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As increases in processor speed continue to outpace increases in cache

and memory speed, programs are losing more performance to poor locality.

Object-oriented languages exacerbate this problem by adopting new features

such as just-in-time (JIT) compilation, dynamic class loading, and many small

methods. However, they provide significant software engineering benefits and

have become enormously popular. Solutions that bridge the memory gap will

combine good performance with fast software development. We found al-

though unique features of object-oriented languages, such as automatic mem-

ory management, dynamic compilation, and runtime monitoring systems, gen-

erate performance overhead, they also provide new opportunities for online

optimizations which are not exploited by previous work. In this thesis, we

take advantage of these opportunities with new approaches that improve data

and instruction locality at runtime with low overhead.

To improve data locality, we first implement a new dynamic, low over-

head, online class analysis to find data locality. Our algorithm detects hot
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fields for hot objects and then reorders the objects according to their heat

on-the-fly in a copying generational collector. The overall time variation be-

tween static orderings can be up to 25% and there is no consistent winner. In

contrast, our new dynamic class reordering always matches or improves over

the best static ordering since its history-based copying order tunes memory

layout to program traversal.

To improve instruction locality, we develop two schemes for improving

instruction locality in a Java Virtual Machine environment. We first describes

a partial code reordering system, which reduces the program instruction work-

ing set and cache conflict misses with extremely low overhead. We then present

a code management system that uses dynamic profiling to reorder all JIT-

compiled code to improve instruction locality with novel efficient algorithms.

Both systems show that the VM can dynamically improve instruction locality

with little overhead.

These results indicate that the VM layer for modern languages are

not just a cost-to-be-borne, but instead open up a new class of optimizations

for monitoring and improving data and instruction locality, and code quality.

Thus these results point to a future of programming languages that are robust,

dependable, and high performance.
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Chapter 1

Introduction

Due to wire scaling and clock rates, processors will soon only be able

to access a fraction of the chip in one cycle. This trend will result in (1) parti-

tioning of some components such as caches and register files, (2) longer latency

to access the memory and more complex memory systems, and (3) multi-core

architectures which will need to find and exploit more instruction level paral-

lelism (ILP) for performance. The imbalance between memory and processor

speeds is called the memory gap. The memory gap is already a serious per-

formance bottleneck and could be getting worse because of the new hardware

technologies. Software can help alleviate the memory gap by improving data

and instruction locality and can consequently reduce long latency memory ac-

cesses. But the popular object-oriented programming languages, such as Java

and C#, still lose significant performance due to poor locality. We measure the

potential locality improvements for nine Java programs, and we find these pro-

grams spend on average 27% of their execution time waiting for cache misses

from L1 and L2 in Figure 1.1 (see Section 4.3.2 for detailed analysis).

The goals of good software engineering and high performance are often

at odds. Common wisdom holds that object-oriented languages offer software

engineering benefits such as fewer errors and reduced development time, but
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Figure 1.1: Java programs with Perfect Caches

these languages do so at a cost: New features such as garbage collection, JIT

(just-in-time) compilation, and dynamic class binding add performance over-

head to programs. Common wisdom also holds that traditional programming

languages such as C offer performance benefits at a software engineering cost.

With effort, programmers can free memory as soon as possible and use special-

ized allocators to gain memory efficiency and speed. For instruction accesses,

2



C has pre-compiled and pre-allocated instructions which eliminate the runtime

overhead of dynamic code generation. However, C has a hidden performance

cost. Because C cannot move objects and instructions without violating lan-

guage semantics, it requires a non-moving allocator, such as one based on

free lists. A free-list allocator places contemporaneously-allocated objects in

whichever locations are free at that time, but these locations are not necessar-

ily adjacent or even nearby in memory. Java can move objects and can thus

use contiguous allocation to attain locality for contemporaneously-allocated

objects and instructions, and Java can use copying collection to place objects

and instructions with locality closer together, or even move objects and instruc-

tions. These dynamic optimization opportunities have not been exploited by

previous research.

Our approach to improving program locality is to exploit the avail-

able opportunities in object-oriented program languages to generate powerful

dynamic optimizations to improve program locality with low overhead. The

programs thus can potentially achieve better data and instruction locality than

programs written in traditional programming languages.

1.1 Improving Data Locality

There has been a lot of research on compile time optimizations for array

accesses inside loops to improve data locality [17, 18, 33, 35, 43, 54]. Object-

oriented languages usually use more pointer data structures than traditional

programming languages and previous approaches only solve a small part of

3



the problems.

Copying generational collection is one of the best performing memory

managers [11]. The allocator places contemporaneously allocated objects in

contiguous memory. Generational copying collectors divide objects into newly

allocated nursery objects and objects that have survived one or more collec-

tions [5, 51, 67]. Because most objects die young and the nursery is collected

separately, generational copying collectors have better performance than non-

generational collectors [5, 11]. Copying collectors promote reachable objects

using transitive closure and place objects in breadth first [21] or depth first

order [48, 69]. Prior research to improve data locality by changing copying or-

ders has explored priori static orderings [48, 69], static class profiling [22, 61],

and online object instance sampling [24]. Static orderings are problematic

when program traversal patterns do not match the collector’s single ordering.

We show large differences ranging of up to 25% in total execution time due

to the locality of static copy orders for some benchmarks. In a JIT (just-in-

time) optimizing compiler for Java, dynamic class loading provides more non-

determinism and therefore limits the generality of static profiling. Instance

based reordering is potentially more powerful than the class based orderings

we present, since objects with locality are not necessarily connected. However,

the sampling space and time overheads for just the old objects are significant

(6% in time for Cecil [24]) and miss the opportunity to improve locality when

the collector promotes young (nursery) objects.

We introduce a novel low-cost dynamic class analysis that drives a gen-

4



erational [67] copying collector to use copy orders that match data access

patterns and thus improve data locality. Our online class reordering analysis

achieves its low cost (at most 2% of total time) by piggybacking on method

sampling in an adaptive JIT compiler. The adaptive compiler in Jikes RVM

uses timer-driven sampling to identify hot (frequently executed) methods, and

they adaptive compiler recompiles them at progressively higher optimization

levels. At compile time, online class analysis enumerates the field accesses

in each method. During execution, when the adaptive compiler identifies a

hot method (regardless of its optimization choice), adaptive class reordering

analysis marks the fields the method accesses as hot. At garbage collection

time, the collector preferentially copies referents of hot fields first, together

with their parent. In this framework, we explore how quickly to decay heat to

respond to phase changes, exploit Jikes RVM’s static analysis to exclude cold

basic blocks from the reordering analysis, and group objects of hot classes to-

gether in a separate copy space. More details about this research are presented

in Chapter 5.

1.2 Improving Instruction Locality

Another locality problem is instruction locality. Previous research on

code reordering usually uses static profiling to perform reordering either at

compile time or at link time, which as we point out above is problematic

for Java. Most studies try to reorder code on three different granularities,

procedure reordering [36, 37, 58], basic block reordering [37, 58, 59], or proce-

5



dure splitting [58]. Their results show improvement in reducing instruction

cache misses by up to 40% [37]. Because Java virtual machines have dynamic

class loading and dynamic code generation, these static schemes are less effec-

tive. However, Java virtual machines also provide a new opportunity to apply

similar optimizations during the execution of the program. We can pick the

most frequently executed methods and avoid conflict misses on these methods.

Most previous dynamic schemes include hardware components for detecting

and removing conflict misses [10, 60]. Chen et al. [20] dynamically allocate pro-

cedure code at the time the procedure is invoked. But they only reorder the

procedures inside libraries and they cannot move the instructions after they

have been allocated. They show a comparable benefit to the profile-based

algorithms.

We developed two online code reordering systems for improving in-

struction locality: one reorders all the methods in the heap and the other only

does partial code reordering. An advantage of online schemes is that they

can accommodate the dynamic properties of Java programs such as dynamic

class loading, garbage collection, and dynamic code generation. However, the

overhead at run time needs to be low to make our online algorithms beneficial.

We first describe the implementation of a Whole Code Management

(WCM) system that is integrated into our managed runtime in Section 6.3.

WCM uses dynamic profile information to reorganize all the compiled code at

the granularity of a method. We show that our WCM can significantly improve

performance. We also describe three new procedure layout algorithms that,

6



compared to previous approaches, reduce the cost of computing a new code

placement. These algorithms specifically target ITLB misses, which typically

have the greatest impact on performance because of their frequency and high

cost. One of these algorithms, the Code Tiling is significantly faster both in

worst case complexity and in practice than the best-known previous technique

by Pettis and Hansen [58]. We demonstrate that Code Tiling generates code

layouts that are better or comparable to those by the Pettis-Hansen algorithm.

Although our WCM algorithms have much lower overhead than the

popular Pettis-Hansen algorithm, they are still too expensive for short run-

ning programs. We hence developed Partial Code Reordering (PCR) which

performs partial online code reordering so that we achieve even lower low

overhead than WCM. PCR improves instruction locality by attacking both

capacity misses and conflict misses in the cache. PCR performs three opti-

mizations using multiple code spaces: (1) interprocedural hot/cold method

separation, (2) intraprocedural hot/cold code splitting, and (3) interprocedu-

ral hot code padding. To reduce capacity misses, PCR allocates hot and cold

methods into separate spaces in the heap. PCR also performs code splitting

of hot and cold basic blocks within the same method to further reduce the

hot instruction working set size. PCR utilizes the adaptive sampling system

in Jikes RVM to detect hot methods and collect the dynamic edge profile to

determine hot basic blocks. To reduce conflict misses, PCR uses the dynamic

call graph generated by dynamic stack profiling to find hot caller/callee pairs.

If the hot caller and callee methods map to the same cache line in the cache,

7



they will have too many conflict misses. Therefore, PCR applies code padding

on either caller or callee method (which ever it happens to be recompiling)

to eliminate the potential conflict misses. Detailed algorithms of PCR are

presented in Section 6.4.

1.3 Contributions

The main contributions of this thesis are:

1. Program characteristics study: Quantifying Java program memory be-

havior to find performance losses due to poor locality.

2. Improving data locality:

(a) A novel, low-overhead, Online Object Reordering (OOR) system to

improve data locality. We can improve over static copying orders

by up to 25%, and the overhead of OOR is at most 2%.

(b) A thorough evaluation on three architectures of the performance

improvements of data reordering optimizations and the comparison

of different static data copying schemes.

3. Improving instruction locality:

(a) A Whole Code Management (WCM) system. This implementation

of dynamic code reordering in a managed runtime is the first to

our knowledge. Since it operates on-the-fly, it naturally copes with

8



dynamic features of languages like Java such as method recompila-

tion and dynamic class loading. Results show, for example, that it

reduces the execution time for a large benchmark by 6%.

i. A new code placement algorithm called Code Tiling. This al-

gorithm is fast enough to make dynamic code reorganization

practical in a high-performance managed runtime. Placements

computed by this algorithm perform as well and often better

than those produced by the Pettis-Hansen procedure layout al-

gorithm.

ii. Detailed evaluation of the quality and overhead of dynamic

call graphs which are generated using hardware performance

counters on Intel Itanium architectures.

(b) An instruction locality optimization framework, Partial Code Re-

ordering (PCR) system, which piggybacks on hotspot recompilation

to achieve negligible overheads and reduced instruction cache foot-

prints.

i. The design of four code space optimizations: (1) one space with

all code1; (2) two spaces: separate hot and cold methods; (3)

three spaces: cold methods, hot blocks of hot methods, and cold

blocks of hot methods; (4) three spaces with method padding

for hot caller-callee pairs.

1This design is common in commercial VMs.
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ii. A thorough evaluation on two architectures and in simulation

of the potential and actual performance of code space opti-

mizations. Simulation results show potential improvements are

possible, but PCR has a negligible effect in practice because

of the small instruction cache footprint of the benchmarks we

tested.

This work is the first to exploit the available opportunities in object-

oriented programming languages to improve program locality with low over-

head dynamic optimizations. This dissertation not only proves the applica-

bility of this approach, but also develops several novel dynamic optimizations

which effectively improve data and instruction locality.
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Chapter 2

Background

This chapter gives the background of the two dynamic optimization

systems we use in this dissertation. However, our techniques are not specific

to these systems and can be added to any systems with mechanisms to identify

hot methods at runtime, dynamic code generation, and generational copying

collector. All three features are common to current virtual machine systems

for Java and C#. Our optimizations for improving program locality are taking

advantage of opportunities that are not VM dependent.

We first describe how the adaptive sampling, compilation system, and

code allocation in the IBM Jikes RVM [3, 4] works. Then we describe the gen-

erational copying collector from the Memory Management Toolkit (MMTk).

Last, we describe the code generation in Intel Open Runtime Platform virtual

machine (ORP) [25] because we implement two different code reordering sys-

tems in Jikes RVM and ORP respectively. This chapter is to set the stage to

explain our online data/instructions reordering algorithms in the subsequent

chapters.
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2.1 Jikes RVM

Jikes RVM [4, 6, 7, 44] is an open source high-performance Java-in-Java

virtual machine (VM) written almost entirely in a slightly extended Java. A

few C code is needed for boot strapping and system calls. Our work of online

object reordering and partial code reordering is in the context of Jikes RVM.

We leverage the existing adaptive optimization system in Jikes RVM for both

our data object reordering and code reordering system. In this section we

briefly review the most relevant aspects of this adaptive optimization system.

Jikes RVM does not have a bytecode interpreter. Instead, a fast template-

driven baseline compiler produces machine code when the VM first executes

each Java method. Using timer-based profiling, the adaptive system peri-

odically samples the currently executing code and records (1) the currently

executing method and (2) the caller of the currently executing method. This

profile data is fed into a cost-benefit model to identify methods that should

be recompiled at a higher level of optimization. Methods selected by the sys-

tem for recompilation are compiled asynchronously on a separate compilation

thread by the Jikes RVM optimizing compiler. The profiled caller-callee re-

lationships are used to maintain a weighted dynamic call graph that drives

profile-directed inlining during optimizing compilation.

While generating code, the baseline compiler inserts instrumentation

for every bytecode-level conditional branch to measure its execution frequency

and its taken/not-taken distribution. The optimizing compiler uses this edge

profile data to compute basic block frequencies and branch probabilities. A
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number of optimizations exploit this information, and most relevant research

to our work is basic block layout generation. At the lowest optimization level

(O0), the compiler simply moves infrequently executed basic blocks to the bot-

tom of the compiled method’s code. At O1 and O2, it employs Pettis-Hansen’s

bottom-up positioning algorithm (Algo2) [58]. Note the Pettis-Hansen algo-

rithm used here is for blocks reordering within a method, not the Pettis and

Hansen algorithm which does inter-procedural method reordering and will be

used for comparison in our instruction locality work.

2.2 Garbage Collection and MMTk

MMTk is an efficient, composable Java memory management toolkit

used in Jikes RVM that implements a wide variety of high performance garbage

collectors that reuse shared components [11, 12]. It is ideal for our experiments

because we can easily apply different algorithms on the same data structure

to systematically compare different policies.

We use the copying generational collection in MMTk, which is one of

the best performing memory managers [11]. Copying generational collection

divides the heap into two portions, a nursery containing newly allocated (i.e.,

young) objects, and a mature space, containing older objects [51, 67]. It fur-

ther divides the mature space into two semispaces. It collects the nursery

frequently (whenever the nursery fills up), by performing a transitive closure

over the nursery objects, and copying them into one semispace of the mature

space. When that semispace is full after a nursery collection, it copies reach-
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able mature objects into the other semispace and flips the roles of the two

semispaces.

Since the generational collector collects the nursery separately from

the mature space, it requires the compiler to insert write-barrier code, which

at run time records stores of pointers from mature to nursery objects in a

remembered set. When the collector starts a nursery GC, the remembered set

forms part of the set of root pointers, which also includes the stacks, registers,

and static variables. It assumes all reachable objects are live. It copies any

referents of the root pointers that lie in the nursery and iteratively enumerates

the pointers in newly copied objects, copying their nursery referents, until it

copies all reachable nursery objects. Mature space garbage collection proceeds

similarly, except the remembered set is empty and the collector copies any

reachable objects in both mature space and nursery. This scheme generalizes

to multiple generations, but we use two.

We use the bounded generational copying collector (GenCopy) in our

Online Object Reordering system for improving data locality. It follows Ap-

pel’s flexible nursery [5], which shrinks the nursery as mature space occupancy

grows, except that we never allow the nursery to exceed a fixed chosen bound

(4MB) to reduce the average time to collect the nursery. When mature space

occupancy approaches the maximum total heap size, bounded generational

collector copying collector shrinks the nursery, until it reaches a lower bound

(256KB) that triggers mature space collection. MMTk manages large objects

(8KB or bigger) separately in a non-copying space and puts the compiler and a
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few other system pieces into the boot image, an immortal space. See Blackburn

et al. for additional implementation details [11, 12].

2.3 ORP: Intel Open Runtime Platform

Besides Jikes RVM, we also implemented our optimizations for im-

proving instruction locality in Intel’s Open Runtime Platform virtual machine

(ORP). ORP is a managed runtime environment that supports Java and C#

programs. ORP is more robust than Jikes RVM and ORP can run more

benchmarks including large server benchmarks. Not like Jikes RVM, ORP is

written in C++. Our core platform consists of the ORP and one or more

JIT compilers. On IA-32, we use the optimizing O3 JIT [26] to compile JVM

bytecodes. This JIT performs inlining, a number of global optimizations (e.g.,

copy propagation, dead code elimination, loop transformations, and constant

folding), as well as CSE and array bounds check elimination.

In ORP, a JIT may emit compiled code for a method that consists of

more than one separately-allocated code block, which is a set of basic blocks

in one method. Because of this, code blocks are the units of code manage-

ment in our algorithm, not methods, and WCM reorders code blocks. ORP

also allocates code blocks in a region of memory that is separate from the

garbage collected heap. It provides different subregions for code that is cold

(infrequently executed) and warm (more often executed). ORP allocates code

of equal “temperature” sequentially. ORP can collect dynamic profile infor-

mation from either software instrumentation or from hardware Performance
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Monitoring Unit (PMU) sampling. These dynamic profiles are used for opti-

mizations such as basic block reordering within a method.
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Chapter 3

Literature Survey

In this section, we discuss the most closely related work in the follow-

ing areas: (1) memory performance studies for Java programs, (2) research

on improving data locality for Java, and (3) research on code reordering to

generate better instruction locality.

3.1 Memory Performance Studies

Several studies characterize the memory behavior and performance of

Java programs via simulation [46, 50, 63]. Kim et al. [46] studied memory be-

havior by feeding Java memory access traces to cache simulators. The garbage

collection algorithm they studied was mark-sweep GC. In our study, we will

examine the behavior of Java programs in the context of bounded copying

nursery generational garbage collectors, which have higher performance [11].

Their study concentrated on data locality but not instruction locality, while

our work studies the effect of locality from both caches.

Li et al. [50] studied the performance characteristics of the SPECjvm98

Java programs. They used SimOS in their experiments. They did not differ-

entiate the impact of mutator and GC, which, as we will show later, exhibit

very different memory behaviors. SimOS does not have a cycle-level processor
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model, affecting the accuracy of their results. Also, they did not have detailed

study of instruction cache locality.

Shuf et al. [63] use a very similar methodology to Kim et al. They

generated traces and simulated memory behavior by using the trace on a cache

simulator on some of the benchmarks that we use. They adopted a very

large heap size, ignoring the costs and benefits of GC. Also, because they

use unusually large heaps, their results focus unnecessarily on TLB misses

as a problem. In our study, we vary heap sizes and study the effects of GC

and the interaction between mutator and GC. We find these applications very

rarely stress the TLB since copying GC usually reduces the program’s memory

footprint.

3.2 Data Locality

The key investigations of our data locality work are (1) exploiting the

object reordering that happens during copying generational garbage collec-

tion [51, 67], and (2) using online profiling to collect information for controlling

the copying order. Much previous research in this area considers non-garbage

collected languages (such as C) [22, 23, 69], or does not address the effects of

copying collectors [47]. In other words, it neither considers nor exploits moving

heap objects.

The related work most pertinent to ours falls into two categories: tech-

niques that group objects to improve inter -object locality [22, 24, 48, 69], and

those that reorder fields within an instance to improve intra-object local-
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ity [22, 47]. This prior work relies on static analysis or offline profiling to

drive object layout decisions and is class-oblivious for the most part, i.e., it

treats all classes the same.

One can improve inter-object locality by clustering together objects

whose accesses are highly correlated. The work in this area differs in how

to define correlation and specific methods to cluster objects. Wilson et al.

describe a hierarchical decomposition algorithm to group data structures of

LISP programs using static-graph reorganization to improve locality of mem-

ory pages [69]. They found that using a two-level queue for the Cheney scan

groups objects effectively. Lam et al. later conclude that hierarchical decom-

position is not always effective [48]. They suggest that users supply object

type information to group objects. We automatically and adaptively examine

fine-grained field accesses to generate such type-based advice.

Chilimbi and Larus use a continuously running online profiling tech-

nique to track recently referenced objects and build a temporal affinity graph [24]

based on the frequency of accesses to pairs of objects within a temporal in-

terval. The object pair need not be connected by a pointer, but must lie in

the same non-nursery generation to reduce overhead. Their dynamic instance-

level profiling records in a buffer most pointers fetched from the heap. They

report overheads of 6% for Cecil, a language which is not as well adopted

as Java. Exploiting the timer-driven sampling, already in the adaptive op-

timization system of Jikes RVM, is much cheaper. We find copying cannot

guarantee to improve every program by at least 6% so as to overcome instance
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profiling costs by their approach. Their algorithm copies together objects with

high affinity only during collection of the old generation whereas our system

reorders objects during both nursery and old generation collections.

Chilimbi et al. split objects into hot and cold parts to group the hot

parts together [22]. This technique is not fully automated and requires sub-

stantial programmer intervention. Chilimbi et al.’s clustering and coloring

methods also rely on manual insertion of special allocation functions [23]. Our

technique is automatic, but we do not support object splitting in our current

system.

Intra-object locality can be improved by grouping hot fields together

so that they will usually lie in the same cache line, and it is most useful for

objects somewhat bigger than a cache line. The size of hot objects in Java

benchmarks is close to and rarely exceeds 32 bytes [32], whereas typical L1

cache line sizes are 64 to 128 bytes and L2 line sizes are 64 to 256 bytes. Thus

the performance improvement offered by field reordering alone is usually small.

Kistler and Franz use an LRU stack to track the temporal affinity of object

fields, and they partition and reorder fields based on their affinity graph [47].

They use a mark-sweep collector, where field reordering has no effect on the

object order after collection. Chilimbi et al.’s field reordering depends on

profiling to generate reordering advice [22]. The programmer then follows the

advice to rewrite the code and reorder fields.

Rubin, Bodik, and Chilimbi developed a framework that attempts to

pull together much prior work in this area [61]. Their approach involves the
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following steps. (1) Produce an access trace with instance and field labels. (2)

Compress the trace to fit in main memory and include only accesses relevant

to a specific cache size and configuration. (3) Compute the objects with the

most accesses and misses. (4) Use object properties (e.g., size, field access

frequencies, field access correlations) to select optimizations. (5) Perform a

hill-climbing search of possible field and object layout schemes, and model

misses for each scheme on the compressed trace. Their framework would need

significant changes to address moving collectors, and it is practical only as

an offline tool. In contrast, we exploit the reordering of objects inherent in

copying collection and our online analysis is inexpensive and robust to phase

behavior.

3.3 Instruction Locality

Numerous researchers have studied the problem of restructuring pro-

grams to improve the memory performance of instruction accesses. Much of

the early software-based work reduces virtual memory page faults. Some cur-

rent work also tries to minimize these very expensive faults [70]. However, most

recent work focuses on static and dynamic approaches for reordering code to

reduce instruction cache and ITLB misses with offline and online profiling.

3.3.1 Static code placement

Researchers have explored code placement at compile or link-time at

a number of different granularities: for example, at the granularity of basic

blocks, groups of basic blocks, or entire procedures. A limitation of these
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static layout approaches is that they produce a fixed static layout, which as we

discussed in Section 1.2, is not suitable for a managed runtime. Furthermore,

static schemes must assume that the profile data gathered on a training run is

representative of all program executions and miss the opportunities available

to a managed runtime of exploiting profile data from the program’s current

execution.

McFarling [53] uses profile data to lay out code to reduce misses in

a direct-mapped instruction cache. His algorithm identifies those parts of a

program that could overlap each other in the cache and those that should be

placed in non-conflicting addresses.

Pettis and Hansen [58] perform profile-based code placement at all three

granularities. 1) At the finest granularity, basic block positioning lays out basic

blocks to straighten out common control paths and minimize control transfers.

2) Procedure splitting moves a procedure’s never-executed basic blocks into

a different allocation area from that of its other blocks. 3) At the coarsest

granularity, a greedy algorithm starts with an undirected weighted call graph

constructed from the profile data and progressively combines its nodes to place

frequent caller-callee procedure pairs close together. Pettis and Hansen show

that combining all three optimizations can improve performance up to 26%

(average about 12%) with a 16 KB directly-mapped unified cache. However,

the improvement they achieve is very sensitive to cache organization and their

algorithms can not achieve similar improvement on current architectures with

bigger cache size (see Section 6.3.4). Because it is both simple and effective,
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their procedure ordering algorithm is generally considered the reference place-

ment technique. It is the basis for several more recent algorithms. However,

it has performance instability because small changes in the profile data often

produce substantially different layouts as we will show in Section 6.3.

Cohn et al [29] describe the Spike post-link optimizer for Alpha/NT

executables which includes the Pettis-Hansen procedure code layout algorithm.

They report that, on a set of large benchmarks, Spike speeds up most by at

least 5%, and often 10% or better. Ispike [52] is a post-link optimizer for the

Itanium Process Family (IPF). It uses the IPF performance counters to collect

low cost detailed profile information for instruction and data optimizations

including inlining, branch forwarding, layout, and prefetching of both code

and data. Their code layout optimization includes 1) basic-block chaining to

lay out basic blocks in sequence if there is a frequently-executed control flow

edge between them, 2) procedure splitting, and 3) procedure layout that keeps

hot procedures close together. On a set of small benchmarks, they found that

code layout by itself helps one-third of the benchmarks by over 4%.

Hashemi et al. [37] take the cache configuration into account to lay

out procedures using cache line coloring. Their algorithm colors each cache

line in the instruction cache and uses a greedy algorithm similar to Pettis and

Hansen’s to place procedures such that the most frequent caller-callee pairs

will not occupy the same cache lines. In simulation, they achieve 17% lower

instruction miss rate than Pettis and Hansen algorithm. Gloy and Smith [36]

also compute procedure layouts that reflect the cache configuration. They
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collect complete procedure interleaving information that in combination with

the cache configuration and procedure sizes, they use to produce a layout

that minimizes both cache conflicts and the instruction working set size. By

making use of temporal locality information, their technique eliminates more

cache conflict misses than Pettis and Hansen.

Ramirez et al. [59] developed a code reordering system, called the Soft-

ware Trace Cache (STC), to improve the instruction cache hit rate and increase

the processor’s effective instruction fetch width. Using profile information,

STC determines traces (hot basic block paths) then maps the resulting traces

into memory locations that minimize cache conflicts. It also makes effective

use of instruction cache lines while tending to keep sequentially-executed in-

structions in order. STC also reserves a region in the instruction cache for hot

instructions to avoid conflict misses with cold instructions.

Since these static approaches generate code layouts ahead-of-time, they

lose the flexibility of determining layouts using the actual information for a

particular run of a program. They also cannot cope with different program

phases. The time complexity of these algorithms is too high for a dynamic

scheme. For example, Pettis and Hansen’s algorithm has a time complexity

of O(n3). If we use Pettis and Hansen’s algorithm to These limitations make

them less useful in the context of virtual machines.

3.3.2 Dynamic code placement

Dynamic schemes for improving instruction locality typically monitor

system behavior and apply optimizations at runtime based on that behavior.
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Chen and Leupen’s just-in-time code layout technique places the proce-

dures of Windows applications in the order of their invocation at runtime [20].

Their results show improvements similar to that of the Pettis and Hansen. It

also substantially reduces the program’s working set size, often by about 50%.

Pettis-Hansen’s procedure layout also reduces the working set, but because it

is a static approach, it is less effective because the procedures executed do not

exactly match those of the training run. Chen and Leupen’s approach lays out

procedures at allocation time, whereas our approach reorders hot procedures

during recompilation or after the program’s warm-up phase.

Scales’ DPP (dynamic procedure placement) system uses runtime in-

formation to dynamically lay out procedure code [62]. DPP uses a loader

component that is invoked on procedure calls. It copies the code of the called

procedure to a new code region, where it will be close to the caller, then fixes

up all references to the procedure to refer to the new copy. Because this sys-

tem supports C and other languages that are not strongly typed, it deals with

indirect calls by memory protecting the original code space, so that attempts

to call a procedure at its original address result in a trap whose handler then

invokes the new copy of that procedure. DPP’s overhead is high because of the

virtual memory protection traps and the many calls to the DPP loader. The

DPP system can restart procedure placement to try to improve the layout,

but each restart is expensive due to the overhead of the new loader calls. An

extension of DPP supports runtime profiling: at each call to the loader, the

call stack is recorded to build a profile of the calls. This information is used
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later to improve the layout. However, this profiling is extremely expensive and

slows down the program by a factor of ten or more.

Whaley [68] very briefly outlines a never implemented dynamic proce-

dure code layout optimization for Jikes RVM. It also piggybacks on branch and

call stack profiling, but suggests passing this information to the garbage collec-

tor as a hint to reorder code in the heap (see Figure 6.17(a)). In contrast, our

PCR algorithm separates code from data objects in the heap which sometimes

improves performance. Furthermore, PCR pads conflicting hot caller/callee

pairs when the methods are recompiled, and it does not wait until garbage

collection.

Recent research [14, 38, 39, 60] investigates code cache management for

dynamic binary optimizing systems. This work focuses on frameworks for

software managed code caches, creating basic block sequences (superblocks) for

a trace cache, replacement policies for hardware instruction caches, and sharing

between threads. Our work is complementary to theirs since we not only reduce

the working set size by code splitting, and whole program reordering, but also

reduce conflict misses by code padding.

Our system thus differs from the prior work in several key ways: it is

not restricted to invocation order [20], nor does it rely on expensive page pro-

tection [62], nor does it require special hardware [39, 60], and it is implemented

in a JVM [68].
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Chapter 4

Methodology

We begin describing our experimental methodology, and relevant char-

acteristics of the benchmarks we use. We also present different platforms used

in our experiments in this section.

4.1 Jikes RVM

We use two methodologies for our experiments on Jikes RVM. (1) The

adaptive methodology lets the adaptive compiler behave as intended and is

non-deterministic. (2) The compiler-replay methodology is deterministic and

eliminates memory allocation and mutator variations due to non-deterministic

application of the adaptive compiler. We need this latter methodology because

the non-determinism of the adaptive compilation system makes it a difficult

platform for detailed performance studies. For example, we cannot determine

if a variation is due to the system change being studied or just a different

application of the adaptive compiler due to sampling variations.

In the adaptive methodology, the adaptive compiler uses non-determin-

istic sampling to detect hot methods and blocks, and then tailors optimiza-

tions for the hot blocks. Thus on different executions, it can optimize different

methods and, for example, choose to inline different methods. Furthermore,
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any variations in the underlying system induce variation in the adaptive com-

piler. We use this methodology for measuring the overhead of our system in

Section 5.2.2 and for measuring programs running under multi-program envi-

ronment in Section 6.4.2.5.

For all other experiments, we use a deterministic methodology that

holds the allocation load and the optimized code constant. The compiler-

replay methodology gives a mixture of optimized and un-optimized code that

reflects what the adaptive compiler chooses, but is specified by an advice file

from a previous run. We run each benchmark five times and profile the opti-

mization plan of the adaptive compiler for each run. We pick the optimization

plan of the run with best performance and store it in an advice file. For the

performance measurement runs, we execute two iterations of each benchmark

and report the second. We turn off the adaptive compiler, but not the adap-

tive sampling. In the first iteration, the compiler optimizes selected methods

at the selected level of optimization according to the advice file. Before the

second iteration, we perform a whole heap collection to flush the heap of com-

piler objects. We then measure the second iteration. Thus we have optimized

code only for the hot methods (as determined in the advice file). This strat-

egy minimizes variation due to the adaptive compiler since the workload is

not exposed to varying amounts of allocation due to the adaptive compilation.

We measure only the application behavior and exclude the compiler in this

methodology.

We report the second iteration because Eeckhout et al. show that mea-
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suring the first iteration, which includes the adaptive compiler, is dominated

by the compiler rather than the benchmark behavior [34].

For each experiment we report, we measure the benchmark five times,

interleaving the compared systems. We use the methodologies above, and

take the fastest time. The variation between these measurements is low. We

believe this number is relatively undisturbed by other system factors. When

measuring the system overhead in the adaptive compiler, we believe the low

variation from the fastest time reflects a stable application of the adaptive

compiler.

4.2 Dynamic SimpleScalar

We conduct our experiments both on real machines whenever applicable

and on our simulator for different cache configuration and some instrumented

runs. The simulator we use is Dynamic SimpleScalar (DSS) [42], which is

developed on the base of SimpleScalar [9, 15, 30].

Many current simulators do not have support for simulation of dynamic

compilation, threads, or garbage collection–all of which Java Virtual Machines

(JVMs) require. To experiment with effects of different cache configuration and

to study detailed memory behavior of Java programs, we developed Dynamic

SimpleScalar (DSS). DSS is a tool that simulates Java programs running on a

JVM, using just-in-time compilation, executing on a simulated multi-way is-

sue, out-of-order execution superscalar processor with a sophisticated memory

system. Detailed implementation description and validation results are in our
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technical report [42].

We use the same microprocessor configurations for our simulation ex-

periments in this dissertation. The DSS configuration we use a processor model

with five-stage pipeline. The details of this simulated microprocessor are as

follows:

• Five-stage pipeline based on a 16 entry Register Update Unit (RUU),

which combines the physical register file, reorder buffer, and issue win-

dow into a single data structure

• Out-of-order issue, including speculative execution

• Issue width, decode width, and commit width are 4

• 2-level branch predictor that uses its own 1 KB L1, 16 KB L2, and a 14

bit history register. The BTB is 2 way associative with 256 sets.

• An 8-entry load-store queue

4.3 DaCapo Benchmarks

DaCapo project is a multi-institution research project that aims to

improve the performance of Java programs, with a particular focus on garbage

collection and memory performance. As part of an ongoing effort with our

collaborators in the DaCapo project [56], we collect several memory intensive

Java programs for the DaCapo benchmark suite [13]. These benchmarks are

intended to exercise garbage collection vigorously in order to reveal collector

and platform induced differences.
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1. antlr: parses one or more grammar files and generates a parser and

lexical analyzer for each.

2. bloat: performs a number of optimizations and analysis on Java byte-

code files

3. fop: takes an XSL-FO file, parses it and formats it, generating a PDF

file.

4. hsqldb: executes a JDBC-like in-memory benchmark, executing a num-

ber of transactions against a model of a banking application

5. jython: interprets a series of Python programs

6. pmd: analyzes a set of Java classes for a range of source code problems

7. ps: reads and interprets a PostScript file

8. xalan: transforms XML documents into HTML

9. ipsixql: persistent XML database.

10. postscript-fun: a PostScript interpreter.

4.3.1 Benchmark Characteristics

Table 4.1 and Table 4.2 shows key characteristics of our benchmarks us-

ing the fixed workload and adaptive methodologies. We use the eight SPECjvm98

benchmarks, five DaCapo benchmarks, plus pseudojbb, a variant of SPECjbb2000 [64,

65] that executes a fixed number of transactions (70000), rather than running

for a fixed time (for comparisons under a fixed work load). The alloc columns

in Table 4.1 and Table 4.2 indicate the total number of megabytes allocated

under adaptive and fixed work loads respectively. The alloc:min column lists
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classes methods alloc alloc:
Benchmark loaded compiled (MB) min

jess 155 507 403 25:1
jack 61 331 307 22:1

javac 160 821 593 23:1
raytrace 34 227 215 12:1

mtrt 35 225 224 11:1
compress 16 99 138 8:1

db 8 92 119 6:1
mpegaudio 59 270 51 4:1

ps-fun 347 522 8602 410:1
ipsixql 120 381 1777 105:1
hsqldb 90 432 6804 76:1
jython 175 1050 796 47:1

antlr 114 719 22 18:1
pseudojbb 13 92 339 7:1

Table 4.1: Benchmark Characteristics With Adaptive Run

the ratio of total allocation to the minimum heap size in which the program

executes in MMTk. Including the adaptive compiler substantially increases al-

location and collector load (compare alloc columns in Table 4.1 and Table 4.2,

and alloc:min columns in Table 4.1 and Table 4.2). This behavior can obscure

program behaviors and further confirms Eeckhout et al. [34]. Notice that

mpegaudio allocates only 3MB, and with a 4MB heap is never collected; hence

we exclude it from the remaining experiments. Also notice that the DaCapo

benchmarks place substantially more load on the memory management system

than the SPECjvm98 benchmarks. Therefore there are more opportunities for

improving data locality in DaCapo benchmarks.

The % nrs srv column indicates the percent of allocation in the nursery

that the collector copies (e.g., mpegaudio copies 0% means the survival rate

of nursery object is less than 0.5% for mpegaudio). OOR can influence the

subset of these objects with two or more non-null pointers. Notice that most

programs follow the weak generational hypothesis, but that javac and ipsixql
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alloc alloc: % nrs % wb alloc pointers scan pointers scan non-null pointers
Benchmark (MB) min srv take 0 1 many 0 1 many 0 1 many

jess 261 17:1 1 0.08 18% 40% 42% 1% 52% 47% 7% 49% 43%
jack 231 17:1 3 3.15 48% 31% 22% 21% 44% 35% 34% 53% 13%

javac 185 7:1 23 1.21 29% 34% 37% 5% 27% 68% 6% 34% 60%
raytrace 135 8:1 2 0.01 89% 1% 10% 55% 12% 33% 57% 14% 29%

mtrt 142 7:1 5 0.65 87% 2% 11% 55% 12% 33% 57% 14% 29%
compress 99 6:1 0 1.20 56% 34% 10% 41% 31% 29% 43% 37% 20%

db 82 4:1 9 1.21 4% 95% 1% 42% 53% 5% 42% 53% 5%
mpegaudio 3 1:1 0 0.00 76% 15% 10% 83% 5% 12% 83% 5% 12%

ps-fun 8589 409:1 0 0.00 95% 2% 3% 25% 30% 45% 25% 30% 44%
ipsixql 1739 102:1 31 1.17 40% 3% 56% 39% 2% 59% 39% 2% 59%
hsqldb 6720 75:1 4 0.01 44% 41% 16% 50% 0% 50% 50% 0% 50%
jython 722 42:1 1 0.103 0% 78% 22% 1% 62% 37% 2% 64% 34%

antlr 5 3:1 11 1.78 68% 23% 9% 25% 26% 48% 30% 41% 28%
pseudojbb 216 5:1 32 1.82 51% 26% 23% 36% 29% 35% 37% 29% 34%

Table 4.2: Benchmark Characteristics With Fixed Workload

are memory intensive while not being very generational. However, generational

collectors still improve their performance [11].

The % wb take column shows the percent of all writes that the write

barrier records in the remembered set. The remaining columns indicate the

percentage of objects with 0, 1, or many pointer fields. The alloc pointers

column indicates these proportions with respect to allocated objects. The

scan pointers column indicates the proportions with respect to objects scanned

at collection time, and scan non-null pointers indicates the proportions with

respect to non-null pointers in objects scanned at collection time. Since OOR

influences only objects with two or more non-null pointers, the final column in

Table 4.2 indicates the proportion of scanned (copied) objects to which OOR

can be applied.

We ran all the experiments we report here on all the benchmarks. For

some benchmarks, performance variations due to different optimizations are

small. For brevity and clarity, the results section focuses on programs that are
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sensitive to our optimizations (positive or negative), and just summarizes the

programs where our optimizations have little effect.

4.3.2 Program Locality Potential

This section we examine the locality characteristics of these bench-

marks. We first use an unrealistic model of perfect cache as the caches used

in Chapter 1 to measure the potential performance lost due to poor locality.

In these perfect caches, there is never a miss, not even a compulsory miss.

Figure 4.1 shows DaCapo benchmarks and SPECjvm98 Benchmarks

running under perfect caches. We use modest cache sizes for our experiments:

both instruction L1 and data L1 caches are 32K 2-way set associative. 512K

unified L2 cache. We run our benchmarks under five configurations: Base

(regular caches); perfect L2 cache; perfect DL1 and L2 caches; perfect IL1 and

L2 caches; and perfect DL1, IL1 and L2 caches. Also, to reduce the anomaly

generated by mixing data and instruction together, we use separate spaces for

data and instructions for this experiment. From Figure 4.1, we can see most

of the performance is lost due to poor L2 cache locality (on average, 20% of

the execution time is waiting for L2 cache misses). Because these benchmarks

usually have small instruction footprints (as we will show later in Table 6.6),

the L2 performance loss is mostly contributed by L2 data locality. As for L1

cache locality, instruction locality has more impact than data locality (5.7%

vs. 1.7%). These results show the performance potential of improving L2 data

locality and L1 instruction locality for these programs, as we will verify again

in our results in the following chapters.
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Figure 4.1: Java Benchmarks with Perfect Caches

4.4 Server Benchmarks

We use MiniBean and SPECjbb for our evaluation of full code layout

algorithms to improve program locality. MiniBean is a large benchmark in-

spired by the SPECjAppServer2002 enterprise application server benchmark,

but runs in a single process on a single machine. While MiniBean uses en-

terprise JavaBeans (EJB) functionality, it generates no network traffic itself.
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Benchmark IA32 Size Methods Calls/sec
SPECjbb 268K 758 2.04M
MiniBean 3.10M 15586 3.65M

Table 4.3: Benchmark characteristics

SPECjAppServer2002, on the other hand, must be run using multiple ma-

chines including a database server. When collecting our results, we run each

benchmark five times and used the best time. Table 6.3 shows the code allo-

cation characteristics of these benchmarks1. As for heap sizes, we use 512M

for MiniBean, 256M for SPEC JBB2000. We reorganize code once at the end

of application warm-up with MiniBean and SPEC JBB2000, and at the end

of the first iteration of each program with SPEC JVM98.

4.5 Platforms

We report run-time results for our implementation on the following

platforms:

3.2GHz P4 with hyper-threading enabled, a 64 byte L1 and L2 cache line

size, an 8 KB 4-way set associative L1 data cache, a 12 Kµops L1 in-

struction trace cache, a 512 KB unified 8-way set associative L2 on-chip

cache, and 1 GB main memory running Linux 2.6.0.

2.4GHz P4 The 2.4GHz Pentium 4 uses HyperThreading. It has a 64 byte

L1 and L2 cache line size, an 8KB 4-way set associative L1 data cache,

1We measure the calls per second by running SPEC JBB2000 for 50 seconds and
MiniBean for 200 seconds.
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a 12Kµops L1 instruction trace cache, and a 512KB unified 8-way set

associative L2 on-chip cache, 1 GB main memory, and runs Linux 2.6.0.

1.9GHz AMD Athlon XP 2600+ with a 64 byte L1 and L2 cache line size.

The data and instruction L1 caches are 64KB 2-way set associative. It

has a unified, exclusive 512KB 16-way set associative L2 cache. The

L2 holds only replacement victims from the L1, and it does not contain

copies of data cached in the L1. The Athlon has 1GB of main memory

and runs Linux 2.6.0.

933MHz PPC The Apple G4 has a 933MHz PowerPC 7450 processor, sep-

arate 32KB on-chip L1 data and instruction caches, a 256KB unified L2

cache, 32 bytes L1 and L2 cache line size, 512MB of memory, and runs

Linux 2.4.25.

1.6GHz PowerPC 970 with a 128 byte L1 and L2 cache line size, a 32 KB

2-way set associative L1 instruction and data (split) caches, a 512 KB

unified 8-way set associative L2 on-chip cache, and 1 GB main memory

running Linux 2.6.0.

1.5GHz Itanium 2 with 4×1.5GHz processors running Windows Server 2003.

On each processor, the data and instruction L1 caches are both 16KB in

size with 4-way set associativity and have a 64 byte line size. The 256KB

unified L2 on-chip cache is 8-way set associative and has a 128-byte cache

line. Also, the L3 cache is 9MB, has 128-byte cache lines and is 36-way

associative. The ITLB on this machine is a two level TLB, where both
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levels are fully-associative, The L1 ITLB has 32 entries while the L2

ITLB has 128 entries. Page size is 4KB.

2GHz Xeon with 4×2GHz Xeon processors. This machine runs Windows

2000 Advanced Server Edition and has a 400MHz system bus. Each pro-

cessor has an 8K 4-way set associative L1 data cache, a 8-way 12Kµops

L1 instruction trace cache, a 512K unified 8-way set associative L2 on-

chip cache, and a 2MB 8-way L3 cache. The L1 and L2 cache line size

is 64 bytes. This machine’s ITLB has 128 entries and is 4-way set asso-

ciative. We disable HyperThreading and use the default 4K page size.
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Chapter 5

Online Object Reordering to Improve Data

Locality

The generational copying collector can reorder the objects during garbage

collection and from Section 4.3.2, we observe that there is a large performance

improvement potential by improving data locality. We develop the Online Ob-

ject Reordering (OOR) system to exploit this opportunity to improve program

data locality at runtime. OOR analysis identifies the hot field accesses by

piggyback to JIT compilation and use the hot field information to direct code

copying policy during garbage collection. The OOR system thus generate data

layout that matches the dynamic access pattern of the program. The OOR

system is the first effective dynamic object reordering system for improving

data locality with low overhead.

5.1 Online Object Reordering Algorithm

The Online Object Reordering (OOR) system is class-based, dynamic,

and low-overhead. OOR consists of three components, each of which extends a

subsystem of Jikes RVM: (1) static compiler analysis; (2) adaptive sampling for

hot methods in the adaptive optimization subsystem; and (3) object traversal

and reordering in garbage collection. Figure 5.1 depicts the structure and in-
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Figure 5.1: OOR System Architecture

teractions of the OOR system. When Jikes RVM initially compiles a method,

we collect information about field accesses within that method. Later, the

Jikes RVM adaptive compilation system identifies frequently executed (hot)

methods and blocks using sampling (see Chapter 2). We piggyback on this

mechanism to mark hot field accesses by combining the hot method informa-

tion with the previously collected field accesses. We then use this information

during garbage collection to traverse the hot fields first. The next three sec-

tions discuss each component in more detail.

5.1.1 Static Identification of Field Accesses

OOR analysis first identifies potentially hot fields by noting field ac-

cesses when first compiling each method. The Jikes RVM optimizing compiler

uses a static analysis with a coldness threshold to mark cold basic blocks. OOR

does not enumerate field accesses in cold blocks by using the compiler’s default

threshold (see Section 5.2.6). The compiler uses loop and branch prediction

heuristics to estimate the execution frequency of basic blocks in a method. For
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example, it marks exception handler basic blocks as cold, and basic blocks in

loops as potentially hot. For each method, OOR analysis enumerates all the

field accesses in potentially hot blocks, generating tuples of the form <class,

offset>. The tuples identify the class and offset of any potentially hot field,

and OOR associates each tuple with the compiled method. This analysis thus

filters out field accesses the compiler statically determines are cold and as-

sociates a list of all non-cold field accesses with each compiled method. At

present, we do not perform any field access analysis in the Jikes RVM baseline

compiler. Since the Jikes RVM adaptive compilation framework recompiles hot

methods with the optimizing compiler, we use it to apply our analysis selec-

tively to hot methods. Jikes RVM also collects basic-block dynamic execution

frequencies using a counter on every branch. We believe this information can

improve the accuracy of OOR analysis, although we have not implemented

this feature here.

5.1.2 Dynamically Identifying Hot Fields

The Jikes RVM adaptive sampling system detects hot methods by pe-

riodically sampling the currently executing method. When the number of

samples for a method grows beyond a threshold the adaptive system invokes

the optimizing compiler on it. OOR analysis piggybacks on this mechanism.

The first time the system identifies a hot method, OOR changes all the po-

tentially hot field accesses for the method to hot. Each time the sampling

mechanism re-encounters a hot method (regardless of whether the adaptive

system recompiles it), it updates the heat metric for the corresponding hot
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Decay-Heat(method)
1 for each fieldAccess in method do
2 if PotentiallyHot(fieldAccess) then
3 hotF ield ← fieldAccess.field
4 class ← hotF ield.instantiatingClass
5 class.hasHotF ield ← true
6 for each field in class do
7 period ← Now()− class.lastUpdate
8 decay ← HI/(HI + period)
9 field.heat ← field.heat ∗ decay

10 if field.heat < LO then
11 field.heat = 0
12 hotF ield.heat ← HI
13 class.lastUpdate ← Now()

Figure 5.2: Pseudocode for Decaying Field Heat

fields.

Figure 5.2 shows OOR’s decay mechanism for adapting to phase changes.

Other policies are possible of course. The high and low heat thresholds, HI

and LO (default values of 100 and 30 respectively) indicate the hottest field

with heat HI 1 Any field cooler than LO is regarded as cold. Initially all fields

are cold, with heat 0. When the timer goes off, the heuristic records the cur-

rent sampling time, Now(), and updates one or more heat fields in class for

the method.

This heuristic decays heat for un-accessed fields based on the last time

the analysis updated the instantiating class, class.lastUpdate. However, the

heuristic does not decay field heat for all classes every sample period, since the

cost would be prohibitive. Instead, it updates a class only when the adaptive

compiler samples another method that uses a field instantiated by it. In the

worst case of not strictly decaying field heat for all classes, the OOR collector

will copy an old object using obsolete hot field information. Since none of

1The units for these thresholds are sample intervals, which are approximately 10ms: HI
≈ 1 sec, LOW ≈ 0.3 sec.
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the hot methods access this field, the order in which the collector copies these

objects will simply be based on access orders further back in history and should

not degrade performance because these fields are likely to be cold now. If these

objects never become hot again, this mechanism does no harm. Otherwise, if

their past accesses predict the future, program locality will benefit.

5.1.3 Reordering during Garbage Collection

The copying phase of the collector applies OOR advice. For each in-

stance of a class, the collector traverses the hot fields (if any) first. At class

load time, the OOR system constructs an array for each class, with one integer

representing the heat of each field in the class. Initially all fields have a heat of

zero. OOR analysis uses the algorithm in Figure 5.2 to set the heat value for

each field and thus identify hot fields to the collector. The OOR collector then

copies and enqueues the hot fields first. Figure 5.3 shows how the collector

copies data. For a nursery collection, it begins by processing the remembered

sets (these are empty in a full heap collection), and then processes the roots.

Advice-Process() places all uncopied objects (line 2) in the copy buffer, and

updates the pointer for already copied objects. Advice-Scan()) then copies

all the hot fields first (line 3), and enqueues the remaining fields to process

later. Without advice, all fields are cold.

We also experiment with using a hot space that segregates hot objects

from the others to increase their spatial locality, which should improve cache

line utilization, reduce bus traffic, and reduce paging. We refine hot objects to

hot referents—instances referred to by hot fields, and hot parents—instances
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of classes that instantiate hot fields. When copying an object, it is identified as

a hot parent if the hasHotField value of the object’s class is true. Hot referents

are discovered when traversing hot fields. The hot space contains all the hot

objects and is part of the older space; during nursery garbage collection, the

collector copies into the hot space all objects that contain hot fields and the

objects to which the hot fields point. During older generation collection, the

collector copies objects in the hot space to a new hot space. It always copies

all other objects into a separate space in the older generation. We do not need

to change the write barrier to add a hot space since we always collect it at

the same time as other objects in the older generation. Therefore, this change

does not influence write barrier overhead in the mutator.

An advantage of advice-directed traversal is that it is not exclusive.

For those objects without advice, we can use the best static traversal order

available to combine the benefit of both methods. In our current implemen-

tation, the default copy order is pure depth first for cold objects, last child

first, because this static order generally generates good performance, as we

will show in the following section.

5.2 Experimental Results

We now present evaluation of our online object reordering system. We

begin with results that show that the overhead for the reordering analysis,

including its use by the collector, adds at most 1 to 2% to total time. We

then show some programs are sensitive to copying order. Comparisons with
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Advice-Based-Copying()
1 Objects ← emptyQueue()
2 Cold ← emptyQueue()
3
4 for each location in Remsets do
5 Advice-Process(location)
6 for each location in Roots do
7 Advice-Process(location)
8 repeat
9 while Objects.notEmpty() do

10 Advice-Scan(Objects.deQueue())
11 while Cold.notEmpty() do
12 Advice-Process(Cold.deQueue())
13 until Objects.isEmpty()

Advice-Process(location)
1 obj ← ∗location
2 if NeedsCopying(obj) then
3 Objects.enQueue(Copy(obj))
4 if Forwarded(obj) then
5 ∗location ← NewAddress(obj)

Advice-Scan(obj)
1 for each field in obj.fields() do

2 if field.isHot(location) // advice
3 then Advice-Process(obj.field)
4 else Cold.enQueue(obj.field)

Figure 5.3: Pseudocode for Advice Based Copying

OOR show that it essentially matches or improves over the oblivious orders. A

series of experiments demonstrates the sensitivity of OOR to the decay of field

heat to respond to phase changes, the use of a hot space, cold block analysis,

and hot method analysis. We also compare OOR with class-oblivious copying

on three additional architectures. Static ordering performance is not always

consistent across architectures. However, OOR consistently attains essentially

the same performance as the best static order across these platforms.

5.2.1 Experimental Platform

We perform our experiments on four platforms and find similarities

across these. Section 5.3 reports on cross architecture results. For brevity
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and unless otherwise noted, we report experiments on a 3.2GHz Pentium 4

machine described in Section 4.5

We instrument MMTk and Jikes RVM to use the CPU’s performance

counters to measure cycles, retired instructions, L1 and L2 cache misses, and

TLB (translation look-aside buffer) misses of both the mutator and collector,

as we vary the collector algorithm, heap size, and other features. Because of

hardware limitations, each performance counter requires a separate execution.

We use version 2.6.5 of the perfctr Intel/x86 hardware performance counters

for Linux with the associated kernel patch and libraries [57].

5.2.2 Overhead of Reordering Analysis

To explore the overhead of the analysis, we measure the first iteration

of the benchmark (where the compiler is active) with the adaptive compiler

on a moderate heap size (1.8 × maximum live) and pick the fastest of 5 runs.

We consider the fastest run to be the one which has the least disturbance from

other factors in the system, therefore we can measure only the impact of our

changes. This experiment performs the additional run-time work to record

hot class fields and examines the results at collection time, but it never acts

on those results. Therefore, the system does all the work of class reordering,

but obtains no benefit from it. Table 5.1 compares the original adaptive sys-

tem with the augmented system. The table shows some improvements as well

as degradations. At worst, OOR adds a 2% overhead, but this overhead is

obscured by larger variations due to the timer-based sampling. For the ex-

act same program, VM, and heap size, the timer-based sampling can cause
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Benchmark Default OOR Overhead
jess 4.39 4.43 0.84%
jack 5.79 5.82 0.57%

raytrace 4.63 4.61 -0.59%
mtrt 4.95 4.99 0.7%
javac 12.83 12.70 -1.05%

compress 8.56 8.54 -0.2%
pseudojbb 13.39 13.43 0.36%

db 18.88 18.88 -0.03%
antlr 0.94 0.91 -2.9%
gcold 1.21 1.23 1.49%

hsqldb 160.56 158.46 -1.3%
ipsixql 41.62 42.43 1.93%
jython 37.71 37.16 -1.44%
ps-fun 129.24 128.04 -1.03%
mean -0.19%

Table 5.1: OOR System Overhead

variations up to 5% because of the non-determinism, and this variation is the

dominant factor, not the OOR analysis.

5.2.3 Class Sensitive vs. Class Oblivious

This and all remaining sections apply the compiler-replay methodology, re-

porting only application behavior. This section compares static and OOR

copying orders. OOR uses a hot space (Sections 5.1.3 and 5.2.5), the decay

function described in Section 5.1.2, and excludes field accesses from cold blocks

(Sections 5.1.1 and 5.2.6). This configuration produces the best results across

all architectures.

Most of the benchmark programs vary due to copy order by less than

4%. However, four programs (jython, db, jess, and javac) show variations of

up to 25% due to copying order, so we focus on them. Figure 5.4 (jess) and

Figure 5.5 (jython, db, javac) compare OOR with three static, class-oblivious
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Figure 5.4: OOR vs. Class-Oblivious Traversals [jess & jython]
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orders: breadth first, depth first, and partial depth first using the first two

children (a hierarchical order). The figures present total time, mutator time,

mutator L2 misses (from performance counters), and garbage collection time.

Notice that the total time of jess and javac and the mutator L2 misses of jython

use scales different from the other benchmarks in the figures.

First consider variations due to a priori breadth or depth first on db and

jython (Figure 5.5). In db, class-oblivious depth first and partial depth first

using the first two children perform over 25% better in total time than breadth

first copying order. For jess (Figure 5.4), partial depth first is more than 20%

worse than breath first. For jython, depth first performs about 18% better

than breadth first and partial depth first. Locality explains these differences

as shown in the mutator time and L2 miss graphs. For a few other programs,

partial depth first offers a minor improvement (1 to 4%) over the best of

breadth or depth first. The wide variation in performance is a pathology of

static copying orders and is of course undesirable.

Figures 5.4 and 5.5 show that OOR is not subject to this variation

and matches or improves over the best static orders. In javac and jess, OOR

sometimes degrades mutator time by 2 to 3% which degrades the total per-

formance by 2%. The worst case for OOR on all benchmarks and platforms

is 4% degradation for ipsixql on the 3.2 GHz P4. For all other benchmarks on

these architectures, OOR matches or improves over the best mutator locality

and total performance.

These results are consistent with cache and page replacement algo-
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Figure 5.5: OOR vs. Class-Oblivious Traversals [db & javac]
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rithms, among others, that use past access patterns to predict the future.

OOR dynamically tunes itself to program behavior and thus protects copying

garbage collection from the high variations that come from using a single static

copying order that may or may not match program traversal orders.

5.2.4 Capturing Phase Changes

OOR can adapt to changes within the execution of a given application.

Section 5.1.2 describes how the decay model ensures that field heat metrics

adapt to changes in application behavior. We now examine the sensitivity

of this approach. We use a synthetic benchmark, phase, which exhibits two

distinct phases. The phase benchmark repeatedly constructs and traverses

large trees of arity 11. The traversals favor a particular child. Each phase

creates and destroys many trees and performs a large number of traversals.

The first phase traverses only the 4th child, and the second phase traverses

the 7th child.

Figure 5.6 compares the default depth first traversal in Jikes RVM

against OOR and OOR without phase change detection on the phase bench-

mark. Phase change detection improves OOR total time by 25% and improves

over the default depth first traversal by 55%. Mutator performance is im-

proved by 37% and 70% respectively (Figure 5.6(b)). Much of this difference

is explained by reductions in L2 misses of 50% and 61% (Figure 5.6(c)). Fig-

ure 5.7 compares OOR with and without phase change detection on jess, jython,

javac, and db. These and the other benchmarks are insensitive to OOR’s phase

change adaptivity, which indicates that they have few, if any, traversal order
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Figure 5.6: Performance Impact of Phase Changes Using a Synthetic Bench-
mark

phases.

5.2.5 Hot Space

In order to improve locality further, OOR groups objects with hot

fields together in a separate copy space within the mature space, as described

in Section 5.1.3. Figure 5.8 shows results from four representative benchmarks

for OOR with and without a hot space. On average, these configurations

perform similarly. However, in our experiments for other platforms, we found

OOR with the hot space usually has slightly better results (see Figure 5.11(b)

in Section 5.3). The hot space generally reduces the footprint of the hot objects
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Figure 5.7: Absence of Phasic Behavior in Standard Benchmarks

but this benefit is not as significant as copying order.

5.2.6 Hot Field Analysis

We now explore the impact of the Jikes RVM static analysis thresholds

for basic block heat on OOR (see Section 5.1.1). The Jikes RVM optimizing

compiler assigns a heat value to basic blocks based on static loop iteration

estimates (or counts if available) and branches. It then classifies them as

hot or cold based on a run-time configuration threshold. OOR directly uses

this classification to enumerate field accesses in hot basic blocks. The default

configuration marks the fewest blocks cold (BB1 in Figure 5.9). BB20 through
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Figure 5.8: OOR without Hot Space

BB150 mark increasingly more basic blocks cold. Figure 5.9 presents the

sensitivity of OOR to this threshold. Most of the benchmarks, including jess

and javac, are fairly insensitive to it, but jython is particularly sensitive, with

a worst case degradation of 20%. For db, when OOR marks only basic blocks

with heat greater than 20 as hot, the program has the worst performance.

One possible explanation is that this threshold causes OOR to distribute an

important data structure between the hot and cold spaces. With thresholds

higher and lower than 20, OOR probably tends to put the whole data structure

in one space or the other. Based on these results, we use the Jikes RVM default
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and mark as hot any basic block with a heat greater than or equal to one.
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Figure 5.9: Using Different Policies to Determine Cold Fields

5.2.7 Hot Method Analysis

Finally, Figure 5.10 examines the sensitivity of the sampling frequency

for selecting hot methods. Hot methods are identified according to the number

of times the adaptive optimization infrastructure samples them. Figure 5.10

shows OOR with sampling rates of 20ms, 10ms, and 5ms. More frequent

sampling marks more methods as hot. OOR is quite robust with respect to

this threshold. One possible explanation for this insensitivity is that method
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heat tends to be bimodal—methods are either cold or very hot. Another

explanation is that warm methods (those neither hot nor cold) tend not to

impact locality through field traversal orders.
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Figure 5.10: Using Different Policies to Determine Hot Methods

5.3 Different Platforms

This section examines the sensitivity of OOR to architecture variations,

including processor speed and memory system. We run the same experiments

as before on an three additional architectures (933MHz PPC, 1.9GHz AMD,

and 2.4GHz P4 as described in Section 4.5.
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We present a representative benchmark with variations due to locality. Fig-

ure 5.11 shows jython on all four architectures. Not surprisingly, the two Intel

Pentium 4 architecture graphs have very similar shapes and the 3.2GHz P4

is faster. Comparing between architectures shows that the memory architec-

ture mainly dictates differences among traversal orders. The 1.9GHz AMD

and 933MHz PPC are less sensitive to locality because they have larger and

relatively faster caches compared to the P4s which have higher clock speeds.

Interestingly, the slower AMD processor achieves the best, performance, pos-

sibly due to its large non-inclusive caches. However, on all four architectures,

OOR consistently provides the best performance, across all benchmarks and

architectures.

5.4 The Copying Advantage

We now present evidence confirming the locality advantages of copying.

We first examine mutator locality by comparing a standard copying collector

with a non-copying mark-sweep collector. We then compare the mutator time

of a non-copying mark-sweep collector with the total time of the copying col-

lector to see whether the benefits of copying can ever outweigh the cost of

garbage collection.

Figure 5.12(a) compares just the mutator performance of the bounded

(4MB) nursery generational copying collector using OOR to a whole heap

mark-sweep collector [12], labeled OOR and Mark-Sweep respectively. The

figure shows mutator time as a function of heap size for javac, a represen-
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Figure 5.11: Performance on Different Architectures

tative program. OOR has a mutator-time advantage of around 8-10% over

Mark-Sweep due to fewer L1 misses on javac (Figure 5.12(b)). The L2 and

TLB misses follow the same trend, and this advantage holds across all of our

benchmarks, ranging from a few percent on jython and compress, to 15% on

pseudojbb and 45% on ps-fun. Our analysis confirms a prior result [11]: it is

locality rather than the cost of the free-list mechanism that accounts for the

performance gap. Note that this result is contrary to the oft-heard claim that

non-moving collectors ‘disturb the cache less’ than do copying collectors.
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Figure 5.12: Mutator Performance for Copying and Mark-Sweep Collectors on
javac

We now examine the overall impact of garbage collection when the

locality advantage and collection overhead are combined. Figure 5.13 com-

pares the total execution time of the copying collector (labeled OOR) with

the mutator time of mark-sweep (Mark-Sweep), which we regard as an ap-

proximation to the performance of explicit memory management. We use a

standard free-list allocator [11, 49] and subtract the cost of garbage collection.

The approximation is imperfect. On one hand, the application does not pay

the cost of free(). On the other hand, it does not reclaim memory as promptly

as explicit memory management does. In both graphs, the performance of the

copying collector is normalized against the mutator time for Mark-Sweep. A

result less than 1 indicates that the total time for the copying collector is less

than the Mark-Sweep mutator time.

Three patterns emerge in our results. Figure 5.13(a) shows three repre-

sentative benchmarks: pseudojbb, ps-fun, and ipsixql. ipsixql is the only outlier

where the Mark-Sweep mutator actually has consistently better performance
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than the copying collector. Seven benchmarks are like pseudojbb. In modest to

large heaps, the locality advantage of copying garbage collection compensates

for its collection costs, to the point where the total time of OOR is the same

as the mutator time of Mark-Sweep. ps-fun represents five benchmarks, where

the locality advantage is so significant that OOR improves over the mutator

time of Mark-Sweep, even in small heap sizes. Figure 5.13(b) is remarkable

because it shows that for one of the largest and most realistic benchmarks in

our suite, garbage collection produces a net performance win. These results

stand against the conventional wisdom that garbage collection always comes

at a performance price.

5.5 Summary

We show that the performance of class-oblivious traversal orders can be

unpredictable and expose programmers to variations outside of their control.

We show that our online object reordering system eliminates copying order

gambling. It has a negligible overhead, is amenable to the virtual machine con-

text, and adaptively matches or improves over the best static, class-oblivious

order for a given program. Our results show that most of the performance

benefit of applying OOR comes from the reduction of L2 cache misses.

Common wisdom holds that the software engineering benefits of garbage

collection come with a performance penalty. We show that copying collectors

have a locality advantage over the free-list organizations of explicitly managed

memory. Copying collectors achieve good locality by placing contemporane-
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Figure 5.13: Garbage Collection vs. Idealized Mark-Sweep

ously allocated objects together in memory and copying connected objects

together in the mature space. OOR further adapts copying order to program

access patterns. Since future processors will demand locality to achieve high

performance, we can look forward to a future where garbage collection com-

bines software engineering and performance benefits.
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Chapter 6

Dynamic Systems for Improving Instruction

Locality

Now we change our focus to improving instruction cache locality. The

importance of the instruction cache to Object-oriented programming languages

is not clear from previous work, therefore we conduct a series of studies to un-

derstand the potential of performance improvement by improving instruction

cache and the different types of instruction cache misses for Java programs.

After that, we describe two approaches that we implemented for improving

instruction locality. (1) One approach is to reorder all the code in the heap

using a greedy algorithm after the warm-up phase of the program run. This

approach is suitable for long running applications (like server application). We

developed several new algorithms for full code layout algorithm in Section 6.3

(2) An incremental approach calculates the position of a method at allocation

time using runtime information. This approach incrementally changes the code

layout to improve code footprint and to avoid conflict misses in direct-mapped

instruction caches. This second approach generates negligible overhead so it

is suitable for even short-running applications. To our best knowledge, this

work is the first to perform dynamic code reordering for JIT compilation.
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6.1 Different Types of Instruction Cache Misses

Figure 6.1 reports data for instruction cache accesses. From the graph,

we can see that for javac, there are more cache misses in the instruction L1

cache than in the data L1 cache. This result holds for all the SPECjvm98

benchmarks except db. Although all the programs we measured have bet-

ter instruction locality (lower cache miss rate) than data locality, the abso-

lute number of instruction cache misses is sometimes higher than data cache

misses because there are usually 2 to 3 times more instruction accesses than

data accesses. Therefore, there is a significant performance loss due to poor

instruction locality as well as data locality.

To find out what kind of optimizations for improving instruction local-

ity are effective for Java programs, we try to separate the instruction cache

misses into conflict misses and capacity misses. We measure the impact of

conflict misses in the instruction cache by comparing the results of a direct-

mapped cache with a fully associative cache. Also, to find out how hard it

is to remove the conflict misses, we use a two-way set associative cache for

comparison. Comparing a direct-mapped cache to a fully associative cache,

most benchmarks show a large reduction in misses. For example, we are able

to reduce 83% of the instruction misses for jess. The detailed numbers are in

Table 6.1.

The results show that, except for jess, using two-way set associative

cache can reduce most of the conflict misses and approaches the full-associative

cache. Although the improvement on reducing cache misses is significant,
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Figure 6.1: Instruction L1 vs. Data L1

the performance of the program does not always improve as much as the

improvement in cache misses because half of the programs do not have a lot

of misses even using a direct-mapped cache. If we use the same latency for all

three cache configurations, jess has the most improvement of 25% and javac

has 8% in total cycles . All other benchmarks have little improvement (less

than 5%). The results of instruction cache accesses and total cycles for javac

and jess is shown in Figure 6.2.
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Benchmark Direct-mapped Two-way Fully-asso.
jess 314 180 52

javac 603 457 405
jack 277 243 212
mtrt 137 117 89

compress 14 - 4
db 45 12 5

Table 6.1: Number of Conflict Misses (107)
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Figure 6.2: Direct-mapped vs. Fully Associative

This experiment shows that the potential performance loss from poor

instruction cache locality is significant and the locality can be improved rela-

tively easily (two-way set associativity can remove more than half of the loss,

but it will not solve the entire problem).
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6.2 Whole Program and Incremental Code Layout

In the previous section, we find that there are usually more L1 instruc-

tion cache misses than L1 data cache misses, partly because the instruction

cache is direct-mapped. Also, the JVM treats code objects just like any other

objects. Unlike C and other languages, Java code can be allocated anywhere

in the heap and mixed with data. Therefore there is a larger chance of having

conflict misses among Java code if code allocation is not carefully implemented.

In addition to reordering code during allocation, we can also reorder code after

it has been allocated at runtime to improve locality just like the data objects.

In Section 3, we show that previous work mostly improves full code

layout. But the algorithms are too expensive to apply dynamically, even for

long running applications. We developed new algorithms which are orders of

magnitude faster and produce better layouts, which make them more suitable

for long running programs. These algorithms are presented in Section 6.3

Because full code layout is expensive for modest to short-running bench-

marks, we developed an online Partial Code Reordering (PCR) system to

perform a procedure-level, low overhead, and dynamic code allocation and

reordering. PCR has two major components: avoiding code conflicts during

code allocation and code reordering to remove code conflicts at runtime. The

first component to reduce instruction working set size during code allocation

by utilizing method execution frequency information at runtime. The sec-

ond component, reordering code at runtime, includes three steps: (1) adaptive

sampling to generate dynamic call graphs with weighted edges to represent the
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heat, (2) runtime analysis for detecting conflicts among procedures in the call

graph, and (3) code reordering to remove conflicts among procedures, during

recompilation of hot methods.

In the rest of this section, we will describe full code layout generation

system in Section 6.3 and the low overhead systems for short-running programs

in Section 6.4 in greater details.

6.3 Whole Program Dynamic Code Management Sys-
tem

This section describes the implementation of a Whole Code Manage-

ment system (WCM) that is integrated into a managed runtime. WCM uses

dynamic profile information to reorganize the compiled code at the granularity

of a method. We show that WCM can significantly improve performance. We

also describe three new procedure layout algorithms that, compared to previ-

ous approaches, reduce the cost of computing a new code placement. These

algorithms specifically target ITLB misses, which typically have the great-

est impact on performance because of their frequency and high cost. One of

these algorithms, Code Tiling, is significantly faster both in worst case com-

plexity and in practice than the best-known previous technique by Pettis and

Hansen [58]. We demonstrate that Code Tiling generates code layouts that

are better or comparable to those by the Pettis-Hansen algorithm.
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6.3.1 Whole Code Management overview

This section overviews the Whole Code Management system (WCM),

and the following section describes its implementation and design choices.

As the application executes and its behavior changes, WCM reorganizes

compiled code as necessary. When miss rates for the ITLB or instruction cache

become too high, it calculates a new layout, moves method code, and updates

code pointers and offsets in methods, thread stacks, registers, and data struc-

tures of the managed runtime to reflect the new locations. The miss rates

for the ITLB or instruction cache can be detected by hardware performance

counter or software estimation. WCM currently uses user-defined execution

point for code reorganization. Different schemes for detecting program instruc-

tion locality behavior are beyond the scope of this work.

WCM gathers profile information on callers and callees and uses it to

build a dynamic call graph. The dynamic call graph (DCG) is an undirected

graph with a node for each method, and edges from a method to any methods

it invokes, weighted by their dynamic frequency. When the system triggers

a reorganization, WCM computes a new placement for each method’s code

based on the DCG. WCM then moves the code and does any required code

updates. Figure 6.3 depicts WCM’s components and their interactions.

Software instrumentation or hardware performance monitoring unit

(PMU) can provide the dynamic call graph profiles. WCM can use one of

a number of different code layout algorithms. The Pettis-Hansen procedure

layout algorithm is one, and we describe three others in Section 6.3.3. These
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Figure 6.3: Whole Code Management

algorithms attempt to improve performance by, for example, reducing the

number of frequently executed code pages to minimize ITLB misses.

To minimize the number of managed runtime components that need to

understand JIT-compiled code, WCM relies on the JIT to make any necessary

adjustments to relocated code. This division gives JITs more freedom in how

they emit code, and the code management system and the rest of the managed

runtime do not need to understand the representation of JIT-compiled code.

6.3.2 WCM Implementation on IA-32

We implemented WCM in a managed runtime environment that sup-

ports Java and C# programs. Our core platform consists of the Open Runtime

Platform virtual machine (ORP) [25] and one or more JIT compilers. On IA-

32, we use the optimizing O3 JIT [26] to compile JVM bytecodes. This JIT

performs inlining, a number of global optimizations (e.g., copy propagation,

dead code elimination, loop transformations, and constant folding), as well as

common subexpression elimination and array bounds check elimination.
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ORP allocates compiled code in a region of memory that is separate

from the garbage collected heap. It provides different subregions for code that

is cold (infrequently executed) and hot (more often executed). ORP allocates

code of equal “temperature” sequentially. Our IA-32 O3 JIT emits a single

block of code for each compiled method. As a result, the granularity of reorga-

nization for the IA32 is methods; for the IPF, it is a code block which typically

divides a method into two parts: one for its hot basic blocks and another for

its cold ones. We return to the IPF implementation in Section 6.3.5, but the

remainder of this section and the next two discuss our IA-32 implementation.

To support Whole Code Management, we modified O3 to emit relocat-

able code. This simplifies moving code during code reorganization, but usually

requires updating pointers to compiled methods used in that code, including

references into code of other methods as well as into the same method. WCM

calls the JIT (here O3) to update code after it has moved it.

ORP can collect dynamic profile information from either software in-

strumentation or from hardware Performance Monitor Units (PMU) sampling.

However, on the IA-32, we found that using the PMU is too expensive. In

particular, capturing the LBR (last branch record) requires hundreds of cycles

since it requires flushing the pipeline and performing memory fences. As a

result, ORP uses software instrumentation on IA-32. We could have modified

our JITs to do the instrumentation, but we chose a simpler approach. ORP

interposes on method calls to record the caller and the callee. It does this by

generating a small machine code stub for each compiled method that is exe-
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cuted first whenever a call is made to the associated method. When entered,

this stub records the caller/callee information and then transfers control to

the start of the intended callee. This stub approach handles indirect calls and

hot-cold method splitting. Our implementation of software instrumentation

has the feature that it can be turned on or off, and when turned off has no

impact at all on the application’s execution.

To reorganize code, WCM performs the following steps:

1. Stop all managed threads.

2. Compute a new layout.

3. Allocate new code storage. It would be possible to reorganize code in

place, but moving to a newly-allocated code region is simpler. It also

simplifies debugging our WCM implementation, since it is easy to rec-

ognize a reference to an old code location.

4. For each method, move the code and call the JIT to fix it up. Also fix

up the method’s meta data recorded by the managed runtime.

5. Update the call stack of each thread. In particular, fix up any code

addresses such as return addresses currently on stacks. Also, update any

registers containing code addresses.

6. Restart the managed threads.

To compute the new layout, WCM uses one of several different code

layout algorithms. Each of these operates on the dynamic call graph (DCG)
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WCM Step Cache-Aware Pettis-Hansen Code Tiling
Compute new layout 28,459 417
Allocate new code space 5 5
Move and update code 90 87
Update thread stacks 1 1

Table 6.2: Breakdown of time to reorganize MiniBean’s code (ms)

produced during profiling and creates a code layout. This layout identifies

sequences of code that should be placed together in memory in that order. So

far, we have implemented four code layout algorithms.

Our experience is that most of the time needed to reorganize code is due

to the new layout calculation; WCM finishes the remaining steps quickly. To

illustrate this, for MiniBean, the Code Tiling layout algorithm requires 417ms

of the 510ms total reorganization time, while Cache-Aware Pettis-Hansen re-

quires 28,459ms of the total 28,555ms. The other steps require about 100ms.

These times are shown in Table 6.2.

6.3.2.1 Current Status

Our IA-32 WCM implementation currently reorganizes code at GC time

for simplicity. Since our garbage collector stops all threads during a GC, we

reorganize code then. Despite this implementation, WCM itself is completely

independent of GC and could reorder code at any time.

We do not currently support a mechanism to automatically trigger code

reorganization since we have not yet developed a technique to determine when

it would be be productive to do so. In the future, we plan to enhance WCM’s

use of PMU information to monitor ITLB and other instruction-related misses
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in order to determine when reorganizations are needed. Currently, the user

specifies on the ORP command line the GC at which to reorganize code, and

ORP invokes WCM at the end of that GC. Although this interim solution

allows only a single reorganization, WCM itself is capable of reorganizing code

multiple times. Eventually, we will use WCM to reorder code whenever nec-

essary.

Our WCM implementation also stops application threads while it does

all reorganization work. However, much of WCM’s work—in particular, cal-

culating the new code layout—could be done concurrently with application

threads to minimize pause time. Those threads need to be stopped only dur-

ing the update of the metadata and thread stacks.

6.3.2.2 Discussion

In many ways, WCM resembles a copying garbage collector. It moves

objects (method code) and updates any pointers to those objects. It is intended

to improve program locality, but that is also a partial goal of many garbage

collectors including ones that compact the heap or place objects to improve

their locality [41, 45]. WCM also supports pinning of objects that would be

too hard or too expensive to relocate. For example, we pin methods containing

Java JSR bytecodes since these bytecodes are relatively rare and the resulting

code is complex. Like many garbage collectors, WCM could also do much of

its work in parallel with application threads, even though it does not currently

do this. New code layouts could be computed in parallel, for example. WCM

could also reclaim no-longer-needed code: code that is currently not referenced
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by any thread and not likely to be needed again.

6.3.2.3 Alternatives to WCM

One alternative to WCM is to use large pages for code which will reduce

the number of ITLB entries and misses. Unfortunately, not all operating

systems support large pages. For example, IA-32 versions of Windows do

not support them. However, large pages will consume a larger portion of the

virtual address space and may suffer higher fragmentation, which may be a

problem if the virtual address space is relatively small. In addition, using large

pages does not address instruction cache misses.

Another alternative to WCM is method recompilation. Many JITs

support profile-based recompilation of frequently executed (hot) methods, or

methods in which a significant amount of execution time is spent. If the man-

aged runtime or JIT allocates code sequentially, these recompiled hot methods

will tend to be located close together, which is likely to improve code local-

ity. However, for very large applications with large instruction foot prints and

many hot methods, the natural benefits of JIT compilation are unlikely to

consistently provide good code locality.

6.3.3 The Code Layout Algorithms

This section describes the Pettis-Hansen and our new code layout al-

gorithms. All the algorithms use the same underlying data structure, the

dynamic call graph (DCG), and produce a new code layout. We first imple-

mented Pettis-Hansen algorithm, and find it usually improved performance
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of large applications. However, it is too expensive. Pettis-Hansen creates a

new layout for SPEC JBB2000 (758 methods) in less than 150ms, but requires

minutes for MiniBean (15,586 methods). This overhead leads us to develop

three new, faster algorithms.

6.3.3.1 Pettis-Hansen Algorithm

Pettis-Hansen places methods using a greedy “closest is best” strategy

from the original call graph. Each step combines two nodes in the DCG and

specifies their code layout. Each of the call graph’s nodes initially contains a

single method. The algorithm repeatedly chooses an edge A → B of highest

weight in the entire graph (i.e., greatest calling frequency), then merges the

nodes and outgoing edges of A and B. It lays out the code in the new node

using the heuristic described by Gloy and Smith [36] (line 7 of procedure

MergeNodes in Figure 6.4). Pettis-Hansen finds the hottest call edge between

two methods from node A and B in the original call graph, and then orders the

merged methods to minimize the distance between these two methods. Here

the distance is measured in bytes (details are in Gloy and Smith [36]’s paper).

It leaves the ordering within A and B the same. When it merges outgoing

edges, if two point to the same node C, it merges them and weights the edge

with the sum of the original weights. The algorithm terminates when no edges

remain. Figure 6.4 shows the pseudo-code for the Pettis-Hansen algorithm.

Time Complexity The complexity of finding the maximum edge is O(n2)

since in the worst case, there are n edges connected to each node. The max-
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PettisHansen(Graph)
1 while (edge ← HeaviestEdge(Graph))! = NULL
2 do (nodeA, nodeB) ← edge.getNodes()
3 MergeNodes(nodeA, nodeB);

HeaviestEdge(Graph)
1 maxEdge ← NULL
2 for each node in Graph do
3 for each edge in node.edgeList do
4 if (maxEdge = NULL)||(edge.heat > maxEdge.weight) then
5 maxEdge ← edge
6 return maxEdge

MergeNodes(nodeA, nodeB)
1 for each edgeB in nodeB.edgeList do
2 for each edgeA in nodeA.edgeList do
3 if edgeB.equals(edgeA)
4 then edgeA.weight ← edgeB.weight + edgeA.weight
5 RemoveEdge(edgeB)
6 nodeA.edgeList.attach(nodeB.edgeList)
7 nodeA.blockList.GSattach(nodeB.methodList)

Figure 6.4: Pettis-Hansen procedure layout algorithm

imum number of edge merges for each node merge is also O(n2). So the

asymptotic time complexity of the algorithm is O(n∗ (n2 +n2)) = O(n3). This

complexity explains the dramatic increase in time required to place the code

for large applications such as MiniBean.

There are data structures such as priority queue and Fibonacci heap

that can speed up searching for the maximum edge and inserting the new edges

generated by merging. However, these will not help Pettis-Hansen much since

the most expensive part of that algorithm is the edge merge.

6.3.3.2 Cache-Aware Pettis-Hansen Algorithm

In our search for a faster placement algorithm, we realize that there is

little locality benefit in putting two methods on different pages, even if the two

methods are on consecutive pages. We modify Pettis-Hansen to stop merging
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CacheAwarePettisHansen(Graph)
1 while (edge ← HeaviestEdge(Graph))! = NULL
2 do (nodeA, nodeB) ← edge.getNodes()
3 if (nodeA.Size() > PAGE SIZE)||(nodeB.Size() > PAGE SIZE)
4 then RemoveEdge(edge)
5 else MergeNodes(edge, nodeA, nodeB)

Figure 6.5: Cache-Aware Pettis-Hansen algorithm

methods into the current code after enough methods have been merged to fill a

page. We find that, with this optimization, the total time to calculate a layout

is reduced by a factor of 10. This new Cache-Aware Pettis-Hansen algorithm

is shown in Figure 6.5.

Cache-Aware Pettis-Hansen may generate a different layout from Pettis-

Hansen. For example, Pettis-Hansen generates a layout of DABC for the DCG

in Figure 6.6 (merging order: AB, DAB, DABC). But if node A and node

B are both larger than the page size, the new algorithm generates layout

ABCD. Note here that C and D are adjacent, but are not with the original

Pettis-Hansen layout. The different layout Cache-Aware Pettis-Hansen pro-

duces may or may not improve application performance. For example, assume

that A and B are both two pages in size, and C and D are half a page. If

every invocation of another method on a different page triggers a page fault,

our layout generates fewer page faults than Pettis and Hansen because the

method A and B would be on 4 pages instead of 5 pages in Pettis and Hansen

layout. But with other node sizes, the result could be different. None of the

four algorithms is guaranteed to produce the best layout. However, our main

concern is the layout generation time, and we show in the next section that

Cache-Aware Pettis-Hansen runs much faster.

A further refinement for Cache-Aware Pettis-Hansen is the following.

77



45

9

7
A

B

C

D
12

14

Figure 6.6: An example dynamic call graph

In a direct-mapped cache, we do not want two methods mapped on the same

cache set if they frequently call each other. To avoid causing cache interference

in direct-mapped instruction caches, the algorithm should use the cache size

instead of the page size.

Time Complexity Complexity of the Cache-Aware Pettis-Hansen algo-

rithm is the same as the Pettis-Hansen algorithm. However, this algorithm

removes edges from the graph as it operates. As a result, in practice, finding

the heaviest edge and merging the edges of two nodes are both less expensive

than in the Pettis-Hansen algorithm.

6.3.3.3 Code Tiling Algorithm

A major cost in Cache-Aware Pettis-Hansen is finding the heaviest edge

in the entire graph every time. To reduce this cost, we developed the Code

Tiling algorithm that uses a simpler approximation. This algorithm traverses

the nodes of the DCG one at a time. Assume the current node is A. As long

as A’s code occupies less than a page, it selects the heaviest edge A → B and

merges A with the node B. If this algorithm merges any nodes, it produces a
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CodeTiling(Graph)
1 for each node in Graph do
2 currentNodeSize ← 0
3 node.isV isited ← true
4 STAY :
5 maxEdge ← NULL
6 for each edge in node.edgeList do
7 if isVisited(edge)
8 then RemoveEdge(edge)
9 else if (maxEdge = NULL)||(edge.heat > maxEdge.heat)

10 then maxEdge ← edge
11 if (currentNodeSize > PAGE SIZE)||(maxEdge = NULL)
12 then RemoveEdge(maxEdge)
13 else nodeB ← maxEdge.otherNode(node)
14 currentNodeSize ← currentNodeSize + nodeB.size()
15 MergeNodes(node, nodeB);
16 goto STAY

isVisited(edge)
1 (nodeA, nodeB) ← edge.getNodes()
2 return (nodeA.isV isited)&&(nodeB.isV isited);

Figure 6.7: Code Tiling algorithm

different layout than either Pettis-Hansen or Cache-Aware Pettis-Hansen since

it only considers that part of the graph immediately connected to the current

node. However, this layout may occasionally be better than Pettis-Hansen

since it can give the best possible locality to the single hottest path, if one

exists. Performance results in the next section show this algorithm computes

good layouts and computes them faster.

Time Complexity If we have n nodes in the graph, we must scan n nodes.

Since in the worst case, there are n out edges for each node, the time to find

the heaviest edge for one node is still O(n). However, in practice this case

does not occur. The maximum number of edge merges requires O(n2). As a

result, the worst case asymptotic complexity of the Code Tiling algorithm is

O(n ∗ (n + n2)) = O(n3). It is the same as the Cache-Aware Pettis-Hansen

algorithm, but since we avoid the work of repeatedly searching for the heaviest
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edge in the whole graph, we expect layout generation to be faster than with

the Cache-Aware Pettis-Hansen algorithm.

6.3.3.4 Linear Scan Algorithm

To further reduce the cost of generating a code layout from the dynamic

call graph, we also tried a straightforward algorithm that has linear time com-

plexity, the Linear Scan algorithm. In this algorithm, we scan each node in

the graph in breadth-first traversal order, but we ignore cold edges (ones with

weight less than some threshold). We show this algorithm in Figure 6.8. No-

tice that when AttachNodes merges two nodes, it does not merge their out

edges: even if two edges connect to the same node, they are not merged. We

do eliminate this step because merging edges is especially expensive. Notice

also, that when merging one node B into another node A, AttachNodes simply

attaches B’s edge list to A without updating any of the edges in B’s edge list.

As a result, the edge data structure for B’s edge list will still record B instead

of the correct A. Not updating the data structure does not cause a problem

because we never attach an already-visited node like B again. By reducing

the work done during node merges, Linear Scan scans every edge exactly once

and achieves linear time to the number of edges.

Time Complexity If there are n2 edges (worst case for n nodes) in the

graph, the Linear Scan algorithm scans n2 edges. If an edge E has both ends

visited before, edge E is removed. Otherwise, both nodes connected by edge

E are merged. When Linear Scan merges nodes, it simply attaches one edge
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LinearScan(Graph)
1 for each node in Graph do
2 node.isV isited ← true
3 for each edge in node.edgeList do
4 if (edge.heat > Threshold)&&(!isVisited(edge))
5 then AttachNodes(edge, node)
6 else RemoveEdge(edge)

AttachNodes(edge, node)
1 (nodeA, nodeB) ← edge.getNodes()
2 if (!nodeA.isV isited)
3 then nodeB ← nodeA
4 nodeB.isV isited ← true
5 node.edgeList.attach(nodeB.edgeList)
6 node.blockList.attach(nodeB.methodList)

Figure 6.8: Linear Scan algorithm

list to the other node and takes a constant time. This means the Linear Scan

algorithm’s asymptotic complexity is O(n2).

6.3.4 WCM Results

We evaluate WCM by measuring its benefit and runtime overhead for

various benchmarks using each of the four code layout algorithms.

6.3.4.1 Experimental framework

To do our experiments, we use a 4-way Intel Xeon server with 2GHz

Xeon processors (details are in Section 4.5. Our experiments use the SPEC

JVM98, SPEC JBB2000, and MiniBean benchmarks. We execute each appli-

cation stand-alone. For heap sizes, we use 512M for MiniBean, 256M for SPEC

JBB2000, and 50M for SPEC JVM98 to accommodate their different working

set (data and code) sizes. Because we focus our efforts on server applications

and are not changing the garbage collector, we do not consider the trade offs

of different heap sizes.
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Benchmark IA32 Size Methods Calls/sec
SPECjbb 268K 758 2.04M
MiniBean 3.10M 15586 3.65M

Table 6.3: Benchmark characteristics

To measure performance, we divide application execution into three

components: (1) profiling (warm-up), (2) code reorganization, and (3) steady-

state execution. This methodology is widely used for reporting long running

server programs in the literature and industry [65], and where WCM should

be most effective. We measured these three components separately. We re-

organized code once at the end of application warm-up with MiniBean and

SPEC JBB2000, and at the end of the first iteration of each program with

SPEC JVM98.

6.3.4.2 WCM Overhead

The overhead of WCM has two main components: the time to generate

a dynamic call graph, and the time to generate a new code layout. We evaluate

both overhead components separately.

Dynamic Call Graph Generation Overhead We use software instru-

mentation on IA-32. To determine the overhead of software instrumentation

for DCG creation, we run MiniBean two times: once with no instrumentation

and a second time with our software-based DCG generation. Each time, we

run MiniBean up to the same point in its execution, when it completed its

warm-up phase. We found that MiniBean required 54 seconds with no in-
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strumentation, but 66 seconds when we used software instrumentation. This

overhead is high.

Our software instrumentation overhead is high because it uses an un-

tuned, unspecialized call-counting stub requiring additional procedure calls,

memory allocation, and locking. We do not tune this stub because it is only

used during warmup. A production WCM implementation would use opti-

mized and inlined JIT-compiled code. However, although this instrumenta-

tion overhead is high today, it only exists while the DCG is being generated.

After WCM reorganizes code, it turns off software instrumentation and re-

moves the instrumentation stubs. As a result, there is no overhead after code

reorganization. For long running server benchmarks like MiniBean, the time

during which WCM uses software instrumentation is relatively short and so

the overall impact on the benchmark is low.

We also expect and do observe high overheads due to software instru-

mentation implementation on the SPEC JVM98 benchmarks. The overheads

are shown in Figure 6.9. The bars for 227 mtrt are cut off since they are about

3000%. The geometric mean of the overheads is about a factor of 3. This result

indicates that if software instrumentation is used, a faster implementation is

needed, especially for smaller applications. Jikes RVM use adaptive sampling

to collect dynamic call graph which has much lower overhead and therefore

suitable for small application.s

Code Layout Generation Overhead Another overhead of WCM is the

time required by the code layout algorithms to generate a code layout. We
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Figure 6.9: SPEC JVM98 software instrumentation overheads

Algorithm MiniBean SPECjbb
Pettis-Hansen 2215127 503

Cache-aware Pettis-Hansen (16K) 26012 197
Cache-aware Pettis-Hansen (4K) 28840 186

Code Tiling (16K) 508 17
Code Tiling (4K) 352 15

Linear Scan (1) 3611 29
Linear Scan (10) 820 23

Linear Scan (100) 295 21
Linear Scan (1000) 254 19

Linear Scan (10000) 253 21

Table 6.4: MiniBean and SPEC JBB2000 layout creation times (ms)

show the times needed for MiniBean and SPEC JBB2000 in Table 6.4.

The Pettis-Hansen procedure layout algorithm requires 37 minutes to

reorder MiniBean’s code which is much too long to be practical in a dynamic

code reordering system. Our new algorithms are much faster, especially Code

Tiling which takes just 0.35 seconds for MiniBean when using a 4KB page

as the cut off threshold. This time is less than most of MiniBean’s garbage
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Figure 6.10: Number of edge merges for MiniBean

collection times.

Pettis-Hansen merges many more edges than Code Tiling or our other

layout algorithms as illustrated in Figure 6.10. In this figure and the following

ones, “PH” stands for the Pettis-Hansen algorithm, “CAPH” for Cache-Aware

Pettis-Hansen, “CT” for Code Tiling, and “LS” for Linear Scan. The figure

shows the number of edge merges (in millions) needed for MiniBean with

Pettis-Hansen and the other algorithms. Note that the bar for Pettis-Hansen

is cut off since it merges about 1.8 billion edges. When we explore where

Pettis-Hansen spent its time, we find that merging edges required most of the

time for SPEC JBB2000 and MiniBean.

Generating the new code layouts for the SPEC JVM98 benchmarks is

generally much faster than for SPEC JBB2000. Our new algorithms are up

to 6.33 times faster (for Code Tiling with a 4KB threshold). The results are

shown in Figure 6.11.
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Figure 6.11: SPEC JVM98 layout generation times (ms)

6.3.4.3 WCM Performance Results

Figure 6.12 shows the performance benefit of dynamic code reorgani-

zation with both the MiniBean and SPEC JBB2000 benchmarks using the

four different code layout algorithms. The base code layout is the default one

used by our managed runtime, which is based on invocation order and already

provides some locality benefit, as we noted in Section 1.2. The MiniBean rate

reported in the second column is the harmonic mean of the four throughput

rates it reports. For SPEC JBB2000, we report the 8-warehouse score.

These results show that WCM with Code Tiling can significantly im-

prove MiniBean’s performance. However, it has essentially no impact on SPEC

JBB2000. One reason for this difference is the size of the two benchmarks.

The IA-32’s 128-entry ITLB can map 512K of simultaneous code space with

the default 4K pages which is much smaller than MiniBean’s 3.1MB of JIT-

compiled code. Optimizations that improve MiniBean’s code locality should
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Figure 6.12: MiniBean and SPEC JBB2000 performance

thus improve its performance. SPEC JBB2000, on the other hand, only has

268K of code, so it fits within the ITLB span. Reorganizing this code to im-

prove locality has little benefit, at least as long as SPEC JBB2000 is the only

application running on the machine. If multiple programs are running, there

may be some benefit since improving a program’s code locality will reduce

its working set, which allows more applications to run simultaneously without

ITLB misses.

Figure 6.13 shows the run times for the SPEC JVM98 benchmarks with

different code layout algorithms. We measure the times for the second itera-

tion of the benchmark runs, so these times do not include any instrumentation

or code reorganization overhead. There is no clear performance benefit from

using any layout algorithm. Since these benchmarks are so small, with in-

struction working sets often less than 32K (see Section 6.4.2.2, this result is
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Figure 6.13: SPEC JVM98 performance

not surprising.

6.3.4.4 Discussion

This section’s results demonstrate that Whole Code Management can

significantly improve the performance of the large MiniBean benchmark. In

previous work, we found that Pettis-Hansen improves the performance of the

even larger SPECjAppServer benchmark by 4.2%. SPECjAppServer has ap-

proximately 19,000 compiled methods compared to MiniBean’s 15,586. How-

ever, we have not measured the benefit of WCM using Code Tiling for SPEC-

jAppServer.

The benefit of WCM depends on application size. This section shows

that code reorganization helps large applications more than small ones. These

results also demonstrate that Code Tiling is much more suitable for online code

reorganization than the classic Pettis-Hansen algorithm. It executes much

faster and can produce better performance.
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6.3.5 PMU-based Code Reorganization

This section describes our Itanium Processor Family (IPF) WCM im-

plementation and presents our experience with using hardware Performance

Monitoring Unit (PMU) sampling on IPF to reorder compiled code. After

describing our implementation, we discuss its overhead. We also present per-

formance results using PMU-generated DCGs.

On IPF, we prefer PMU sampling since it is less expensive than software

instrumentation1. Our PMU sampling implementation periodically examines

the processor’s Branch Trace Buffer to find the recent taken branches. By

filtering the branches to extract those with source and target addresses in dif-

ferent methods, WCM discovers information about recent method calls. This

information identifies both the caller and the callee methods, or more precisely,

their code blocks. We separate call instructions from return instructions by

checking if the target address is at the beginning of a code block.

6.3.5.1 Experimental Framework

For our IPF results, we use the 1.5GHz Itanium 2 described in Sec-

tion 4.5. We use StarJIT [1] which has a high-performance dynamic compiler

that uses a single SSA-based intermediate representation and global optimiza-

tion framework to compile JVM bytecodes. StarJIT typically emits two code

blocks for each method. These blocks separate the method’s hot and cold

1PMU monitoring can be adjusted dynamically to keep its overhead to 1% or so. If 1%
overhead is still too great, PMU monitoring can be done periodically and disabled between
monitoring.
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code; the cold code includes exception handlers, for example. The granularity

of code reorganization on IPF, then, is a code block instead of a method.

Our IPF WCM implementation is not complete. We have not com-

pleted the StarJIT changes needed for it to update compiled code during a

code reorganization. However, we are able to use static code layout to get

an approximation of what WCM might provide. This approximation uses a

separate profiling run to build the DCG, runs the code layout algorithm, and

writes the resulting code layout to a file. Then subsequent runs use this layout

file to place their compiled code. When static code layout is used, VM first

reads the layout, then uses its placement information when allocating code for

JITs.

6.3.5.2 PMU-based DCG Generation Overhead

On IPF, we first study the overhead for dynamic call graph generation

with PMU sampling. We vary the sampling interval from 10 (1 sample every 10

branches) to 100,000 (1 sample every 100,000 branches). The times required to

generate the dynamic call graph for MiniBean at different sampling intervals

are shown in Figure 6.14. These times are from program start until WCM

generates and applies the new code layout and thus do not reflect any benefit

from using the new code layout. As we increase the sampling interval to

10,000 or higher, the overhead drops to less than 1%. In addition, our PMU

driver has the ability to change the hardware sampling interval at runtime.

We could sample more frequently for a short period of time and then revert

back to longer-interval sampling as necessary.
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Figure 6.14: MiniBean DCG creation times with PMU sampling

We also measure the overhead of using the PMU to generate the dy-

namic call graph for the SPEC JVM98 benchmarks. Figure 6.15 shows the

results similar to those for MiniBean. As the sampling interval increases to

10,000 or more, the overhead drops to less than 2%. This result shows that

using hardware sampling is a plausible method to gather dynamic calling in-

formation even for small applications. We measure the overhead by comparing

one run using PMU code layout with a second run for the base case (no PMU

sampling, no code reordering). The first run does all the work of generating a

new code layout but did not actually apply it.

6.3.5.3 Code reorganization results

Since our WCM system is not fully implemented on IPF, we could not

collect performance results there for fully dynamic code reorganization. One

drawback of using static code layout instead is that it can’t cope with meth-

ods that were never compiled in the profiling run. Different methods can be
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Figure 6.15: PMU overhead for the SPEC JVM98 benchmarks

compiled in different runs of the same program with same input because of

dynamic class creation and loading (which is done by MiniBean and SPEC-

jAppServer2002). As a result, the benefit of static code layout may be less

than dynamic layout would achieve.

We use static code layout with the Pettis-Hansen layout algorithm to

determine its performance impact for the MiniBean benchmark. We find the

performance improvement was slightly negative, -1%, which probably indicates

only that for this benchmark on IPF, code reorganization has little impact.

While it is possible that WCM would provide better performance, its benefit

is still likely to be less than it was on IA-32. One reason for this poor result

is the large L3 cache (9MB) on our IPF machine, which holds nearly all of

MiniBean’s code (11MB on IPF). Another reason is the short memory stall

time on the Itanium 2 processor: the latency is approximately 6 cycles for
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Base Pettis-Hansen
FE Flush 5655 5570
TLB Stall 18904 13876

Instruction Cache Miss Stall 45484 46583
Any of 4 Branch Recirculates 6780 7155
Recirculate for Fill Operation 935 975

Branch Bubble Stall 66228 68481
Instruction Buffer Full Stall 115852 117431

Sum 259838 260070

Table 6.5: IPF front-end stalls using static code layout

the L2 cache and 12 cycles for the L3 cache. These mean that reordering

method code will have little impact on IPF programs unless those programs

have working sets much larger than the L3 cache size.

6.3.5.4 Effectiveness of PMU sampling

The Itanium 2 processor’s PMU support makes it possible to get de-

tailed performance information at low cost and with low impact on the running

program. Even though we cannot collect performance results there for dy-

namic code reorganization, we can still use its hardware performance counters

to study the impact of static reorganization.

Table 6.5 shows the number of IPF front-end stall cycles when running

MiniBean. It compares the number of stalls for the default code layout as well

as one using the Pettis-Hansen layout algorithm. For the latter, we use a static

code layout using a DCG based on PMU sampling. Among the front-end stalls

we measure are ITLB miss and instruction cache miss stalls.

There is a 26.60% improvement in ITLB miss stalls with the static code

layout. However, there is no noticeable improvement in either the total front-
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Figure 6.16: Effect of PMU-based call graphs on ITLB misses

end stalls or MiniBean’s overall performance since the ITLB stalls are only a

small percentage of the overall stalls.

We also measure the effectiveness of PMU-generated dynamic call graphs.

Using PMU sampling at different branch intervals, we compute static code lay-

outs based on the resulting DCGs. We then collect the total ITLB misses for

MiniBean using the IPF performance counters. The results are shown in Fig-

ure 6.16 and indicate that, for MiniBean, PMU-generated dynamic call graphs

are as effective as the precise software instrumentation graphs for DCG. While

there is a trade off between PMU sampling frequency and accuracy of the re-

sulting DCGs, Figure 6.16 illustrates that the lower-precision DCGs do not

have a significant impact on the effectiveness of the generated code layouts.

These results are consistent with our previous experience that PMU instru-

mentation has the same benefit as software instrumentation, but at lower cost.
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6.3.5.5 Discussion

While Section 6.3.4 shows that Whole Code Management can signifi-

cantly improve the performance of larger applications such as MiniBean, this

section’s results show that the benefit depends on the processor’s microarchi-

tecture and cache hierarchy. Code reorganization has more impact on IA-32

than IPF. Our IPF machine’s 9MB L3 cache and short memory stall times

means that applications must have substantially more code than MiniBean

before they will benefit from code reorganization.

This section’s results also demonstrate that PMU sampling for collect-

ing dynamic call graph has low overhead. The results also show that, for

short-running programs, PMU sampling can have lower impact on the pro-

grams than software-based instrumentation.

6.4 Fast and Efficient Partial Online Code Reordering

This section introduces Partial Code Reordering (PCR) which performs

online code reordering with low overhead by piggybacking on just-in-time (JIT)

recompilation. PCR seeks to improve instruction locality by attacking capacity

and conflict cache misses. It uses dynamic call graph and basic block profiles.

It performs three optimizations using multiple code spaces: (1) interprocedu-

ral hot/cold method separation, (2) intraprocedural hot/cold code splitting,

and (3) interprocedural hot code padding. To reduce capacity misses, PCR

allocates hot and cold methods into separate spaces in the heap. PCR also

performs code splitting of hot and cold basic blocks within the same method to
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further reduce the hot instruction working set size. To reduce conflict misses

for the current method, PCR examines the dynamic call graph and finds hot

caller/callee pairs. If they map to the same lines in the cache, they will have

too many conflict misses. Therefore, PCR applies code padding on either

caller or callee method (whichever it happens to be recompiling) to eliminate

the potential conflict misses.

PCR piggybacks on adaptive hotspot compilation. PCR performs its

code layout optimizations when the dynamic recompilation system has already

selected a method to recompile at a higher level, and thus must generate and

allocate space for the code anyway. PCR uses the dynamic call graph and

edge profile for the current method, and never examines the entire graph nor

re-allocates the code, as does the prior work [58] and the WCM approach in

the previous section. This design reduces the overhead of PCR to a negligible

level.

We run our experiments on two architectures, an Intel Pentium 4 and an

IBM PowerPC 970, using SPEC [64, 65] and DaCapo [13] Java benchmarks.

Because the instruction working set sizes for these benchmarks are modest

compared to the available instruction cache (or trace cache), PCR does not

improve most of these programs. However, a few programs are sensitive to

instruction code layout: compared to the Jikes RVM default configuration

which mixes code and data in the heap, a simple instruction code space im-

proves total performance on average by around 6% and on one benchmark by

30%. The PCR optimizations improve one benchmark by 5%, but sometimes
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degrade performance and on average have a negligible impact.

PCR demonstrates that a dynamic optimization system can reduced

instruction cache footprints with negligible overheads by exploit the opportu-

nities in JIT compilation.

6.4.1 Partial Code Reordering

The Partial Code Reordering (PCR) system is designed to be extremely

low overhead and to exploit dynamic program behavior. By default, Jikes RVM

allocates code in the heap with all the other VM and application objects. PCR

first adds a separate space for all code. (This design is prevalent in commercial

JVMs for code locality and ease of implementation for JVMs written in C.)

PCR performs two types of optimizations: interprocedural and intrapro-

cedural code reordering. When Jikes RVM initially compiles a hot method with

its optimizing compiler, PCR allocates the hot method in a separate space from

baseline compiled code. PCR also splits the hot method into hot and cold basic

blocks based on their execution frequencies and allocates them into different

spaces. PCR determines whether a basic block is hot or cold by computing

its relative execution frequency from online edge profile information and then

applying a simple threshold. It also identifies frequent caller/callee pairs by

applying a threshold to the dynamic call graph edges. PCR calculates and

inserts padding in front of the hot portion of each optimized method to min-

imize the likelihood of conflicts with its callers and callees in the instruction

cache.
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Figure 6.17(a) shows code and data layout for the default configuration

of Jikes RVM. In the figure, ‘B’ denotes baseline compiled code; ‘O’ denotes

optimized compiled code; and ‘D’ denotes data objects. Figure 6.17(b) shows

B

B

B B

B

B

OD

D D

O
Heap

(a) Jikes RVM Default

B O B

O BB B

D D D

Data Space

Code Space
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B BB
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Baseline Code Space
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Data Space

(c) Interprocedural Method Sep-
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(e) Code Padding

Figure 6.17: Code Reordering Heap Layouts: B: baseline code; O: optimized
code; D: application objects; OH: hot basic blocks; CC: cold basic blocks
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the separation of code and data into separate spaces; this design is typical

of most current JVMs. When a method is compiled by either the baseline or

optimizing compiler, PCR allocates the code into the single shared code space.

6.4.1.1 Interprocedural Method Separation

As described in Section 2.1, hot methods are detected by software sam-

pling in Jikes RVM and recompiled by optimizing compiler, and cold methods

are compiled by baseline compiler. Because of lazy compilation and dynamic

class loading, baseline compiled code (code methods) and optimized code (hot

methods) will mix in a single code space. The first PCR optimization, in-

terprocedural method separation, simply separates hot and cold methods by

separating optimized code and baseline compiled code. When the optimizing

compiler recompiles a method, PCR allocates these hot methods into a sepa-

rate hot code space, as shown in Figure 6.17(c). This optimization reduces the

code footprint of the hot methods and consequently may reduce L2 cache resi-

dency, L2 cache misses, and paging. We manage the optimized compiled code

spaces as a contiguously allocated (bump-pointer copy) space in MMTk [12].

6.4.1.2 Intraprocedural Code Splitting

The existing optimizing compiler uses the edge profiling instrumenta-

tion from the baseline compiled code to push hot basic blocks to the beginning

of the generated code and cold ones to the end. PCR further separates the

hot and cold basic blocks by allocating them into different regions of the op-

timized code space. The generated layout is shown in Figure 6.17(d), where
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‘OH’ denotes hot basic blocks of a method and ‘OC’ denotes cold blocks of a

method.

PCR splits code during code generation. We implement PCR system

on x86 and PowerPC architectures, which both have short pc-relative branch

instructions for a short jump. We conservatively use long branches if a branch

is crossing the two partitions of the same method. This conservative choice

increases the code size if the branch was a short branch before code splitting.

PCR allocates 16 KB size chunks for hot and cold block allocation to avoid

having a branch distance larger than the upper bound of a conditional branch.

Therefore the hot and cold blocks are approximately interleaved within the

heap in 16 KB chunks.

6.4.1.3 Code Padding

PCR uses the dynamic call graph to find frequent caller/callee pairs,

based on the threshold used to identify recompilation candidates. The frequent

caller/callee pairs may generate conflict misses if they are mapped into the

same line in the instruction cache. After PCR splits a method A into hot/cold

blocks, it checks all of the frequent callers and callees of method A to see if

their mappings in the cache overlap method A’s mapping. If PCR detects

overlaps, it employs a simple and fast algorithm to calculate a padding size

that avoids conflicts. PCR does not attempt to find an optimal padding size

that minimizes the expected number of conflict misses and wasted code space.

However, our experience is that the number of potentially conflicting methods

for a method is often one and therefore this simple and efficient algorithm is
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Code-Padding(methodA, DCG)
1 currentPadding ← 0
2 repeat
3 for each methodB in Get-Adjacent-Nodes(methodA, DCG) do
4 if Check-Conflicts(methodA, methodB) then
5 padding ← Calculate-Padding(methodA, methodB)
6 currentPadding ← currentPadding + padding
7 if currentPadding < methodA.size then
8 methodA.address ← methodA.address + padding
9 until (padding == 0)||(currentPadding >= methodA.size)

Check-Conflicts(methodA, methodB)
1 offsetA ← methodA.address&(CACHE SIZE − 1)
2 offsetB ← methodB.address&(CACHE SIZE − 1)
3 if offsetA < offsetB
4 then return (offsetA + methodA.size > offsetB)
5 else return (offsetB + methodB.size > offsetA)

Calculate-Padding(methodA, methodB)
1 offsetA ← methodA.address&(CACHE SIZE − 1)
2 offsetB ← methodB.address&(CACHE SIZE − 1)
3 padding ← offsetB + methodB.size− offsetA
4 if (offsetB > (offsetA + methodA.size))
5 then return 0
6 else return padding

Figure 6.18: Pseudocode for Code Padding

usually sufficient. To avoid wasting space, we use the method size as an upper

bound on the amount of padding we insert.

The detailed algorithm is in Figure 6.18. For each hot caller-callee

pair, check-conflicts computes where in the given cache size they map

and their overlap. If they overlap, it computes a padding, accumulating any

non-zero padding unless the padding size exceeds the method size. Because

PCR contiguously allocates with a bump pointer in the code space, PCR

applies the padding by simply adding the padding size to the bump pointer

before allocating the hot blocks of method A. Figure 6.17(e) depicts this code

layout.
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Baseline O0 O0H O1 O1H O2 O2H
DaCapo Benchmarks

antlr 1,385,368 109,232 48,892 118,252 57,928 17,656 10,052
bloat 1,178,616 193,716 103,104 307,020 123,484 140,836 39,968

fop 1,841,528 37,868 17,352 41,396 15,872 4,068 2,484
hsqldb 516,800 15,628 6,024 284,332 74,328 104,956 33,324
jython 1,217,868 13,916 9,184 8,992 2,384 43,824 11,432

pmd 1,166,364 59,932 31,132 48,708 20,996 51,892 25,144
xalan 1,397,848 20,356 10,232 97,388 32,004 4,528 1,016

ps 205,472 16,212 9,068 17,648 10,004 5,264 3,432
SPEC Java Benchmarks

compress 173,432 2,208 1,392 180 112 4,248 2,108
jess 355,296 8,400 4,012 29,724 9,820 6,104 3,628

raytrace 220,508 13,560 7,232 15,808 10,736 1,228 960
db 175,640 2,476 1,156 0 0 5,804 3,412

javac 612,128 93,032 42,900 53,720 27,784 2,168 836
mpegaudio 546,512 21,968 8,320 22,104 8,280 6,464 4,116

mtrt 221,032 14,124 7,500 14,700 9,988 1,336 960
jack 465,028 9,964 4,440 36,756 21,008 4,352 2,604

pseudojbb 404,512 85,456 43,368 24,916 15,240 2,588 2,028

Arithmetic mean 710,820 42,238 20,900 65,979 25,880 23,960 8,677

Table 6.6: Benchmark Code Size Characteristics in Bytes with Replay Com-
pilation

6.4.2 Experimental Results

This section evaluates PCR and compares it to Jikes RVM with and without a

separate code space. For our evaluation, we first perform simulations to expose

the magnitude of the performance loss due to instruction cache conflicts of our

Java applications, and the benefits of padding in a controlled setting. We find

that for a direct mapped cache, programs lose around 6% on average and up

to 17% of their performance to instruction cache conflict misses. We further
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explore the performance impact of PCR using two architectures: Pentium 4

and PowerPC; and two Jikes RVM configurations: one that excludes most

compilation and thus consists mostly application time, and one that mixes

the adaptive compilation and the application. The latter experiment more

accurately reflects a multiprogrammed workload and is when PCR is most

effective. A simple code space improves the default Jikes RVM configuration

by about 6%. Because the code footprint of our benchmarks is small, addi-

tional PCR optimizations have little impact, occasionally improving them and

occasionally slowing them down.

6.4.2.1 Application and Compiler Mix

We use two Jikes RVM compiler and application mixes for our experi-

ments, which we call second run and adaptive.

(1) The second run methodology uses profiling of the adaptive com-

piler from previous runs (compiler replay [11, 41]) to deterministically optimize

methods to their highest level when the method first executes. We then per-

form a whole heap collection to flush the heap of compiler objects and execute

the benchmark again. Some additional, but minimal recompilation may take

place during the second run of the benchmark. We report measurements of

this second run because it consists almost entirely of application execution and

it is easier to understand and measure [13]. Eeckhout et al. show that measur-

ing the first iteration on SPECjvm98, which includes the adaptive compiler,

is dominated by the compiler rather than the benchmark behavior [34]. This

methodology gives a simple code space an advantage because more compila-
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tion takes place early and together (as we show below). This methodology

would also mimic the Arnold et al. system that combines offline and online

profiles to drive compilation [8].

(2) The adaptive methodology lets the optimizing compiler behave as

intended, is non-deterministic, and measures compilation and application time.

Section 6.4.2.4 reports these results, which because the compiler competes with

the application, are most indicative of a multiprogrammed workload, and may

be more indicative of results on programs with larger icache footprints than

our benchmarks. For example, SPECjAppServer loses significant performance

to poor instruction cache behavior [28].

6.4.2.2 Benchmarks and Instruction Code Sizes

We use the SPECjvm98 [64], SPECjbb [65], and DaCapo benchmarks [13].

Other work [13, 32, 41] characterizes the memory behavior and memory sys-

tem performance of the data for these benchmarks. Table 6.6 shows instead

the code size characteristics of these benchmarks in bytes. We use the replay

compilation methodology to measure the size of generated code at each opti-

mization stage. Therefore the numbers here only include the final optimized

code for every method, since replay specifies exactly at which level to com-

pile each method. An adaptive compilation would instead compile a very hot

method M at multiple levels, e.g., baseline compiled first, and then optimizing

compiled at level O0, level O1, and level O2. Replay compilation only opti-

mizes method M at level O2. Table 6.6 thus shows the amount of compilation

at each level, and each method is compiled once at one level (although inlining
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produces copies of some code). Column one lists the benchmarks. The base-

line column shows the total amount of baseline compiled code in bytes, which

ranges from 173 KB up 1841 KB. These volumes clearly exceed the capacity of

typical 8 to 32 KB instruction caches and demonstrate that for the most part,

the DaCapo benchmarks have larger code footprints than SPEC. For each of

the three levels of optimization (O0, O1, O2), the next six columns divide the

methods into hot (indicated with a suffix ‘H’) and cold code. We use the edge

profile to determine the hot basic blocks. The SPEC Java benchmarks always

produce less than 8 KB of hot code in the O2H space, and the total size of the

hot methods at O1 and O2 is always less than 32 KB. For the DaCapo bench-

marks at O2, there are two programs with a hot code size of greater than 32

KB, and at O1 plus O2, there are five of eight. The table thus indicates that

the working set of code (i.e., the hot code) in these programs is not putting

very much pressure on the instruction cache.

6.4.2.3 Simulation Results

Because on a real architecture, we have limited information available

and less control with different hardware configurations (for example, cache

associativity), we use simulation to understand our PCR optimizations bet-

ter. We use Dynamic SimpleScalar (DSS) [42], a variant of widely used Sim-

pleScalar simulator [15] that is extended to run Java programs. We simulate

a fully associative instruction cache and compare with a direct-mapped cache

with the same access time to show how much performance is lost to instruction

cache conflict misses.
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Figure 6.19: Simulation Results for Directed-Mapped and Fully Associative
32 KB IL1, 512 KB L2

We use two instruction cache configurations for these simulations. (1) A 32

KB direct-mapped instruction cache and 512 KB unified L2 cache; L1 access

latency is 2 cycles and L2 access latency is 5. (2) A 32 KB fully-associative

instruction cache and 512 KB unified L2 cache with the same latencies as

configuration (1). We make the hit latency of (1) and (2) the same to ex-

amine the potential performance improvement if we have no conflict misses

on a direct-mapped instruction cache. We use the second run methodology

described above. We perform functional simulation for the first iteration, turn

off the adaptive compiler, and then switch to cycle level simulation right before

the second iteration, and then simulate 2 billion instructions.
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Figure 6.19 compares the relative performance of PCR using as its base-

line hardware instruction cache configuration (1) with a simple code space. It

shows the benefits of PCR code splitting, code splitting, padding, and a fully

associative instruction cache (hardware configuration (2)). PCR code splitting

and padding performs 7.1% better than a simple code space on jython although

just PCR code splitting itself degrades the performance 7.6%. Because jython

has 11K hot blocks after code splitting, which can easily fit in the instruction

cache, we think the benefit we have from use code padding is from avoid con-

flicts between jython’s application code and the Jikes RVM code. Jikes RVM

code is allocated ahead of time in a separate region from the application. PCR

has the opposite trend on xalan where code splitting improves performance by

14.0% but combined with code padding the performance degrades by 1.2%.

This is likely to be incurred by the space overhead of code padding. Although

the geometric mean of PCR performance over all benchmarks is about the

same (0.5% better or 0.6% worse) as a simple code space on these benchmarks

with modestly sized instruction footprints, we believe that by carefully choos-

ing the PCR optimizations for each individual program, we may be able to

achieve better average results. The performance of the fully associative cache

shows that even these relatively small applications lose on average around 6%

to instruction cache conflicts, but that PCR is not consistently able to achieve

that potential.
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Figure 6.20: Code Optimizations on Pentium 4
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Figure 6.21: Code Optimizations on PowerPC 970: Geometric Mean
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6.4.2.4 Application Performance

We report run-time results for our implementation on the 3.2GHz Pen-

tium 4 and 1.6GHz PowerPC described in Section 4.5. We use the second run

methodology in experiments we report in this section, and thus measure only

the application behavior. We first compare the performance of PCR with the

method separation and the default configuration in Jikes RVM (code is mixed

in with data in the heap) on the Pentium 4. Most of the benchmarks are not

sensitive to the code layout, but we found that a few benchmarks have some

sensitivity. Figure 6.20 shows two of these programs (antlr and fop), and the

geometric mean of all programs. All the performance numbers report relative

heap size (bottom), actual heap size in KB (top), the normalized times on the

left legend, and seconds on the right legend. We normalize the time to the

best time on each figure, so it is easy to see the relative performance difference

between the configurations. Although most systems use separated spaces for

code and data, method separation, which further separates optimized compiled

code from baseline compiled code, is the worst performing configuration for

antlr. This could be caused by certain property of trace cache or the different

sized branch instructions generated by different code layout. For fop, mixing

code and data in the heap degrades its performance and PCR optimizations

perform worse than just having a simple code space. PCR optimizations per-

form about the same as Jikes RVM default configuration for the geometric

mean over all benchmarks.

We also perform the same experiments on the PowerPC which has
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Figure 6.22: Compiler Activity Histogram on First Iteration

a traditional instruction cache instead of the instruction trace cache on the

Pentium 4. Figure 6.21 shows these results. PCR has even less impact on

performance on the PowerPC than on the Pentium 4 because the PowerPC

has a larger instruction cache (32 KB) and 2-way set associativity. It is thus

large enough to contain the working set of our benchmarks and its associativity

reduces the conflict misses. As the previous section showed in simulation, a

large capacity (32 KB) direct-mapped cache does however lose performance to

instruction cache misses (Figure 6.19).
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6.4.2.5 Mix of Compiler and Application

This section reports on experiments using the adaptive methodology

which includes a mix of the application and the compiler as it finds hot meth-

ods and compiles them at progressively higher levels. The compiler histograms

in Figure 6.22 show the differences between when the recompilation takes

place in the first run with adaptive compiler versus the first run using re-

play compilation. We divide each of the two executions of the program into

twenty buckets and then record the number of methods compiled at level O0 or

higher, and sum over all programs. When we use compiler replay (to eliminate

non-determinism from adaptive recompilation), compilation happens earlier in

the program. We see this behavior because replay compilation compiles to the

highest level of optimization in the profile on the first execution of the method,

instead of recompiling at multiple levels. The adaptive methodology is thus

running the compiler throughout the execution of the program. The peri-

odic execution of the compiler displaces application code from the instruction

cache and thus we believe the adaptive methodology is a suitable environment

in which to study instruction cache performance programs because the com-

petition for the cache mimics a multiprogramming environment. In this case,

the application and JIT compiler interfere with each other.

Figure 6.24 shows the performance of various configurations of PCR

when using the adaptive methodology. The figures show the total time, mu-

tator time (program only without garbage collection), and the trace cache

flushes. We report trace cache flushes using the Pentium 4 performance coun-
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Figure 6.23: Total time, mutator time, and trace cache flushes for a simple
code cache, Jikes RVM default and various PCR configurations.
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Figure 6.24: Total time, mutator time, and trace cache flushes for a simple
code cache, Jikes RVM default and various PCR configurations.
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ters configured for this measurement. We measure all the programs and present

the geometric mean and three programs (javac, mtrt, fop) across four heap sizes

(the bottom axis reports relative to the smallest and the top axis reports in

MB). Again, we normalize the total and mutator time figures to the best point

to show relative differences.

The results show that a simple code space improves over the Jikes

RVM default configuration by 6% on average and by 30% on fop. There are

two reasons for this large difference in performance.

1. The Pentium 4’s trace cache is flushed whenever the program writes to

a page in the trace cache (e.g., when the VM writes new code on to a

page or writes data on the same page as code). By mixing data and

code together in the heap, Jikes RVM greatly increases the possibility of

flushing the trace cache because writing to the data space happens more

often than writing to the instruction space. This effect is very clear in

Figures 6.24(c),(f),(i) and (l) and is the reason that the corresponding

mutator time increases as the heap size grows for each of the benchmarks

and the geometric mean.

2. By scattering instructions into the heap, Jikes RVM destroys the instruc-

tion spatial locality between methods. This effect is especially crucial

for architectures with hardware prefetch for instructions.

PCR optimizations offer some additional, but modest improvements on a few

programs. For example, on mtrt, PCR code splitting is most effective and
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improves over a code space by up to 5%. These results demonstrate that PCR

has no appreciable overheads and has the potential to improve performance

over a basic code space in a multiprogrammed environment. Programs with

larger instruction cache working sets may benefit, but our programs do not

exercise this space.
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Chapter 7

Applicability of Results to Other VMs

Our whole code layout reordering system, WCM, is implemented on

Open Source Platform (ORP) which is written in C++. We do not discuss

applying WCM to other virtual machines because most other VMs are written

in C/C++ and it is more straightforward to port the WCM implementation

to other VMs. Jikes RVM is implemented in Java which is different from

most other virtual machines. By implementing Jikes RVM in Java, it reduces

the cross-boundary overhead between Java/non-Java code. There are also

new optimization opportunities. For example, inlining of the library methods

is easier when both the caller and callee are written in Java. Although we

implement our Online Object Reordering (OOR) and Partial Code Reordering

(PCR) systems in Jikes RVM, our designs are not VM dependent. Most current

Virtual Machines compile every method with a set of quick optimizations at the

first invocation of a method [2, 16, 19, 31]. Sophisticated system [27, 40, 55, 66]

can identify hot methods and apply more optimizations to these hot methods.

A significant portion of our system can be implemented as an extension of

these two features. In this section, we describe how to apply our systems on

other virtual machines.
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7.1 Adding OOR to Other VMs

The OOR system consists of three components, static compilation anal-

ysis, dynamic sampling for hot methods and copying garbage collection for

object reordering. We can apply the same static analysis during compilation

in other Virtual Machines. The runtime sampling technique for detecting hot

methods is built on top of dynamic feedback system in Jikes RVM. However,

the information we need does not require a general mechanism for online adap-

tive feedback. Most current VMs are able to dynamically select a subset of

all methods as hot methods. Which is enough for our system to find hot field

accesses. The generational copying collector is a popular choice in current

VMs. Virtual Machines with a copying garbage collector implementation can

easily be extended to support object reordering by hot fields.

7.2 Applying PCR on Other VMs

For the Partial Code Reordering system, we need more sophisticated

support from the virtual machine. Our implementation includes two major

code reorderings. First, we allocate the methods in the order they were in-

voked. During the process of allocation, we also separate methods by the

execution frequency and split a method so that the hot blocks and cold blocks

are in different spaces. We also check whether there is a conflict between the

current method and its caller. Because most VMs compile each method with

a fixed set of optimizations the first time it is invoked, the same optimization

can be applied during the code generation just as in Jikes RVM. The com-
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plication is that some VMs use a free-list allocator, in which it is harder to

control the method address. By padding and requesting a larger block of the

same size for every conflicting methods, the VM can overcome this limitation.

For the second phase of code reordering, PCR uses runtime feedback

to find hot calling sequences and check for potential conflicts in the call graph.

This component of Jikes RVM is not language dependent; therefore the same

adaptive sampling system can be implemented in other language inside other

virtual machines as well, but of course requires certain knowledge of the hard-

ware (like the cache size and associativity for code padding).

Copying the generated code to a new memory region is very common

in VMs because they dynamically generate code for methods and then select a

subset of methods to be recompiled and move the new code into a new region.

The method is either not invoked at the time it is moved, which does not

require any other action. If the method is on the stack we can either give up

or use on-stack replacement. Jikes RVM and Sun Hotspot [55] compilers both

provide on-stack replacement.
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Chapter 8

Conclusions and Future Work

Research on improving memory performance has been active for decades.

Previous research has been concentrated on improving hardware or statically

optimizing software using a compiler or by hand. Java programs run on top

of a Java Virtual Machines, which have total control of the data object and

instruction layout. This flexibility provides new opportunities to improve pro-

gram locality at run time. In this dissertation, we show that dynamically

optimized data and instruction layouts for Java program can consistently im-

prove program performance and that there is room for further improvement.

The key investigations of this thesis are:

1. A study of Java programs to explore the potential performance loss due

to poor locality.

2. A novel low-overhead, online data object reordering system that consis-

tently matches or improves the best static object reordering.

3. A Whole Code Management system which is the first implementation of

dynamic code reordering in a managed runtime.

4. We describe a new placement algorithm, Code-Tiling, that specifically

addresses expensive ITLB misses. It is much faster than the widely-used
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Pettis-Hansen procedure layout algorithm, and the layouts generated by

Code-Tiling algorithm often perform better.

5. We developed a new scheme for dynamic code allocation that reduces

instruction working set size at runtime.

6. A new low-overhead, dynamic code padding optimizations which reduces

instruction cache conflict misses.

Despite enormous effort, performance is still an issue for object-oriented

programming languages compared to traditional languages like C. Prior to this

work, there were no dynamic optimizations that can dynamically adjust the

data and instruction layout to match program behavior in order to achieve bet-

ter locality with low overhead. We discovered and innovatively exploited this

available opportunities for efficiently monitoring program data and instruction

locality in object-oriented programming languages. Our results demonstrate

that extremely low overhead (1% or less) monitoring of data and instruction

locality yields sufficient precision to drive powerful, effective data and instruc-

tion optimizations.

8.1 Future Work

Besides showing how effective our optimizations are at improving pro-

gram locality, our potential results (Figure 4.1) also show that there is still

room for further improvement. We believe we can develop even more effective

optimizations by improve our understanding of virtual machine environments.
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There are three major problems for us to address regarding design and imple-

mentation of dynamic optimizations:

• What kind of information to collect at runtime? This question includes

what potential information we can collect at runtime, and how important

is certain information is to our optimizations.

• How to get the information with the lowest overhead? Some informa-

tion is valuable but too expensive to collect using traditional methods.

Instead, we could find a low overhead estimation of the expensive infor-

mation.

• How to apply the optimization with little overhead or low enough to show

the benefit? We should leverage the available sub-systems, such as the

memory manager, compiler, or runtime, to apply our optimization with

low overhead.

There are many innovative answers to the above questions. The follow-

ing are some of the applications.

8.1.1 Performance Counters

Most modern processors, such as Intel x86, AMD x86, IBM PowerPC,

support performance counters and the trend is toward richer, more complicated

support. Hardware performance counters are perfect candidates for collecting

dynamic profiling information for virtual machines because they are fast and

low-overhead. We use the Performance Monitor Unit (PMU) on Intel Itanium
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processors to collect dynamic call graphs for Java programs. We find the

quality of the sampling information is as good as the information we collect

using software instrumentation but with a much lower overhead. We plan

to further explore the hardware performance counters for collecting different

types of information to help dynamic optimizations.

8.1.2 Potential Applications of Dynamic Monitoring

Virtual machines allow us to monitor the execution of the program and

collect information from different components of the system. Besides dynamic

optimizations, we can check for errors in the programs by using this informa-

tion. For example, we can detect memory leaks (objects that are no longer used

by the program but are still pointed by some pointer), security vulnerabilities,

model violations, binary rewriters, etc. The advance of these approaches will

make object-oriented programming languages safer, more robust, and provide

more stability.

Optimizations in virtual machines also need to adjust to new hardware

trends. Recent trends in processors, such as multi-core, require changes in

the designs and optimizations of virtual machines to adapt. New dynamic

optimizations such as localizing cache accesses, reducing unnecessary synchro-

nization, will become more important than before.

Instead of considering the VM layer as a cost to be borne, we have

opened up a new class of dynamic optimizations for monitoring and improv-

ing program locality, and code quality. With the advance of these dynamic

optimizations, we will create programming languages that are both robust,
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reliable, and high performance.
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