5 30.9

lusearch 30.4 25.1 0.241 1.38 0.403 0.638 0.220 1.39 0.115 3.07 31.3 31.5

pmd 33.3 25.0 0.533 4.45 0.413 0.605 0.348 1.92 0.215 5.71 34.8 37.7

spring 30.8 21.8 0.196 2.08 0.233 0.334 0.237 1.55 0.279 7.06 31.7 32.8

sunflow 28.9 25.2 0.427 1.88 0.700 1.09 0.0709 0.394 0.0792 2.35 30.2 30.9

tomcat 29.6 22.9 0.172 1.56 0.284 0.435 0.315 1.72 0.183 4.53 30.5 31.2

tradesoap 30.5 21.9 0.381 3.15 0.405 0.537 0.266 1.52 0.274 6.75 31.9 33.9

xalan 35.6 32.1 0.815 3.66 0.554 0.857 0.226 1.20 0.107 2.60 37.3 40.5

zxing 22.2 16.7 0.120 0.563 0.419 0.585 0.319 2.00 0.120 2.99 23.2 22.8

mean 31.1 25.2 0.306 2.06 0.451 0.677 0.221 1.25 0.181 4.43 32.3 33.6

I also examine the percentages of the load latency of ProcessEdgesWork::do_work
which is attributable to each load level, shown in Fig. 5.6. This helps give an indication
on which benchmarks exhibit locality for tracing.

I first examine the RAM accesses and identify a number of outliers. On the
low end, only 0.531 % of the RAM load latency of biojava is from ProcessEdgesWork
::do_work. Examining biojava further, I find that it is also a big outlier in that
ProcessEdgesWork::do_work is responsible for 46.3 % of the total load latency of the
benchmark. I notice that biojava has the highest proportion of L1 hits by far, though
this is not unexpected given the benchmark’s high hit rate (Section 5.3.5).

On the high end, h2 has a RAM latency overhead of 10.8 % from ProcessEdgesWork
::do_work alone. In Section 5.3.5, this benchmark was an outlier in RAM latency
overheads. Comparing the overheads, I conclude that ProcessEdgesWork::do_work
is the main culprit for the RAM overheads. However, this story is not the same for
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Figure 5.6: The attribution of the load latency of ProcessEdgesWork::do_work to different
cache levels for each benchmark is an indicator of which workloads exhibit good locality
during tracing. All numbers are given as percentages rounded to 1dp.

LFB latency overheads, which were 10 % overall, but are only 3.48 % when isolating
to considering ProcessEdgesWork::do_work. This suggests that other functions may
be bigger culprits for the LFB overhead of h2.

Other interesting benchmarks are graphchi and sunflow, which have high latency
overheads of 1.09 % and 1.27 % on L2 hits from ProcessEdgesWork::do_work. This is
due to a larger proportion of L2 hits (0.806 % and 0.700 %). However, both also have
a low numbers of L3 hits (0.0750 % and 0.0709 % of accesses on the respective bench-
marks) and RAM accesses (0.12 % and 0.08 %), and consequently, low L3 overheads
of 0.420 % and 0.394 % and low RAM overheads of 2.81 % and 2.35 %. This seems
to indicate that on these benchmarks, ProcessEdgesWork::do_work has good locality.
Examining the relative percentages of ProcessEdgesWork::do_work accesses in each
cache level (Fig. 5.6) for these functions further supports this. I also notice another
benchmark luindex, which possibly also exhibits good locality.

Optimisation Headroom

Having concluded that ProcessEdgesWork::do_work is a possible optimisation tar-
get, I compute the optimisation headroom for ProcessEdgesWork::do_work. This
is given by first computing the current average penalty for each benchmark. This
is given by taking the weighted sum over cache levels, using the proportion of ac-
cesses as the weight. Then, an optimal penalty is computed by replacing all latency
contributions from ProcessEdgesWork::do_work by the average L1 hit penalty for
ProcessEdgesWork::do_work for that benchmark. In other words, this computes the
new average penalty if all L1 misses could be turned into L1 hits, assuming that
the L1 hit penalty remains constant1. Comparing the speedup (1 − optimal

current gives the

1I find that this is not the case for software prefetching, which I discuss in Section 6.4.3
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headroom.
To illustrate the idea, I give a toy example here. Assume that I have a benchmark

which has load attribution given in Table 5.12. For simplicity, I assume all accesses
are L1 or L2 hits, or RAM accesses.

Table 5.12: Load attribution of a toy example. I write PE for ProcessEdgesWork::do_work
to make the table fit.

Level PE on L1 PE on L2 PE on RAM not PE on L1 not PE on L2 not PE on RAM

% of Accesses 20 10 5 35 20 10

Average Penalty 12 20 200 10 30 150

Then, the current average penalty is 0.2 × 12 + 0.1 × 20 + 0.05 × 200 + 0.35 ×
10 + 0.2 × 30 + 0.1 × 150 = 38.9 cycles. However, the optimal headroom achievable
through optimisation of ProcessEdgesWork::do_work is 0.2 × 12 + 0.1 × 12 + 0.05 ×
12 + 0.35 × 10 + 0.2 × 30 + 0.1 × 150 = 28.7 cycles. Therefore, the optimisation head-
room is 1 − 28.7

38.9 = 0.26, or 26 %.
The results are given in Table 5.13.
I note that the headroom I compute here is as a percentage of total load latency,

rather than total GC speedup. The headroom in wall clock time is likely smaller,
though the exact conversion is difficult to determine because of the complexity of
modern processors. This is because reduced load stalls can change pipelining be-
haviours and in turn speed up other non-load instructions. A rough guideline I use
is that nominally, the DaCapo benchmarks are roughly 45 % memory bound when
run with the G1 garbage collector. So I estimate the GC time headroom to be close to
half.

5.5 Other Microarchitectural Investigations

In this section, I discuss other non-central work towards understanding the microar-
chitectural performance and behaviour of GC. I include this work both for complete-
ness and in hopes that they may be insightful in understanding other use cases of
these tools.

5.5.1 Misses by Cache Line

I used PEBS to examine the distribution of misses by cache line. This is possible
with DLA because each cache miss is recorded alongside its precise address, so the
associated cache line can be calculated.

I observed that cache misses were often concentrated on a few lines, which could
indicate a high number of conflict misses. One possibility for this could be that
the cache design and placement policy is too restrictive, leading to possible cache
inefficiences for GC.
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Table 5.13: For each benchmark, this table computes the current optimisation headroom
of ProcessEdgesWork::do_work as a percentage of total latency cycles (3sf). For example,
perfectly converting all L1 misses to hits for avrora would improve total load latency by 3.90 %.

Benchmark Penalty Headroom (%)
Current Optimal

avrora 8.87 8.52 3.90

biojava 8.65 8.55 1.13

eclipse 11.1 10.2 8.58

fop 9.90 8.92 9.87

graphchi 9.10 8.71 4.20

h2 14.1 12.0 15.0

h2o 9.63 9.07 5.77

jython 11.2 10.0 10.6

kafka 10.8 9.80 9.22

luindex 9.18 8.82 3.87

lusearch 9.75 9.19 5.67

pmd 10.8 9.59 11.6

spring 11.2 10.1 10.4

sunflow 9.36 8.92 4.61

tomcat 10.1 9.34 7.50

tradesoap 11.4 10.1 11.0

xalan 10.1 9.39 6.78

zxing 10.4 9.82 5.41

mean 9.47 8.67 8.50

However, this hypothesis is simply speculation and could only be easily tested
in simulators, which are not representative of the full tradeoff space. Moreover,
the distribution of cache misses are many degrees removed from GC performance,
and what is being observed is a high order effect. Thus, it was difficult to conclude
anything from this with regards to GC behaviour. However, I believe these capabilities
may be useful for testing the correctness and performance of cache implementations
and optimisations.

5.5.2 Last Branch Record (LBR)

Prior to exploring PEBS, I attempted to leverage LBR for precise latency measure-
ments of key code sections. In this section, I explain what LBR is, how it works and
its integration into MMTk, and its limitations for my work.
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Background

Some Intel CPUs have several Model Specific Registers (MSRs) called Last Branch
Records (LBR) which hold a fixed-size ring buffer of the most recent branch decisions
[Bakhvalov, 2018]. The CPU can log branches in parallel to executing instructions with
zero performance penalty. These registers can be read, albeit at a small penalty, so by
collecting a sample, they provide a useful tool for reconstructing and understanding
the program’s behaviour and control flow. For example, LBR can be used to generate
a histogram of hot branches, or understand the typical penalty of taking a slow path.
On Coffee Lake, LBR holds 32 branches [Intel Corporation, 2019].

Integration into Heapdumps

I use an LBR analysis toolchain built into an internal testing and development envi-
ronment called heapdumps [Cai et al., 2025]. The heapdump environment consists of
a collector which completes graph traversal on a heap. No collection is performed.
There is also no copying and weak references are not supported. The heaps are
generated from snapshots of different collection cycles from runs of the DaCapo
benchmarks.

While the simplicity of heapdumps does make it a "best case" scenario, so not
all performance gains may be transferrable to MMTk, the advantages make it an
excellent prototyping environment. The heapdump environment has no mutator, no
collection work, and no other aspects of a fully-fledged JVM which I need to integrate
with, making it easier to modify and quicker to run. Targeted testing and debugging
is also simple since more pathological heaps can be generated and used.

The tool maintains two structures: Branches, which are potential exit points
encoded by the branching point and a set of targets, and Blocks, which consist of
an entry point and a series of possible Branches. Then, to perform analysis, the tool
considers all start and end instruction points, and performs DFS to determine all
possible execution paths and their associated statistics.

Issues and Takeaways

I attempted to use LBR to time subsections of the tracing loop. However, I found
this difficult because the ring buffer size limitations prevented us unwinding to a
sufficient depth to analyse the entire tracing loop. Therefore, I did not pursue LBR
approaches further in my work.

Though my experience was eventually unfruitful, I found that the LBR tool pro-
vides an easy interface for previously difficult analyses such as precise machine
timing of (shallow enough) code sections, estimating branching probabilities and
understanding execution counts and distributions of basic blocks.
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5.5.3 LFB Full Counters

The performance counter L1D_PEND_MISS:FB_FULL measures the number of stalls
caused by waiting for a line fill buffer slot. One idea I had was to examine the ratio
FB_FULL
L1D_MISS . This indicates how many L1 load misses may be held up by full LFB slots.
Additionally, it would be interesting to understand the concentration of when full
LFB slots occur to identify points of high demand.

However, this requires first filtering the FB_FULL counts for load misses only
(since stores also go through the LFB), and this counter is not supported by PEBS,
making it difficult to determine the associated operation. Therefore I do not pursue
this idea further or perform important systematic experimentation, simply noting a
few interesting observations below:

Observation 1: The ratio FB_FULL
GC is sensitive to heap size

Examining the ratio for 9 different multipliers between 1x and 6x, using the default
spread factor in running-ng2, I find that for Immix, there is a slight dip from 1×
minheap, and then the ratio increases close to linearly.

I see two possible explanations for the increase in ratio from moderate heaps
onward. First, when the heap is larger, fragmentation may be more severe. In
particular, this means that more cache lines might be touched, requiring more use of
the LFB. Another possibility is that there may be misses deeper in the cache hierarchy.
Since these take longer to resolve, which results in more blocking in the LFB. I do not
explore these possibilities further in interest of focusing on other investigations, but I
note in the event of unexpectedly poor load or prefetch performance, this could be
something to reconsider.

The drop off from 1× heap is trickier to explain. I hypothesise that the collection
algorithm, Immix, may be the cause. Immix has opportunistic defragmentation which
fails to account for traversal order locality when moving objects. This might be
altering the cache behaviours, causing a higher density of misses. Another possibility
is that due to the large number of GCs, there might be higher mutator cache pollution,
resulting in more pressure on the LFB each GC.

Observation 2: The ratio FB_FULL
GC is sensitive to collection algorithm

Examining the same ratio on, SemiSpace and MarkCompact, I find that the behaviour
differs when the collection algorithm is different. On SemiSpace, the ratio sees a large
drop off between 1× and 1.5× heap, but is near constant after. Meanwhile, the ratio
for MarkCompact stays fairly flat throughout, with a few benchmarks experiencing a
slight linear ratio increase.

2This means the gaps are smaller at the start and coarser at the end
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5.6 Summary

In this chapter, I introduced a novel methodology for microarchitectural analysis of
GC performance which provides fine-grained attribution of load latencies to functions,
cache levels, and memory segments (heap objects). Leveraging this methodology, I
performed in-depth microarchitectural analysis of the cache behaviours and perfor-
mance characteristics of GC.

I found that L1 misses are uncommon but expensive, accounting for only 2.00 %
of all loads, but 14.9 % of load latency cycles. Moreover, GC cache performance is
sensitive to the workload, with load latency overheads as low as 2.2 % on biojava, and
as high as 26.8 % on h2. I note hardware prefetcher efficacy may be a relevant factor
here, and investigate this further in Chapter 7.

Surprisingly, I discovered that heap accesses are responsible for only 3.23 % of
loads and 10.9 % of load latency. This has implications for GC optimisations, including
possible re-evalutation of Immix line sizes (Section 8.1.7) and potential optimisation
opportunities targeting metadata (Section 8.1.10).

By attributing load latencies to individual functions, I also identified that the
tracing loop is a key optimisation target, with around 9 % of load latency optimisation
headroom. This work indicates that the tracing loop may benefit from software
prefetching, which I investigate further in Chapter 6.



Chapter 6

Software Prefetching for GC

In Chapter 5, I introduced a new microarchitectural analysis methodology for GC,
and used it to thoroughly evaluate GC performance. Of particular interest, I found
potential headroom for performance optimisations in the tracing loop. Tracing GC
algorithms have bad locality due to irregular pointer chasing, and one possible opti-
misation which targets this is software prefetching. In Atkinson [2023], an empirically
determined prefetching scheme for tracing GC was determined. However, this work
was completed in a tracing framework, called auxiliary tracing, rather than in the con-
text of a fully-functional collector. In this chapter, I implement Atkinson [2023]’s GC
prefetching scheme in MMTk. I leverage microarchitectural analysis to investigate
its performance and explore opportunity for further optimisations, focusing on the
Immix collector.

6.1 Implementing Edge and Object Prefetching in MMTk

I implement software prefetching for edges and objects in MMTk based on schemes
described in Atkinson [2023]. These schemes uses the PREFETCHNTA instruction,
which is described in Section 2.6.2. This instruction is use to indicate a non temporal
prefetch for data that is only used once. I focus on load prefetching only. For
concision, I will simply write prefetching to refer to this for the remainder of this
chapter.

The prefetching scheme targets two primary accesses during tracing. These are:

• A memory access when loading the slot to obtain the object reference. This can
be prefetched in the slot processing queue1. This type of prefetching is called
edge prefetching.

• A memory access when loading the object to scan the field. This can be
prefetched in the slot scanning queue2. This type of prefetching is called object
reference prefetching.

1https://github.com/mmtk/mmtk-core/blob/a592f872f46172b2834228104cfcda3672c3d6ab/src/scheduler/
gc_work.rs#L637

2https://github.com/mmtk/mmtk-core/blob/a592f872f46172b2834228104cfcda3672c3d6ab/src/scheduler/
gc_work.rs#L838
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I use an object reference prefetch distance of 16 and an edge prefetch distance of 32,
which were empirically optimal values in Atkinson [2023]. For both implementations,
I check the assembly to confirm instructions are inserted.

6.1.1 Minor Modifications for Prefetching Support

In MMTk, edges and object references are VM-specific constructs, which are decoded
into memory addresses during GC time, and hence I implement prefetching on
the Address type for generality. This also allows for easy extensibility to future
prefetch targets, such as metadata. Consequently, implementing prefetching for
MMTk requires only a few minor changes:

1. Implementing a function to prefetch a given address

2. Using this function to implement prefetching for edges and object references

3. Adding prefetching to the tracing loop

6.2 Preliminary Checks

I perform a few preliminary checks to ensure there are no clear issues with the
prefetching implementation.

6.2.1 Instruction Footprint

I first verify that adding prefetching does not greatly increase the number of instruc-
tions which must be consumed. This is important because due to the complexity of
compiler optimisations, innocent seeming refactors can change behaviour. Examples
include dramatically increased instruction count or triggering slow path entries more
frequently. This can result in prefetching at the right place and distance without
seeing the expected performance gains [Garner et al., 2007].

To do this, I measure the difference in the number of instructions which are
retired when adding software prefetching and find that 0.8 % of retired instructions
are prefetches, and in total, 3.2 % more instructions are retired.

6.2.2 Overhead of Issuing Prefetches

In Atkinson [2023], the overhead of issuing only zero prefetches, which is prefetching
immediately before use, was around 0.1 %. This indicates that the underling mech-
anism, when performing no useful work, has low overhead. Low cost of prefetch
issuance opens the door for use of software prefetching to help resolve other key
cache bottlenecks, such as work packet processing and forwarding. Therefore, it is
important to verify this result in MMTk. To do this, I keep the same prefetching setup,
but set the prefetch distance to zero for both edge and object prefetching. This means
that the prefetch instruction is issued immediately before the load, so the difference
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in GC time is attributable to the cost of issuing the prefetch. I perform the experiment
on the Zen 4.

I find that the prefetch issuance overhead remains low at 0.09 %. This result is
promising, and indicates that software prefetching may be feasible for improving load
performance of other crucial functions. Outlier benchmarks include h2 and avrora,
where the overheads are 15.8 % and 5.3 % respectively. While these are significant
overheads, the characteristics of the benchmarks can provide additional insight into
why they might have occurred.

The main culprit for h2 is likely variance in the number of GCs (between 4 and 5).
In particular, when holding the number of GCs fixed, the build with zero prefetching
is actually marginally faster. This is partially explained by an inflated minheap
in MMTk for h2, which causes each extra GC to be expensive. Another possible
explanation is that h2 is memory intensive, and so, by issuing an extra useless prefetch
for each load, the increased memory pressure could be a reason for the slowdown.
I debunk this using VTune by examining the memory bandwidth utilisation. I find
that h2 does not fully utilise the maximum bandwidth which the memory system
can sustain (Fig. 6.1). Other explanations could be that additional prefetches impact

Figure 6.1: The memory bandwidth utilisation of h2 remains low throughout its execution.
This figure shows the results of VTune memory bandwidth measurements for an execution
of h2.

the behaviour of load history driven caching mechanisms, such as the hardware
prefetching or cache eviction policies.

On the other hand, avrora is slightly unstable as it relies on fine grained concur-
rency, of which the scheduling dramatically affects the heap makeup and perfor-
mance.

I consider both results as acceptable variance.

6.3 Performance of Software Prefetching in MMTk

In this section, I evaluate the performance of the prefetching scheme in MMTk. I first
examine the GC time speedup. To do this, I normalise the GC time with software
prefetching to the baseline. I perform the experiment on Coffee Lake and Zen 4. This
gives more representative data since specifics of the cache hierarchy differs slightly
between Intel and AMD architectures. The results are given in Fig. 6.2 and Fig. 6.3.

I find that the software prefetching scheme performs well, leading to 9 % speedup
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Figure 6.2: The addition of software prefetching improves GC performance by 9 % on Coffee
Lake. This figure shows the GC time of Immix with prefetching on the Coffee Lake machine,
normalised to the baseline. The geomean is included in orange.

Figure 6.3: The addition of software prefetching improves GC performance by 18 % on Zen 4.
This figure shows the GC time of Immix with prefetching on the Zen 4 machine, normalised
to the baseline. The geomean across benchmarks is in included in orange. I omit tradesoap
due to issues encountered during benchmark execution.

of GC on Coffee Lake and 18 % speedup on Zen 4. Both are promising results, but
larger than I expected. I will discuss these in greater depth in the following sections.

6.3.1 Results for Zen 4

Next, I examine the results for Zen 4, where prefetching resulted in an 18 % improve-
ment. This result is surprising due to both the size of the speedup, and the difference
with the Coffee Lake results. However, comparing to work by Atkinson [2023], I
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find that while the speedup differs (the author found a 10 % speedup), prefetching
efficacy and behaviour tends to be microarchitecturally sensitive, so this result is not
completely unfounded.

One possibility is that since Zen 4 has larger caches, prefetches may be more
effective since they are less likely to be evicted or cause cache pollution. Inspecting
the individual benchmarks, I observe that the trends between benchmarks remain
similar on both machines, the size of the speedup is just generally larger on Zen 4.
This supports the above theory, since all workloads appear to benefit similar amounts.

A key takeaway from this is that GC performance may differ greatly on different
hardware. One future avenue for research is microarchitectural analysis for AMD
in a similar manner to Section 5.2. This could help provide a greater understanding
of the microarchitectural behaviours and differences between different hardware;
gaining insight into the microarchitectural sensitivity in prefetching performance
provides just one such example which could benefit from this. I discuss this further
in Section 8.1.5.

6.3.2 Results for Coffee Lake

Examining Coffee Lake first, recall that I estimated roughly 9 % of total load latency
optimisation headroom for the tracing loop (Section 5.4.1). However, GC consists
of non-load time, therefore his result appears to indicate prefetching exceeds the
headroom. I hypothesise that this is caused by a combination of improved cache hit
rates and other microarchitectural complexities which I explore in greater depth in
Section 6.4.3.

I note that my result is also consistent with Atkinson [2023] where the author
found an 8 % speedup in tracing time with this prefetching scheme. This was on an
older different version of the DaCapo benchmarks and MMTk, and the experiment
was conducted in a simulated trace with a simplified implementation of the dual
mark stack. However, the results are within the same ballpark which provides a good
sanity check.

Examining the results for individual benchmarks, I note a number of outliers and
utilise the insights from the microarchitectural GC analysis in Chapter 5 to help ex-
plain these. This helps us better understand prefetching performance, demonstrating
the additional observability which microarchitectural analysis provides.

The only benchmark to get slower was biojava, and this is explainable by my anal-
ysis in Section 5.3.5, where I found that biojava has minimal optimisation headroom.
As a result, the slowdown may be due to the slight overhead of issuing prefetches.

Next, xalan did not improve with software prefetching, but the issue here is
different. Examining the microarchitectural analysis in Section 5.3.5, I note that there
was ample optimisation headroom (about 40 % of load latency was attributable to
ProcessEdgesWork::do_work, and 8 % to L1 misses in ProcessEdgesWork::do_work).
I initially theorise that the prefetch distance may just be suboptimal for this particular
benchmark, and hypothesise that a prefetching scheme which dynamically adjusts
distance may lead to better performance on xalan. However I find this is not the
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case in Section 6.5. Other benchmarks with poor prefetching performance include
avrora, where the culprit may be the high overhead of issuing prefetches as seen in
Section 6.2.2, and luindex, which I noted in Section 5.4.2 as already having a low L1
miss latency overhead from ProcessEdgesWork::do_work.

Next, I discuss benchmarks which performed well. The largest outlier is h2, which
sees 30 % improvement, though with error of almost 10 %.

In general, I notice that high optimisation headroom for ProcessEdgesWork::
do_work (in Section 5.4.2) correlates with a high degree of prefetching efficacy. I
verify this by performing a linear regression on this relationship, shown in Fig. 6.4.

Figure 6.4: The optimisation headroom for ProcessEdgesWork::do_work is well-correlated
with the efficacy of software prefetching. This graph shows the results of a linear regression
on this relationship.

6.4 Unpacking the Performance of Software Prefetching

In this section, I leverage microarchitectural analysis and ineffective prefetch coun-
ters to further unpack the performance of software prefetching. This gives a better
understanding of when prefetching is particularly effective (or ineffective) and may
even uncover opportunities to improve the prefetching scheme.

6.4.1 Microarchitectural Analysis

I perform microarchitectural analysis on MMTk with software prefetching and com-
pare the results to the baseline, which I analysed in Section 5.2. I use the Coffee Lake
machine with the Immix collector.
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Top-Level Analysis

The results of top-level microarchitectural analysis are given in Table 6.1.

Table 6.1: Software prefetching effectively improves cache performance on almost all key
metrics. This table presents the results of microarchitectural analysis of Immix with software
prefetching (swpf) and without prefetching (baseline), with all numbers rounded to 3sf.

cache level hit rate load proportion latency overhead average penalty
swpf baseline swpf baseline swpf baseline swpf baseline

L1 0.990 0.980 0.990 0.980 0.927 0.851 8.23 8.89

LFB 0.336 0.352 0.00332 0.00717 0.0297 0.0601 80.0 90.2

L2 0.590 0.536 0.00361 0.00637 0.00708 0.0100 17.2 15.9

L3 0.714 0.623 0.00195 0.00370 0.0124 0.0207 56.9 59.3

RAM n/a n/a 0.000769 0.00236 0.0234 0.0578 272 268

I first note that the hit rates at L1, L2 and L3 are improved, while the LFB hit rate
decreases slightly. Of particular interest, the L1 miss rate is halved. Additionally, the
proportion of loads which are LFB hits and RAM accesses, the two most expensive
types of loads, have halved. Consequently, the load latency overhead attributable to
L1 misses is now only 7.3 %, compared to 14.9 % from before.

I find that the average penalty across all loads is now 8.23 × 0.990 + 80.0 ×
0.00332 + 17.2 × 0.00361 + 56.9 × 0.00195 + 272 × 0.000769 = 8.80 cycles, compared to
10.31 cycles from before Section 5.4.2. This is a 14.6 % improvement in load latency
time. Interestingly, this exceeds my estimate for headroom. This is because in that
computation, I assumed the best case scenario was all loads becoming L1 hits (which
had 8.89 cycle penalty on average), but the L1 hits got cheaper with prefetching. I
discuss this further in Section 6.4.3. With the new L1 penalty, the predicted remaining
headroom for load latency improvement is 7.5 %.

Performance by Benchmark

Next, I examine the results separately for each benchmark, focusing on the load
latency overhead of L1 misses. This is shown in Fig. 6.5.

Comparing the results to the same figure for the baseline (Section 5.3.5) I find that
for prefetching is effective at reducing L1 misses across the entire benchmark suite.
In particular, for h2, which represents the highest latency overhead from L1 misses,
this value is now 10.6 %, compared to 26.8 % in the baseline (Section 5.3.5). LFB
and RAM overheads, which were dominant in the baseline, are also greatly reduced.
These results suggest that software prefetching has successfully covered much of the
optimisation headroom for ProcessEdgesWork::do_work.
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Figure 6.5: Prefetching effectively reduces latency cycles attributable to L1 misses for majority
of benchmarks compared to the baseline (Section 5.3.5). This table presents the percentage of
total latency cycles attributable each level of the cache for Immix with prefetching. Numbers
are given to 1dp.

Microarchitectural Analysis of ProcessEdgesWork::do_work

To verify this, I examine the results of microarchitectural analysis for ProcessEdgesWork
::do_work. First, I reexamine the percentages of the load latency of ProcessEdgesWork
::do_work which are attributable to each load level, shown in Fig. 6.6.

Figure 6.6: For all benchmarks, L1 hits now dominate the load latency cycles of
ProcessEdgesWork::do_work. This figure shows the percentages of the load latency cycles
of ProcessEdgesWork::do_work which occur at each cache level (1dp).
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I note that for all benchmarks, L1 misses from ProcessEdgesWork::do_work now
contribute less than 10 % of load latency. This is a drastic improvement to the baseline
(Fig. 5.6) where L1 misses from ProcessEdgesWork::do_work were responsible for
an average of 25.1 % of load latency, with single benchmark figures as high as 46.5 %
(h2). This suggests that prefetching was able to effectively reduce L1 misses and the
associated load latency.

This also suggests limited headroom for further optimisation. I verify this by ex-
plicitly computing the new optimisation headroom for ProcessEdgesWork::do_work
(the method of computation was explained in Section 5.4.2), shown in Table 6.2.

Table 6.2: There is very limited remaining headroom for further prefetching optimisations
for ProcessEdgesWork::do_work. This table computes the remaining optimisation of
ProcessEdgesWork::do_work headroom for the DaCapo benchmarks (3sf).

Benchmark Average Penalty Headroom (%)
Current Optimal

avrora 8.19 8.11 0.906

biojava 8.17 8.11 0.756

eclipse 9.14 9.01 1.48

fop 8.74 8.55 2.18

graphchi 8.36 8.27 1.05

h2 9.72 9.60 1.31

h2o 8.56 8.40 1.86

jython 8.98 8.82 1.69

kafka 8.95 8.79 1.81

luindex 8.35 8.19 1.96

lusearch 8.58 8.44 1.65

pmd 8.85 8.68 1.86

spring 9.27 9.04 2.52

sunflow 8.50 8.41 1.10

tomcat 8.42 8.28 1.60

tradesoap 9.20 9.01 2.05

xalan 9.09 8.86 2.53

zxing 9.35 9.14 2.24

mean 8.53 8.37 1.85

Indeed, I find that converting all L1 misses to L1 hits would only improve load
latency by 1.85 %. This indicates very minimal further headroom, so I expect further
optimisations, such as dynamic prefetching, to have limited efficacy. I verify this for
dynamic prefetching in Section 6.5.
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6.4.2 Ineffective Prefetch Counters

AMD machines provide two performance counters which count ineffective prefetches
due to hits in the L1 cache or LFB:

• ls_inef_sw_pref.data_pipe_sw_pf_dc_hit: counts prefetches which hit in L1,
indicating the prefetch was unnecessary

• ls_inef_sw_pref.mab_mch_cnt: counts hits on LFB, indicating there is already
a load request in flight

This provides another avenue for understanding prefetch efficacy. I use these counters
to determine what percentage of prefetches are useless. I perform the experiment on
the Zen 4 machine with the Immix collector. The results are given in Fig. 6.7.

Figure 6.7: This figure shows the proportion of ineffective prefetches which occur due to hits
in L1 or LFB.

I note that, as expected, the proportion of ineffective prefetches due to L1 hits
is highly correlated with the frequency of L1 hits of the workload in the baseline
(Fig. 5.6). Next, I find that only 14 % of prefetches are ineffective due to LFB hits. This
is encouraging, as it indicates that the prefetching scheme does not frequently com-
plete unnecessary duplicate work. Overall, 23 % of total prefetches are to new cache
lines, which is comparable to the available prefetch headroom for ProcessEdgesWork
::do_work (Fig. 5.6), thus indicating good prefetch coverage.

6.4.3 Reevaluating Why the Performance Exceeds the Apparent Headroom

The performance of the software prefetching scheme appears to exceed the headroom
computed in Section 5.4.1. In this section I explore possible explanations for this.
The core of my hypothesis is that, due to the complexities of modern CPUs, the
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improved load latency and reduced stalls from software prefetching in turn benefits
other components of GC in non-obvious ways.

I propose three main explanations for explaining why the apparent discrepancy
may not be contradictory:

1. Improving load latency reduces memory stalls in the instruction pipeline, which
in turn can help superscalar optimisations. This is because by reducing the
constraints, the CPU has more freedom to rearrange instructions.

2. In Section 6.4.1, I observed that on average, L1 hits got faster. This helps to
explain the apparent discrepancy since the headroom analysis assumes that the
L1 hit penalty remains unchanged. This also indicates a possible limitation in
this methodology for computing headroom. I hypothesise that the cause of
this improvement in the L1 hit penalty is due to nonobvious microarchitectural
complexities and side effects.

3. There may be some "observer effect" whereby the use of measurement tools like
perf mem indirectly affects the GC behaviour.

To test the first hypothesis (improved instruction pipeline), I measure the instruc-
tion level parallelism (ILP) with software prefetching and compare this to baseline
MMTk. I find that the ILP improves by 2 %. Moreover, on many of the benchmarks
where the headroom was exceeded by the most, such as jython, pmd, h2, eclipse and
fop, the improvement is higher, ranging between 3 % on fop and 7.8 % on h2. This
supports the first hypothesis, and helps to partially explain the apparent discrepancy.

Understanding the second hypothesis is more nuanced, since it is unclear why the
L1 hits are cheaper with prefetching. I note that despite being private, the L1 cache
can have some variance in access simply due to the complexity of modern CPU design.
Therefore, it appears plausible that the L1 access latency could be unintentionally
affected by software prefetching. I suggest two possibilities below which were raised
through private communication with Trevor E. Carlson:

1. In Intel, L1 caches are banked for efficiency. Reducing the cache misses via
prefetching can lead to changes in the timing of cache accesses. This in turn can
have implications for the cache latency in a banked cache design.

2. Interference with other buffers, such as the memory disambiguation unit in the
load-store queue, can affect the L1 hit latency.

Other factors include the complex and nuanced behaviour of the specific load
latency counter, which Intel states may observe high latencies in certain conditions
despite a close source [Intel Corporation, 2016]. There may also be other microarchi-
tectural side effects that cannot be isolated which I have not considered.

I defer further research to future work (Section 8.1.6), but note that the complexity
in understanding and explaining this result further emphasises that hardware is
changing, and both difficult to study and understudied.
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6.5 Exploring Dynamic Prefetching

Fixed-distance software prefetching is limited in its ability to account for and exploit
variance in hardware, workloads and GC performance through time. Dynamic ad-
justment of the prefetch distance offers a solution to this. However, the results of
Section 6.4.1 indicate limited headroom for further optimisation. I hypothesise that
in the case of GC, dynamic prefetching is unlikely to be worthwhile. In this section, I
concretely explore the headroom for further gains through dynamic prefetching and
attempt to verify this hypothesis.

6.5.1 Performing Headroom Analysis

To determine whether dynamic prefetching is viable, I consider two classes of possible
dynamic prefetchers:

1. Benchmark-level dynamicism: this involves determining the optimal distance
for a given workload, and then using this distance throughout the execution of
the workload. It would most likely use an initial data gathering phase. This
type of dynamic prefetcher can capture variation among different workloads.

2. GC-level/epoch-level dynamicism: this involves reevaluating the optimal dis-
tance at each GC epoch, and then using this distance throughout that GC. It
would most likely rely on history-driven heuristics which use data collected
during previous GCs. This type of dynamic prefetcher can capture variation in
the execution of a workload. For example, long running workloads like web
applications requiring user input may exhibit different and non-deterministic
behaviour at different points, and would benefit from this type of dynamic
prefetching.

Note that both classes of dynamic prefetchers are able to account for variation
caused by the choice of hardware and collector.

I consider edge and object reference prefetching separately and for each, I examine
the headroom for both classes of dynamic prefetching. For all experiments I use the
Coffee Lake machine with the Immix collector. I will discuss my methodology for
evaluating the headroom of both classes of dynamicism in the following sections.

Headroom of Benchmark-Level Dynamicism

To compute the headroom of benchmark-level dynamic prefetchers, I select a set of
prefetching configurations (no prefetching, 0, 1, 2, 4, 8, 16, 32 and 64) and measure
the GC time of each benchmark. I determine how much speedup I can get by picking
the locally optimal values for each benchmark instead of the current empirically
determined prefetch distance.
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GC-Level Dynamicism

To compute the head room of GC-level dynamic prefetchers, I modify MMTk to print
out the GC time of each GC epoch. Using the same set of prefetching configurations
(no prefetching, 0, 1, 2, 4, 8, 16, 32 and 64), I compute the optimal prefetch distance
for each GC epoch. The headroom is determined by comparing the total GC time by
picking the local optima each epoch compared to the current empirically determined
prefetch distance. The results are taken as the mean across 10 invocations. Since
the variance in GC time can vary greatly in an epoch, I drop any outliers outside 2
standard deviations.

6.5.2 Headroom Analysis for Edge Prefetching

I present the results for the two dynamic edge prefetching schemes in Fig. 6.8.

Figure 6.8: This figure shows, for each benchmark, the headroom available for benchmark-
level and GC-level dynamicism for edge prefetching.

I also present the locally optimal distances for benchmark-level dynamicism in
Table 6.3.

I find that when focusing on benchmark-level dynamicism, the optimisation head-
room is 2.42 %. Furthermore, narrowing the scope to GC-level dynamicism only
provides minor additional gains, with a total optimisation headroom of 3.51 %.

A key outlier is avrora which sees an 8 % just from using distance 2 prefetching
alone. Moreover, introducing GC-level dynamicism increases the headroom to just
over 14 %. I hypothesise that the mutator is to blame here, as avrora has fine grained
concurrency and locking behaviours which are sensitive to scheduling. This means
that the heap and performance can vary greatly between runs, making it generally a
more unstable benchmark.
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Table 6.3: This figure shows the optimal distance for edge prefetching for each benchmark
and the GC time (3sf) at that prefetch distance normalised to the current prefetch distance of
32.

Benchmark Normalised GC Time at Optimal Distance Optimal Distance

avrora 0.920 2

biojava 0.945 1

eclipse 0.987 8

fop 0.939 8

graphchi 0.986 8

h2o 0.976 2

jython 0.992 8

luindex 0.982 8

lusearch 0.970 4

pmd 0.983 8

spring 0.924 8

sunflow 0.964 8

tomcat 0.982 64

tradesoap 1.000 32

xalan 0.971 1

zxing 0.988 32

Another interesting observation is that for many benchmarks, the optimal dis-
tance is 8, and moreover, 32 is the optimal distance for only two benchmarks. This is
likely because the globally optimal prefetching configuration was chosen by consid-
ering results across different pairings of edge and object reference prefetching across
different hardware.

For three benchmarks (biojava, spring and tradesoap), the optimal prefetch distance
for that benchmark is also the optimal distance for all GC epochs. In particular, for
tradesoap, a distance 32 prefetch is optimal through all GCs. Moreover, more most
benchmarks, the improvement through GC-level dynamicism is very marginal, and
more all but five benchmarks, the headroom is below the geomean of 3.51 %.

My results indicate that fully-fledged GC-level adaptive prefetching may not be
particularly fruitful, since it requires us to be able to accurately determine the optimal
distance for a GC epoch ahead of time, and even if done perfectly, will only yield
limited performance gains. Instead, if attempting to build a dynamic prefetcher,
the simpler adaptive approach of choosing the optimum for a benchmark is more
profitable. I believe the headroom here is still too little to be worthwhile, but discuss
the pathway to building such a prefetcher in 8.2.
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6.5.3 Headroom Analysis for Object Reference Prefetching

I present the headroom for the two dynamic object reference prefetching schemes in
Fig. 6.9.

Figure 6.9: This figure shows, for each benchmark, the headroom available for benchmark-
level and GC-level dynamicism for object reference prefetching.

I also present the locally optimal distances for benchmark-level dynamicism in
Table 6.4.

I first note that both dynamic schemes are less effective than for edge prefetch-
ing, with benchmark-level dynamicism providing only 0.75 % speedup and GC-level
dynamicism providing only 2.28 % speedup. One reason for this is that the globally
optimal distance of 16 is also the benchmark-level optima for 8 benchmarks. This
suggests the globally optimal prefetching configuration is nicely compatible with my
particular hardware choice.

One interesting outlier here is biojava, which has a benchmark-level optimal dis-
tance of 16 but 5 % headroom when performing GC-level dynamicism. I recall that the
hit rates for biojava are already high without prefetching (Section 5.3.5), and moreover,
prefetching was ineffective, likely due to generating unnecessary traffic (Fig. 6.5). As
a result, it is reasonable that a dynamic approach which can maximise the minimal
existing headroom could be effective.

Overall, as before, I believe the headroom is too little to be realistically exploitable
so I do not pursue dynamic prefetching further for object references.
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Table 6.4: This figure shows the optimal distance for object reference prefetching for each
benchmark and the GC time (3sf) at that prefetch distance normalised to the current prefetch
distance of 16.

Benchmark Normalised GC Time at Optimal Distance Optimal Distance

avrora 0.952 2

biojava 0.948 16

eclipse 0.984 64

fop 0.996 16

graphchi 0.973 32

h2o 0.959 16

jython 0.986 8

kafka 0.965 8

luindex 0.992 8

lusearch 0.974 16

pmd 0.996 16

spring 0.997 4

sunflow 0.969 16

tomcat 0.970 32

tradesoap 0.985 16

xalan 0.973 16

zxing 0.996 64

6.6 Summary

In this chapter, I used microarchitectural analysis to understand the performance of
a software prefetching scheme for the Immix collector in MMTk.

I found that adding software prefetching leads to a 9 % speedup of GC on Coffee
Lake and 18 % speedup on Zen 4. Moreover, I found that the efficacy of prefetch-
ing on individual benchmarks has a high degree of correlation (R2 = 0.708) to the
optimisation headroom of ProcessEdgesWork::do_work computed in Section 5.4.2,
highlighting the usefulness of microarchitectural analysis.

Through microarchitectural evaluation, I discovered that the efficacy of prefetch-
ing was due to a roughly 50 % improvement in key cache performance metrics, such
as the frequency and latency of L1 misses. Furthermore, on all benchmarks, the
load performance of the tracing loop improves drastically, with 94.4 % of load latency
cycles of ProcessEdgesWork::do_work attributable to L1 hits, an increase of 26.0 %
from the baseline (74.9 %, see Fig. 5.6).

Surprisingly, I also found that software prefetching improves the load latency of
L1 hits. This emphasises how increasingly complex hardware and cache systems are
both difficult to study and understudied, and highlights an important area for future
research (Section 8.1.6).
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Finally, I evaluated the headroom for two types of dynamic prefetching schemes
(benchmark-level dynamicism and GC-level dynamicism) for both edge prefetching
and object reference prefetching. I found that the best of these schemes has only
3.51 % headroom, and conclude that dynamic prefetching is not currently necessary
or profitable.
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Chapter 7

Hardware Prefetching for GC

In Chapter 6, I applied microarchitectural analysis methodologies to evaluate and un-
derstand the performance of software prefetching for tracing collectors in MMTk. In
this chapter, I leverage microarchitectural analysis alongside other analysis techniques
to reevaluate and understand the efficacy of hardware prefetchers for GC.

7.1 Experimental Setup

I use an identical pair of Coffee Lake machines. On one machine, I turn off all the
hardware prefetchers. These are all controlled by the MSR_MISC_FEATURE_CONTROL
register, which has register address 420 [Intel Corporation, 2019]. The prefetchers are:

• L2 stream prefetcher, which fetches additional lines of code/data (controlled by
420:0)

• L2 adjacent cache line prefetcher, which retrieves the pair line which completes
the 128-byte aligned chunk (controlled by 420:1)

• L1 stream prefetcher, which fetches the next cache line into L1 data cache
(controlled by 420:2)

• L1 stride prefetcher, which uses sequential load history to decide whether addi-
tional lines should be fetched (controlled by 420:3)

Further details of these prefetchers were explained in Section 2.6.1.

7.2 Efficacy of Hardware Prefetchers

First, I attempt to quantify the efficacy of the hardware prefetcher. To do this, I
measure the GC time without hardware prefetching and compare it to a standard
baseline run. I examine the full spectrum of collector algorithms because different
algorithms have different locality properties, and so I expect the algorithm choice to
directly affect the efficacy of the prefetchers.

69
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The results are normalised to the baseline machine, which has all hardware
prefetchers on by default. I take the geometric mean over all benchmarks (discussed
in Chapter 4).

The results are shown in Fig. 7.1.

Figure 7.1: The efficacy of hardware prefetching for GC is correlated with how collectors
move objects, and also sensitive to the choice of workload. This heatmap shows the GC time
without hardware prefetching normalised to baseline MMTk for six different collectors across
the DaCapo benchmarks. Two configuration pairings failed to record results and are omitted.

I note that for all collector algorithms, disabling hardware prefetching leads to
significant slowdown. Moreover, the size of the slowdown appears highly correlated
with the workload and collector algorithm. I will discuss these factors in Section 7.2.1
and Section 7.2.2.

I further note that the extent of slowdown during GC is much larger than the
slowdown experienced during mutator activities, which is shown in Fig. 7.2.

This may be because collection is dominated by the tracing loop, which, with good
load balancing, generally uses large work packets which the hardware prefetcher may
be able to effectively prefetch. Meanwhile, the mutator workloads, which are complex
real-world object-oriented (OO) programs, may not provide as much structure for the
hardware prefetchers. I focus on GC time in this thesis, however this finding indicates
that further investigation into hardware prefetching efficacy on OO workloads may
be interesting and necessary (see Section 8.3.5).
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Figure 7.2: Surprisingly, the performance of mutators appears to be mostly unaffected by the
absence of hardware prefetchers. This heatmap shows the mutator time without hardware
prefetching normalised to baseline MMTk for six different collectors across the DaCapo
benchmarks. Two configuration pairings failed to record results and are omitted.

7.2.1 Impact of Collector Algorithm

I notice that the slowdown when disabling the hardware prefetcher is correlated to
how much collectors move objects. This can be seen by comparing the results for
moving collectors (SemiSpace and MarkCompact, which have overheads of 1.53x and
1.63x) to nonmoving collectors (MarkSweep and NMImmix, which have overheads of
1.26x and 1.29x). Another useful comparison is NMImmix and Immix, which experi-
ence overheads of 1.29x and 1.24x respectively without prefetching, since the only
difference is that NMImmix does not perform opportunistic copying defragmentation.
This further supports the observation.

I theorise that this is because moving collectors structure the heap in ways which
are better exploitable by the hardware prefetchers, which allows the prefetchers to
be more effective at improving cache hits. This is because moving collectors tend to
place objects that are allocated close in time close in memory, allowing the hardware
prefetchers to better exploit the locality. For example, given an array of pointers to
newly created objects, MarkCompact would place these close in memory, thus assisting
the stride prefetchers. Additionally, I expect hardware prefetching to benefit when
memory is less fragmented, since the objects I are tracing are more likely to be
prefetched by stream prefetchers.
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Examining L1 Hits and L3 Misses

To help verify this explanation, I use performance counters to examine general metrics
for cache behaviour. The metrics are gathered and computed analogous to those in
Section 5.1.2 and the results are shown in Table 7.1.

Table 7.1: This table compares L1 cache hit rates, L3 miss rates, and RAM access rates with
and without hardware prefetching.

Collector
L1 hit rate (%) L3 miss rate (%) RAM access rate (%)
with without with without with without

Immix 97.55 96.22 34.90 45.34 0.20 0.54

NMImmix 97.67 96.40 33.69 46.60 0.16 0.50

GenImmix 96.84 95.04 37.66 40.81 0.14 0.42

MarkCompact 98.94 97.35 32.00 72.48 0.04 0.53

MarkSweep 97.07 96.25 36.89 47.81 0.24 0.62

SemiSpace 97.16 95.10 32.25 45.38 0.10 0.57

I observe that for all collectors, the L1 hit rate with hardware prefetching is higher.
If I omit GenImmix, the size of the gap is also highly correlated with how much the
algorithm moves objects: the drop in hit rate is largest for SemiSpace and MarkCompact,
which have differences of 2.06 % and 1.59 %, and smallest for MarkSweep, where the
hit rate is just 0.82 % worse. This is consistent with the efficacy measurements, and
strengthens the explanation that moving collectors exhibit good locality, which in
turn helps the L1 hardware prefetchers.

Another interesting observation is that Immix and NMImmix have very similar
cache behaviours. This is likely because opportunistic copying is rare in Immix on
moderately large heaps (I use 3×).

The L3 miss rates are higher across the board without hardware prefetching. Con-
sequently, the frequency of RAM accesses also increases. This is expected, since the
L2 prefetchers prefetch data to both L2 and L3 Section 2.6.1. Key outliers are GenIm-
mix, where the miss rate improves only by 3.15 % with prefetching, and MarkCompact,
where the L3 misses are nearly doubled from 32 % to 72.48 %.

For GenImmix, this is likely due to nursery collections which trace a smaller part
of the heap. This means tracing occupies a smaller proportion of GC for GenImmix
than other collectors. One possibility is that tracing provides more exploitable access
patterns, such as retrieval off the mark stack and linearly scanning an object for
references, than other GC components.

For MarkCompact, this result is likely due to an increase in the number of L3 ac-
cesses (since hardware prefetching appears to be very effective for MarkCompact), and
additionally, a greater number of L3 misses. This also helps explain why MarkCompact
improves drastically with hardware prefetching.
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7.2.2 Impact of Workload

In this section, I examine the results at a per benchmark-level to try understand if
certain workload characterisations are more suited to hardware prefetching.

One immediate observation is that for all collectors, biojava performance suf-
fers the most without hardware prefetching. Other interesting benchmarks include
graphchi, where the hardware prefetcher is highly effective, and kafka, luindex and
zxing, where the slowdown without hardware prefetching is less pronounced.

Number of References

To understand these outlier results better, I consider the distribution of contigu-
ous runs of references per object. For an array of pointers, I expect that hardware
prefetching should be highly effective. This is as opposed to arrays of slots, where
I need either software prefetching or more sophisticated data memory dependent
prefetchers to handle the extra indirections. Therefore, I hypothesise that there is
correlation between the distibution of runs of references per object and hardware
prefetch efficacy.

To test this hypothesis, I consider the length of contiguous runs of outgoing
references encountered in tracing for each benchmark, which was measured for Cai
et al. [2025]. This tells us about the sizes of object arrays. These results are provided
in Fig. 7.3 with permission from the author.

Figure 7.3: This figure shows the proportions of objects in contiguous runs of outgoing
references of different lengths. For example, biojava has 97.85 % of objects in large arrays
between 213 and 214. The array sizes are sorted from most to least common.

Explaining Outlier Benchmarks

I now refer back to the outlier benchmarks.
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For biojava, I find it has many objects are in large arrays between 213 and 214

(97.85 %). This is likely due to high levels of predictability in access patterns, which I
discussed in Section 5.3.5. This result also supports my hypothesis that the strong L1
cache hit rates of biojava were strongly correlated to effective hardware prefetching. I
will examine this further for Immix in Section 7.3.2.

Similarly, graphchi is a benchmark which has good hardware prefetcher perfor-
mance for all collector algorithms and I note that while 56 % of objects in small
reference arrays, it also has 16.76 % of objects in massive arrays (217 to 218), which
tend to be more suited to stride prefetching.

A similar relationship holds up for kafka, luindex and zxing, which have 83.11 %,
85.10 %, and 84.41 % of objects in arrays smaller than 25. Therefore, these are also
explainable by the reference arrays.

7.3 Microarchitectural Analysis of Hardware Prefetchers

I use some of the analysis methodologies in Chapter 5 to perform microarchitectural
analysis and compare the results to the baseline (which I discussed in depth in
Section 5.2). I hope this will give further insight into the performance of hardware
prefetching for GC. In this section, I focus on Immix.

7.3.1 Top-Level Microarchitectural Analysis for Immix

I perform top-level microarchitectural analysis for Immix and compare the results to
the baseline (which I discussed in depth in Section 5.3).

Table 7.2: Cache performance suffers under almost all metrics with the hardware prefetchers
disabled. This table shows top-level microarchitectural analysis for Immix with and without
hardware prefetching, with values rounded to 3sf.

cache level hit rate load proportion latency overhead average penalty
without with without with without with without with

L1 0.971 0.980 0.971 0.980 0.713 0.851 9.68 8.89

LFB 0.504 0.352 0.0150 0.00717 0.157 0.0601 141 90.2

L2 0.226 0.536 0.00314 0.00637 0.00426 0.0100 17.6 15.9

L3 0.479 0.623 0.00525 0.00370 0.0215 0.0207 54.1 59.3

RAM n/a n/a 0.00555 0.00236 0.105 0.0578 256 268

First, I note that without hardware prefetching, hit rates at L1, L2 and L3 all suffer.
This indicates that the hardware prefetchers are effective at reducing misses at these
levels. Surprisingly, the LFB hit rate is improved. One possible explanation for this
is that without the hardware prefetcher, some lines which would usually reside in
cache may instead need to be loaded from memory, and accesses to these lines while
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Figure 7.4: Disabling hardware prefetching degrades performance by increasing the load
latency of L1 misses for all benchmarks. This figure shows the percentage of total load
latency which is occupied by L1 misses for Immix without hardware prefetching (1dp).

the RAM access occurs can result in LFB hits. This explanation is supported by the
high average LFB penalty and the increased frequency of RAM accesses.

The distribution of load accesses among cache levels is also different. Of particular
interest, the percentage of accesses which are L2 hits is halved (0.637 % to 0.314 %)
and the percentage of L3 hits and RAM accesses are increased. This further supports
that the prefetchers are effective at reducing accesses to lower levels (L3 and RAM)
of the memory subsystem.

7.3.2 Examining Outlier Workloads

I also present results for the percentage of total load latency which is occupied by
L1 misses in Fig. 7.4. This is comparable to Section 5.3.5, which gives results for the
same experiment with hardware prefetchers.

I use this, alongside the full top-level microarchitectural data for selected bench-
marks, to examine the benchmarks where disabling hardware prefetching was most
(avrora and zxing) and least detrimental (biojava and graphchi) to attempt to gain
further insight into hardware prefetcher efficacy.

Outliers: biojava and graphchi

In Section 5.3.5, I hypothesised that hardware prefetcher efficacy could be a factor
in the high hit rate and low L1 miss latency overheads which biojava exhibits. This
explanation is further supported by the strong performance degradation when the
hardware prefetchers are disabled (Section 7.2.2). I verify this by examining the top-
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level microarchitectural performance of biojava without the hardware prefetcher. The
results are given in Table 7.3.

Table 7.3: The hardware prefetchers likely play a key role in the cache performance of
biojava (a key outlier in performance in Section 5.3.5). This table presents the top-level
microarchitectural analysis for biojava with and without hardware prefetching.

cache level hit rate load proportion latency overhead average penalty
with without with without with without with without

L1 0.994 0.99 0.994 0.99 0.978 0.84 8.51 10.8

LFB 0.164 0.448 0.000932 0.0046 0.00671 0.0703 62.3 194

L2 0.888 0.112 0.00421 0.000636 0.00706 0.000845 14.5 16.9

L3 0.663 0.145 0.000351 0.000733 0.00238 0.00298 58.7 51.5

RAM n/a n/a 0.000178 0.00431 0.00603 0.0857 292 252

Indeed, I find that while the L1 hit rate only drops by 0.4 %, the latency overhead
of L1 misses is now 16 %. This is mostly attributable to RAM accesses and LFB hits,
which have a high average penalty of 194 cycles, implying that many wait for RAM.
Another key observation is that the L2 hit rate is only 11.2 %, indicating that the
L2 hardware prefetchers are quite effective for biojava. Moreover, inspecting Fig. 7.4
and comparing to Section 5.3.5 highlights the hardware prefetcher efficacy, as the
percentage of load latency attributable to L1 misses climbs from around 3 % to just
over 15 %.

This helps to verify my hypothesis that the load performance of biojava is likely
attributable to good locality, and that the hardware prefetcher plays a key role in
exploiting this.

Next, I examine graphchi. The microarchitectural analysis results are given in
Table 7.4.

Table 7.4: The hardware prefetchers also play a key role in the cache performance of graphchi,
improving the hitrate of all three levels of cache. This table presents the top-level microarchi-
tectural analysis for graphchi with and without hardware prefetching.

cache level hit rate load proportion latency overhead average penalty
with without with without with without with without

L1 0.982 0.973 0.982 0.973 0.913 0.711 8.46 10

LFB 0.347 0.543 0.00637 0.0148 0.0317 0.161 45.2 150

L2 0.774 0.265 0.00928 0.00329 0.0153 0.00375 15 15.6

L3 0.471 0.286 0.00128 0.00261 0.00738 0.00907 52.5 47.7

RAM n/a n/a 0.00144 0.00653 0.0329 0.115 208 242

I observe that without hardware prefetchers, the L1, L2 and L3 hit rates all suffer.
Moreover, less accesses hit at L1 and L2, and the amount of accesses which require
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RAM accesses is about 4.5×, resulting is 11.5 % of latency overhead occuring on RAM
accesses, compared to 3.29 % in the baseline. The LFB hit rate actually increases,
however the penalty for an LFB hit is around 3 times worse, indicating that many of
these hits are likely waiting for RAM accesses. Therefore, it is clear that removing
hardware prefetching impacts performance at all levels of the cache.

This is even clearer when comparing Section 5.3.5, where graphchi has the second
lowest percentage of load latency from L1 misses with hardware prefetchers, to
Fig. 7.4, where the percentage of L1 miss load latency of graphchi is near the mean.

Outliers: avrora and zxing

Next, I examine avrora, which was only 20 % slower without hardware prefetching.
The full toplevel microarchitectural analysis results are given in Table 7.5.

Table 7.5: The hardware prefetcher is less effective for avrora, where the LFB penalty remains
similar with and without the hardware prefetcher. This table presents the top-level microar-
chitectural analysis for avrora with and without hardware prefetching.

cache level hit rate load proportion latency overhead average penalty
with without with without with without with without

L1 0.987 0.978 0.987 0.978 0.917 0.792 8.24 8.95

LFB 0.236 0.429 0.00298 0.00963 0.0278 0.095 82.8 109

L2 0.582 0.344 0.0056 0.00441 0.00993 0.00661 15.7 16.5

L3 0.739 0.571 0.00298 0.00482 0.0162 0.0218 48.4 50.1

RAM n/a n/a 0.00105 0.00361 0.0292 0.0848 246 259

While cache performance still improves here with hardware prefetching and the
latency overheads attributable to LFB, L2 and L3 hits improve, I notice a key difference
between avrora and benchmarks where the hardware prefetcher performs better: the
LFB penalty remains similar with and without the hardware prefetcher. This differs
from graphchi and biojava, where the penalty decreased by about 3×. This may explain
part of the result.

Another observation is that even without hardware prefetching, avrora has less
headroom for improvement, as the load latency overhead attributable to L1 cache
misses is lower than all benchmarks except biojava. The characterisation of the bench-
mark can also help explain the result, as avrora has fine-grained concurrency and
locking behaviours which are sensitive to scheduling. This means that the heap and
performance can vary greatly between runs, so it is often an outlier in analyses.

Therefore this result is not unreasonable either.
The final benchmark I analyse in depth is zxing, and the toplevel microarchitectural

analysis for this is given in Table 7.6.
Examining Fig. 7.4 and comparing to Section 5.3.5, it initially appears that the

hardware prefetchers are successful in reducing the overhead of L1 misses for zxing.
However, upon closer inspection, I notice that the load latency attributable to RAM
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Table 7.6: The hardware prefetcher is less effective for zxing, where the proportion of load
latency attributable to RAM does not decrease by much with hardware prefetching. This
table presents the top-level microarchitectural analysis for zxing with and without hardware
prefetching.

cache level hit rate load proportion latency overhead average penalty
with without with without with without with without

L1 0.979 0.963 0.979 0.963 0.845 0.649 8.97 9.41

LFB 0.302 0.65 0.00639 0.0239 0.0591 0.259 96 151

L2 0.514 0.286 0.00759 0.00368 0.0128 0.00495 17.5 18.8

L3 0.694 0.545 0.00499 0.00501 0.0291 0.0209 60.5 58.2

RAM n/a n/a 0.0022 0.00418 0.0538 0.0669 254 224

does not decrease by much with hardware prefetching. The results in Table 7.6 help
to explain this. I notice that the proportion of loads which require RAM access is
almost halved with hardware prefetching, however the penalty also increases slightly
from 224 cycles to 254 cycles. This means the latency overhead of RAM accesses only
decreases by about 20 %.

7.4 Summary

In this chapter, I evaluated the efficacy of hardware prefetching. I found that for all
collection algorithms, disabling the hardware prefetcher is detrimental for GC. More-
over the difference is correlated with the extent of copying performed by the collector,
with degradations of 1.26× for MarkSweep compared to 1.63× for MarkCompact on
the two ends of the spectrum. The results are also sensitive to the workload, with
all outliers explainable by the size distribution of arrays which objects are stored in.
Namely, benchmarks where the prefetcher is more effective, such as biojava, have a
large proportion of objects in large arrays, while benchmarks with less prefetcher
reliance, like luindex, have majority of objects in small arrays.

Focusing on Immix, I also performed microarchitectural analysis to help explain
the results, and found that without the hardware prefetcher, hit rates at L1, L2 and
L3 all suffer. Moreover, I observed that the variance in prefetcher efficacy between
benchmarks is correlated to the change in the distribution of load latency among
accesses at different cache levels. This highlights how the microarchitectural analysis
is able to provide deeper insights into reasons for the performance of the prefetcher.



Chapter 8

Future Work

In Chapter 5, I introduced a novel approach for microarchitectural cache analysis
for GC, and in Chapter 6 and Chapter 7, I applied these insights to understand the
current state of prefetching techniques and explore potential optimisations. These
new analyses have opened up many new questions and interesting problems for
future work. In this chapter, I will discuss some of these possibilities.

8.1 Microarchitectural GC Analysis Extensions

I showed the versatility of the methodology for microarchitectural analysis by using
it to gain deeper insight into GC performance, understand the performance of soft-
ware prefetching in the tracing loop, and rationalise about the efficacy of hardware
prefetching for GC. In this section, I explore possible future research avenues which
leverage the microarchitectural analysis methodology.

8.1.1 Store Latency

My analysis focused on load latency. This was chosen since stores without preceding
loads are uncommon in GC, so I expected the headroom for store optimisations to
be lower. However, it is possible to do similar microarchitectural analysis for stores
by instead isolating data collection to store operations. This would help gain a more
comprehensive microarchitectural picture of GC performance.

8.1.2 Deeper LFB Analysis

One way to improve the granularity of analysis would be distinguishing different
types of LFB hits based on what cache levels they wait for. This would allow more
precise attribution of load latencies to different cache levels. Doing this would require
a different data recording mechanism to PEBS since sampling does not provide
temporal guarantees. This means that there is no way to searching for the closest hit
on the same cache line as previous accesses may be recorded out of order (buffered
writes) or even just have not have been recorded.
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8.1.3 Other Collection Algorithms

I focus on the Immix collector throughout the thesis. However, the microarchitectural
GC analysis can be directly applied to other tracing collection algorithms. Another
possible avenue for research here is examining reference counting collectors. Refer-
ence counting relies on counting references to objects for identification, freeing any
objects whose references are zero. This is as opposed to the tracing collectors I dis-
cuss in this thesis. Both of these ideas for future research could help provide deeper
understandings of how different collectors perform, and reveal new insights into the
effect of algorithm choice on GC performance.

8.1.4 Concurrent GC

My analysis focused on stop-the-world collection. However, the same analysis tech-
niques could easily be applied to concurrent collector algorithms, since attribution of
loads to the collector were determined by examining the caller thread (as opposed
to looking at the phase). This could be interesting since concurrent collectors have
significantly more cache pollution, so the load latency is likely more significant for
overall GC performance. Moreover, many highly performant, production-level col-
lectors, such as G1, Shenandoah, ZGC and LXR, are concurrent [Detlefs et al., 2004;
Flood et al., 2016; Liden and Karlsson, 2018; Zhao et al., 2022]. The analysis could be
useful in identifying optimisation opportunities there.

8.1.5 Analysis on AMD

My analysis was focused on Intel machines since it relied on PEBS. However, as seen
in Section 6.3, the efficacy of software prefetching is very sensitive to the choice of
microarchitecture. This indicates that hardware behaviours of GC may differ greatly
between different hardware. It would be interesting to verify this by performing
microarchitectural analysis on AMD.

AMD machines provide a similar mechanism PEBS called Instruction Based Sam-
pling (IBS). Future work could involve understanding the capabilities of IBS and
modifying the methodology in Section 5.2 accordingly.

8.1.6 Understanding Variance in L1 Load Penalty

In Section 6.3.2, I discovered an apparent contradiction where the software prefetching
scheme outperformed the headroom I computed in Section 5.3.2. One reason for this
was a reduced average L1 load penalty.

Understanding why the L1 loads might get cheaper is interesting as it can help
provide better insights into the inner workings of the complex caching system in mod-
ern CPUs. It may also reveal opportunities for optimisations which target improving
latency even on L1 hits. In the context of my work on microarchitectural analysis, it
may assist with the construction of a more robust and accurate method to compute
the optimisation headroom.
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In Section 6.4.3, I discussed possible causes, but did not explore these further.
Future work might involve exploring the possibilities raised in Section 6.4.3. Another
idea is concretely examining different instructions and their associated latencies to
try to narrow down the culprit. Use of newer Intel machines, such as Alder Lake,
which provide both instruction and cache latency could also be helpful here.

8.1.7 Reevaluation of Immix line sizes

In Section 5.3.4, I found that heap accesses during GC are surprisingly infrequent,
reshaping prevailing understandings of GC cache locality. This indicates a possible
need for reevaluation of the line size of Immix, which is a crucial design parameter
which was chosen with cache line locality in mind [Blackburn and McKinley, 2008].

8.1.8 Object Arrays

As seen in Section 7.2.1, many benchmarks are dominated by reference array slices.
This could be exploitable through optimisations like run-length encoding, which
encodes a reference array as its starting address and the array length. This reduces
the work queue operations, since slots do not need to be individually enqueued. In
particular, this can have implications for hardware prefetching efficacy.

8.1.9 Workload Analysis

The microarchitectural analysis could be made more powerful through if there were
more concrete characterisations of the object graphs of benchmarks. This would
allow GC researchers to draw stronger correlations between workload behaviour and
GC performance. Examples of avenues for research include better understanding
characteristics like:

• Mark bit access distribution.

• Max and average object graph depth.

• Number of live objects through time.

• Number of references per object.

8.1.10 Metadata Accesses

In Section 5.3.4, I found that most loads initiated during GC were to metadata. How-
ever, most GC optimisation effort focuses on heap accesses, which indicates a possibly
overlooked optimisation opportunity in metadata accesses. This requires better un-
derstanding the distribution of accesses among different metadata. In MMTk, there
are many types of metadata, including global metadata, local side metadata, VM-
defined global metadata and VM-defined local side metadata. To better characterise
metadata accesses, the bounds for each of these would need to be determined and
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then incorporated into the analysis. A similar approach to Section 5.3.3 could then be
applied.

8.2 Lightweight Benchmark-Level Dynamic Prefetching

I found in Section 6.5 that dynamic prefetching is overall unprofitable for tracing GC.
However, for some workloads with large amounts of headroom, dynamic prefetching
for edge prefetching at a benchmark-level could be plausible. This would need to be
lightweight and would likely involve choosing between a few fixed-distance options
based on a heuristic. To create such a prefetcher, there remains a need for research
into two components:

1. A mechanism for selecting different prefetch distances at VM boot time

2. A heuristic to determine when to guide adjustments

Both are possible avenues for research.

8.2.1 Dynamic Adjustment Mechanism

To prefetch adaptively, there must be runtime capabilities to modify the distance.
Moreover, it must be little to no overhead.

In Rust, this can be done with specialisation, which essentially creates different
versions of functions for each possible prefetch value. This allows the compiler to
make advantage of inlining. In theory, this would lead to essentially no overhead
from switching the prefetch distance. I prototyped this in heapdumps but did not
implement it in MMTk. Future work involves porting the prototype to MMTk and
running quick measurements to understand if it is indeed inexpensive.

8.2.2 Heuristics

Another research avenue is finding lightweight heuristics for simple benchmark-level
prefetching. Some candidates for research are:

• Understanding reasons for ineffective prefetches: Ineffective prefetch counters
could be used to develop techniques for determining whether a prefetch is early,
late or incorrect. This could help drive a dynamic prefetcher.

• Memory bandwidth: If the bandwidth utilisation is high, prefetchers may be
less effective or even harmful. This idea could even be combined with turning
off hardware prefetching in instances where the hardware prefetcher may be
utilising too much bandwidth, and can be replaced by software prefetching,
where the collector has more control and precision. An example of this type of
research is Jain et al. [2024]; its principles may be applicable to GC.
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• Adaptation of existing dynamic prefetchers: There exists multiple adaptive
prefetchers, such as APT-GET [Jamilan et al., 2022], which leverages LBR to
predict future prefetches, and a performance-driven prefetching scheme by
Beyler and Clauss [2007], which monitors all loads to adjust the prefetching
scheme. These may be adaptable to lightweight versions for the GC tracing
loop.

• Microarchitectural analysis on the fly: Since the L1 miss overheads are well-
correlated to prefetch efficacy Fig. 6.4, a lightweight version of my microarchi-
tectural analysis could be used to guide dynamic prefetching.

• Microbenchmarking: Running the microarchitectural analysis on microbench-
marks with and without prefetching could be a useful starting point to help
find other heuristic candidates. This is because the DaCapo benchmarks are
rich and complicated real-world workloads where it is harder to draw direct
correlations.

8.3 Further Research on Hardware Prefetching

There are also many possible future avenues for understanding the hardware prefetcher
more deeply.

8.3.1 Performance Across GC Phases

My analysis focused on the overall GC performance of hardware prefetching. One
possibility is that efficacy varies between GC phases. This is because some GC phases,
such as tracing, may have larger work packets which provide the hardware prefetcher
with more structure to exploit, while others may traverse singly-linked list structures
which require extra indirections that the L1 and L2 prefetchers cannot handle.

The efficacy could also vary depending on the collector algorithm. I hypothesise
the hardware prefetcher may have greater efficacy on the tracing loop for moving col-
lectors, since they can exploit better access locality. Conversely, other GC components,
such as root scanning, may be less likely to be affected.

8.3.2 Work Packet Size

I found initial correlations between the distribution and hardware prefetch efficacy.
This could be explored in greater depth by artificially adjusting the work packet
distribution. This may also help inform work packet system design choices which
better exploit hardware prefetching.

8.3.3 Focusing on Specific Hardware Prefetchers

My analysis focused on the full set of hardware prefetchers. It would also be interest-
ing to understand how each specific prefetcher behaves on GC.
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8.3.4 Data Dependent Prefetching for GC

Newer Intel processors have a data dependent (DD) prefetcher which is able to ex-
amine data values in memory. This allows contents of pointers to be prefetched,
which may render software prefetching somewhat ineffective. Future work involves
analysing the performance of the DD prefetcher for GC and understanding the inter-
actions between software prefetching and the DD prefetcher.

8.3.5 Understanding Hardware Prefetcher Efficacy on Java Workloads

In Section 7.2, I found that hardware prefetchers have limited efficacy on mutator
performance for some workloads. As this thesis focuses on GC performance, I did
not explore this further. However, since the DaCapo benchmarks are modern object-
oriented server-based Java workloads, many have more complex object graphs and
exhibit different behaviours to the standard C workloads which may be more ex-
ploitable by hardware prefetchers [Blackburn et al., 2025]. Interesting avenues for
future research include deeply understanding the performance of hardware prefetch-
ers on such workloads and possibly even designing new hardware prefetchers which
can better exploit modern Java workloads.



Chapter 9

Conclusion

From the datacenter to the phone, Garbage Collection (GC) underpins most modern
programming languages. Understanding GC performance from both software and
hardware perspectives is critical for improved user experiences, particularly in a
landscape where hardware and software is rapidly changing. However, existing
methodologies for microarchitectural GC analysis lack fine-grained attribution.

In this thesis, I introduced a novel methodology for microarchitectural analysis
of GC performance which provides fine-grained attribution of load latencies to func-
tions, cache levels, and memory segments (heap vs non-heap accesses). Leveraging
this methodology, I performed in-depth microarchitectural analysis of the cache be-
haviours and performance characteristics of GC, and analysed the efficacy of Coffee
Lake hardware prefetchers and a software prefetching scheme for tracing GC.

I discovered that L1 misses are rare but expensive, accounting for only 2.0 % of
loads, but 14.9 % of load latency cycles. However, the addition of software prefetching
reduces both these gaps by half, leading to a 9 % speedup of GC on Coffee Lake and
18 % speedup on Zen 4. Moreover, I found software prefetching efficacy on individual
benchmarks is highly correlated (R2 = 0.708) with the optimisation headroom of the
tracing loop, highlighting the usefulness of microarchitectural analysis.

I found that disabling the hardware prefetcher is detrimental for GC, and the
level of damage correlates with how much copying is performed by the collector. I
also observed that hardware prefetching efficacy is sensitive to the workload, with all
outliers explainable by the size distribution of arrays which objects are stored in.

I discovered that heap accesses are surprisingly only responsible for 3.2 % of
loads and 10.9 % of load latency, indicating that on modern hardware, software and
workloads, traditional understandings of GC hardware behaviour may no longer be
true. Moreover, metadata accesses are surprisingly common, uncovering a potential
missed opportunity for metadata-focused optimisation.

I also found that software prefetching unexpectedly improves the load latency of
L1 hits. This emphasises how modern hardware and cache systems are complex and
understudied, and highlights an important area for future research.

In summary, my thesis proposes a novel approach to GC microarchitectural analysis,
and demonstrates its rich observability and ability to localise and expose microar-
chitectural performance problems. In the process, I encounter multiple apparent
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contradictions to existing GC folklore and discover multiple new insights on GC be-
haviour. It opens up many new questions and interesting problems for future work,
and reaffirms the continued need for comprehensive microarchitectural analysis of
GC performance.
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