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Abstract

Implementing programming languages is difficult, implementing efficient program-
ming languages is even more challenging. The Mu micro virtual machine was de-
signed to address this problem by providing important abstractions to language
implementers. Mu provides a minimal, language agnostic framework for language
implementation, yet it provides powerful abstractions over memory, concurrency
(threads and ‘stacks’), exceptions, and hardware (such as dynamic code genera-
tion), that are particularly useful for modern managed languages. The first proof
of concept implementation of Mu achieved key design issues including usability
and correctness. This thesis is concerned with the next stage of Mu development,
proof of performance.

In particular, I wish to demonstrate that:
the abstraction level provided by Mu is appropriate for the generation of efficient

code.

I am part of a team that is developing a new ‘fast’ implementation of Mu, code-
named Zebu. It is written in the medium-level systems programming language
Rust. Zebu includes a compiler which outputs native machine-specific assemblies
. I have created a new RISC based back-end (targeting ARM’s 64-bit architecture
state, ‘AArch64’) to complement the x86-64 back-end (developed by PhD student Yi
Lin). I have also improved the general implementation of Zebu and implemented
additional features of Mu. I have made Zebu a reasonably efficient (when compared
to LLVM) implementation of Mu, as well as one providing a significant proportion
of Mu’s features.

In this thesis, I will detail how I have implemented parts of, and improved, Zebu,
with a particular focus on the efficient implementation of some of Mu’s most inter-
esting features. I will further detail the simple, yet effective, optimisations I have
implemented, and evaluate their effect on performance, with a particular focus on
Zebu’s potential suitability as a JIT back-end for managed languages.

I hope that this work can assist with further research into the idea of micro virtual
machines, and in particular, to further improve Zebu. Though a large section of
the Mu specification has been implemented, there is still a lot of work to be done;
currently Zebu is only an AOT compiler, and there are many advanced features of
Mu that have not been implemented yet, such as On Stack Replacement features.
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Chapter 1

Introduction

This thesis argues that the Mu micro virtual machine [Wang et al. 2017] provides
a level of abstraction amenable to efficient language implementation. It does so by
presenting an implementation of Mu, Zebu—running on the ARMv8-A AArch64
RISC architecture [ARM Limited 2017]—and comparing and evaluating its per-
formance.

1.1 Problem Statement

Though there are a large number of programming languages, some of which are
implemented well, they often suffer from performance problems or undesirable se-
mantics due to tight coupling of the language design and implementation (such
as PHP’s copy-on-write implementation [Tozawa et al. 2009]). One of the major
reasons for these problems is the difficulty, expertise, and time required in im-
plementing languages well. This is particularly evident with the implementation
of hardware specific code and optimisations, concurrency, and garbage collection.
I hope that providing abstractions that handles these concerns for language de-
velopers, will allow them to focus on higher level design and implementation. The
in-development Mu ‘micro virtual machine’ is designed to be such an abstraction
layer; it is intended to be an easy target for language developers, to be used as a
JIT back-end, and to produce efficient code.

Though the design of Mu may appear to fulfil its objectives [Wang et al. 2015;
Zhang 2015], this hasn’t as yet been experimentally verified; in particular whether
it can realise the goal of providing back-end level performance was previously un-
tested. In order to experimentally verify and confirm this, Yi Lin, A PHD stu-
dent at the Australian National University, has created a Mu implementation,
Zebu, with efficiency as its primary design goal. It originally only supported Linux
and Mac on x86-64, but I have since expand it to support Linux on Aarch64 and
Javad Ebrahimian Amiri has added support for Rumprun (running on the SeL4
microkernal) on x86-64. Zebu was originally inefficient and its performance had
not been properly evaluated; these problems needed to be fixed in order for Zebu
to properly answer the question of whether the design of Mu is efficient or not.

1



2 Introduction

1.2 Research Content
In this thesis I will present, describe, review and evaluate my work on answering
the question of Mu’s performance. In order to evaluate Mu’s performance potential,
I have extended Zebu with an AArch64 back-end, and evaluated its performance.
This approach was chosen over alternatives (such as implementing Mu on-top of
an already existing performant system (e.g. LLVM), or providing a theoretical ana-
lysis of Mu’s semantic) so that Zebu could be made to be a real-world, practical and
efficient implementation of Mu, whilst also minimizing code-size and compilation
time, to allow it to eventually be extended to perform fast JIT compilation.

In particular, this thesis will discuss:
• The general architecture of Zebu, and argue that it is appropriate and reason-

able (see § 3).
• How I have extended Zebu with additional features and implemented my AArch64

back-end, together with optimisations (see § 4).
• My experimental evaluation of the correctness and performance of Zebu, as

well as the reasons for these results and their meaning (see § 5).
• An overview of the work I have conducted, what it means and its limitations,

together with ideas and plans for future work (see § 6).

1.3 Results
Through thorough testing, I can conclude that Zebu adequately implements the
features of subset of Mu it supports.

I have conducted an experimental performance test with a set of 10 RPython bench-
marks; in 7/10 of these benchmarks, the performance of Zebu is at most 30% slower
than Clang with its highest optimisation level, also in 7/10, Zebu is faster than
Clang with its lowest back-end optimisation level. The results of experiment allow
me to conclude that:
• Zebu’s (and hence Mu’s) performance is a reasonable choice as a managed-

language back-end, in particular it is comparable with using C & Clang.
• Zebu’s performance could be improved with additional optimisations, without

needing to redefine the semantics of Mu.

1.4 Summary
The work and results presented in this research, suggest that Mu can be implemen-
ted to be efficient. These results point to Mu being a performant target for language
developers, and I hope that this will lead to more efficient, and less bug-ridden, lan-
guage implementations; in particular I hope that new efficient languages can be
developed and built upon this system with ease, and take advantage of the abstrac-
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tions and value provided by Mu.

However, since I have only really compared a portion of Mu’s features (namely
those that are implemented in Zebu and those that have counterparts in LLVM),
there is work yet to be done. In particular, whether these unexplored features can
be implemented efficiently, and if so how, and how their performance compares to
alternative implementations and abstractions, needs to be shown. In addition, the
results presented in this thesis do not evaluate the utility of Mu’s abstractions to
language developers, nor the performance effect of different mappings of higher-
level language constructs to Mu. I aim for this work to encourage, and be a valuable
aid to further such research, as well as further development and implementations
of Mu

Zebu is still slow compared to LLVM, a high-performance well-funded mature state-
of-the-art compiled tool-chain for static languages; further research is needed to
improve this, as well as complete the implementation of Mu. However the per-
formance of Zebu answers the research question.

1.5 Conventions
To aid in readability, code is often interspersed in text in a monospace font, with
teal indicating types, orange variables, maroon literals, blue ‘keywords’, and
green for comments. In addition italics is used for things that arn’t known
at compile-time or otherwise arn’t a constant. A convention used in the pseudo-
code presented is that lines starting with a ‘#’ are to be evaluated at compile-time
(i.e. when code is generated), and not run-time. I have adopted the convention
(as has [ARM Limited 2013]) that stacks grow downwards, towards lower valued-
addresses.
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Chapter 2

Background

Virtual Machines can make language implementation easier, by offloading low-
level, platform-specific and core runtime features to a layer of abstraction that can
deal with these things in isolation from the higher level language features. The
VM’s intermediate representation (its ‘machine code’) then becomes the transla-
tion target for the high level language. This principle is quite common, especially
in managed languages (ones with garbage collection); however VMs are usually
tightly coupled with a specific language (or class of languages), are large, and com-
plicated. Mu, being a micro virtual machine, takes a different approach.

2.1 Mu

Mu is a ‘micro virtual machine’, it is a managed, minimal, and language agnostic
abstraction layer for language implementations [Wang et al. 2015; Wang et al.
2017; The Mu Micro Virtual Machine Project ]. Mu, unlike large monolithic VMs
(such as the JVM), does not have a standard library, and is not tied to a particular
language, or class of languages, in addition it does not have a large runtime sys-
tem, nor is it designed to perform heavy IR level optimisations. Mu, unlike some
other VMs (like LLVM [Lattner and Adve 2004]), is specifically designed to be a
specification, or ‘design’, rather than an implementation. This allows for diverse
implementations, that focus on different things, as well as allowing the design to
be focused more on idealised (and formal) semantics, and not be limited by im-
plementation difficulties, or behaviour that particular ones might have. For this
to work well however, some behaviour has been made undefined (e.g. having an
uncaught exception, or out of bounds access to an array), implementation-defined
(e.g. the layout of objects), and conditionally-supported (e.g. tagref64); this kind
of approach is common amongst low-level programming languages to enhance per-
formance (e.g. C++ [for Standardization 2014]), but less so in VMs (e.g. the CLI
[International 2012]), due to issues such a security problems this can cause, how-
ever Mu leaves it up to clients to handle these.

5



6 Background

2.1.1 Abstractions

Mu abstracts over three key areas, hardware, memory and concurrency. These
where chosen due to their complexity, especially when interacting with each other,
which imposes a significant burden on language implementers, despite their in-
ternals not being very language specific.

Mu abstracts over hardware, as do all VMs, by providing a hardware independent
intermediate instruction set, with the aim of offloading hardware specific optimisa-
tions (such as combining multiplys and adds to a fused-multiply-add instruction).
It also provides dynamic code generation (in the form of ‘IR Bundles’ that can be
created at runtime), this is particularly useful for building JITs, such as those used
to make dynamic languages efficient, In addition, it does not rely on, nor expose,
specific hardware details (e.g. SIMD capabilities).

Mu abstracts over memory by only defining the structure of objects, not their lay-
out, as well as providing allocation instructions (as with most other managed VM’s).
Memory created using Mu’s instruction set is managed by Mu itself (i.e. clients
don’t destroy it, or specify how allocation or zero-initialisation is done), allowing
implementations to automatically perform garbage collection. Automatic memory
management is at the core of most modern managed languages, as it limits memory
waste and helps eliminate bugs; however the general principle behind it (i.e. ob-
jects must live as long as all references to them) is often the same for these lan-
guages, so rather than have each language-implementer re-invent and re-implement
memory management, Mu provides an abstract implementation-agnostic frame-
work.

Mu abstracts over concurrency, by providing (call) ‘stacks’ (similar to fibres/contexts),
as well as simple OS-independent threads. These features allow for simple and effi-
cient implementation of higher-level concurrency features, like green-threads and
coroutines; they are also particularly useful for OSR (on stack replacement) [Wang
et al. 2017] (which is useful for dynamic language JITs for (de-)optimising running
code), where a stack can swap to another one, so that the original one can be mod-
ified safety (due to it not being executed), in fact Mu provides primitives for doing
this on non-executing ‘stacks’.

Mu also provides a memory model (based on the C11 one [for Standardization
2011]) and associated atomic operations (like compare-exchanges and atomic-read-
modify-writes), this is similar to the library features provided by many modern lan-
guages (like C++). Mu has a simple exception handling mechanism, which provides
for throwing and catching references to heap objects; this allows various different
language-level exception-handling techniques (e.g. finally blocks or catching only
certain kinds of exceptions) to be handled by clients in terms of this language-
agnostic model.

Though these abstractions are on their own already reasonably difficult to imple-
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ment, their interaction is extremely challenging, especially if an efficient concur-
rent garbage collector is desired.

2.1.2 Interface
Mu is intended to be used in one of two ways: as a library used by a client written
outside of Mu (by interfacing with Mu’s C bindings defined in mu_api.h), or by
code within Mu itself (using Mu’s instruction set). In the former case, a ‘client’
starts a Mu implementation, and then creates and uses a MuCtx to interact with
the running VM (e.g. to operate on Mu’s memory or start new Mu threads). Code
written in Mu itself, however, uses the Mu instruction set to interact with Mu.

Mu IR is grouped into bundles, which define top-level Mu entities (types, global
cells, functions, function-versions, constants, etc.); a bundle can reference entities
declared in itself, or any previously ‘loaded’ bundle. When a new bundle is needed,
the client, using the C API or Mu instruction set (as applicable), creates a new
MuIRBuilder/irbuilderref which maintains a Mu IR AST, new nodes are then
created in it (in any order), and the bundle is loaded into the VM; once loaded, a
bundle’s declared entities can be used immediately.

A function-version (defined as a set of blocks of Mu instructions) is then executed
whenever the associated function is called (assuming it is not redefined by another
version), either by another function’s version, or when a stack (such as a newly
created one) with a frame created from the function is executed (such as by starting
a new thread with it).

A ‘boot-image’ can be created by the C API, which dumps a set of ‘white-listed’
Mu-entities to a file, this can then be ‘executed’ (in an implementation-defined
manner). Executing a boot-image will start a new-thread with a predefined ‘prim-
ordial’ function or stack. This allows for the building of libraries or executables in
Mu, avoiding the need to re-compile them.

2.1.3 Prior Work
Mu was initially implemented as an interpreter in Scala, codenamed Holstein
[Wang 2017], it was intended as a functionally complete ‘reference’ implementa-
tion, and so it did not in any way consider performance. Research has also been
done in the utility of using Mu for modern languages, including a JavaScript [Wang
2015] and BF (Brainfuck) [Hall 2016] client, in addition a Haskell GHC backend
[Hall et al. 2017] is currently being developed. Of particular interest is the PyPy
client [Zhang 2015; Zhang et al. 2017], which implements a Mu AOT back-end to
RPython (to complement the default C one); a Mu JIT back-end is also being de-
veloped (to complement the default assembly one). This client is the most complete,
and up to date client, and is used by this thesis for correctness and performance
testing.
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2.2 Other Systems
The LLVM compiler framework and CLI virtual machine are two systems that at
first glance may seem to be very similar to Mu, despite being very different from
each-other. As these systems are state-of the art and share many features and
design goals with Mu, they are useful and valuable to learn from.

2.2.1 LLVM

LLVM (Low Level Virtual Machine) is a compiler framework designed for unman-
aged languages (such as C and C++) [Lattner and Adve 2004], unlike Mu it is not
targeted for managed-languages. LLVM is used as a back-end for many languages,
such as Swift, C/C++ (using Clang) and Rust (the language Zebu is written in, see
§ 3.1). It provides many powerful, yet expensive optimisations, making compilation
slower.

Though LLVM (and languages built on-top of it) is a common target for man-
aged languages, its support is limited, in particular it does not provide an inbuilt
garbage collector1, it does not provide a JIT2, and its exception handling features
are complicated and targeted towards C++ like languages.

LLVM’s SSA (single-static-assignment) form IR is mostly machine-independent
and language-agnostic; it is known to allow for highly efficient code (in fact Clang,
which uses LLVM IR, is one of the fastest C compilers); for these reasons, Mu’s
IR is based on LLVM’s, with the hope that even with the addition of higher-level
abstractions, it will inherit LLVM IR’s quality.

2.2.2 CLI

The CLI (Common Language Infrastructure) ([International 2012]) is a managed-
virtual machine designed to support various languages as diverse as Python, F♯,
and C++, by providing the CIL (Common Intermediate Language), a stack-based
IR, garbage collection, a rich type-system, and JIT capabilities.

The CLI is large and monolithic, it is heavily based on a particular implementation,
Microsoft’s CLR (Common Language Runtime), as well as being designed around
specific kinds of languages (ones similar to C�). In particular, the CLI provides a
large required standard library, which together with its high-level and complicated
type-system, is designed to allow interoperability between language libraries. The
CLI focuses on language-security (preventing things such as out-of-bounds array
access) and follows the ‘compile-once run-anywhere’ principle, by providing a byte-
code that is then JIT’ed as needed.

1It does provide some IR level features to assist with integrating with a GC.
2Like any AOT compiler, it can in theory be used as a JIT, but doing so is very slow.
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Mu, on the other hand, is designed to be minimalist, aims specifically for per-
formance, and to be further language-agnostic. As such it does not provide the
language-interoperability features of the CLI, nor does it have a byte-code (it is up
to the Mu implementation to determine what form Mu boot-images take).

2.3 Summary
Though there is extensive prior work in VMs, work on micro virtual machines and
Mu specifically is limited and still in its infancy. As the only current complete
implementation of Mu, Holstein, was not in any way designed to be efficient, a new,
distinct approach to building micro VMs is needed, such as that taken by Zebu.
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Chapter 3

Zebu Architecture

The design of Mu requires implementations to not only provide a means of execut-
ing Mu IR, but provide runtime services, both to users of the C API and to code
written in Mu IR itself.

Before I began work on this thesis Zebu (with an x86-64 back-end) was already
implemented by Yi Lin, as such, most of the design and implementation of the high
level architecture was already done by him. Unless otherwise stated, the majority
of work described in this chapter is that of Yi Lin.

3.1 Zebu
Zebu1 [Lin et al. 2017] is an open-source2 library, which ‘boot-images’ and ‘cli-
ents’ link to. Boot-images use internal runtime functions, and clients use C API
bindings to interface with Zebu. The Zebu library contains the internals for code
compilation, the client interface implementation, as well as runtime support (e.g.
exception handling routines). This approach is needed as almost everything that
can be done in the C API can also be done in Mu code, in particular Mu code can
dynamically create and load new Mu IR. To maximise performance, Zebu gener-
ates optimised machine code for the input Mu IR directly, as opposed to offloading
to another VM or interpreting.

The modern systems programming language Rust [The Rust Project Developers
2017] was used due to its approach of ‘zero cost abstractions’, which provide high
level abstractions (e.g. generics and virtual methods) and compile-time safety
checking (e.g. ‘borrow’ checking), whilst maximising efficiency by making most
of these features statically checked. Rust also provides low level unsafe features
(like pointers) that make it a better alternative than C for low-level programming
(such as direct memory modification and interfacing with assembly code). This
makes Rust a prime choice for high-performance VM implementation, as well as
the VM’s runtime (e.g. garbage collection [Lin et al. 2016]).

1The version discussed in this thesis is the one on the ‘isaacs-thesis’ Git branch.
2Licensed under the Apache License, Version 2.0

11



12 Zebu Architecture

Zebu defines a C thread-local variable3, mu_tls, that contains a pointer to a MuThread
struct instance. The MuThread type contains information about the current thread,
including its current stack (see § 4.5), it also points to a global instance of the VM
struct. The VM struct contains state about the running Mu VM, such as information
about all the Mu IR entities, the vm’s options, and exception handling information.

Code emitted by Zebu is position-independent, as such accessing the mu_tls vari-
able is non-trivial to do within assembly (doing so requires calling a ‘tlsdesc’ func-
tion loaded from memory, and using the returned value to compute an offset from
the value of the TPIDR_EL0 system register). As the mu_tls variable is used often4

and its value is constant within a thread, a callee-saved register (X28) is assumed
to always contain the mu_tls value. The mu_tls register only needs to be updated
upon thread creation (this is done by calling into a C function that returns the
value of mu_tls); since it is a callee-saved register, any calls to C or Rust functions
will preserve its value, in addition, code generated by Mu never modifies it, thus
respecting the ABI.

3.1.1 API Implementation

The Mu C API is implemented in C compatible Rust code that forwards to proper
Rust code (e.g. by wrapping C pointers & array size arguments into a Vec). The IR
builder interface is implemented by creating a temporary representation of the IR,
and then when load is called, creating Zebu AST nodes and loading them into the
VM struct5. The other parts of the API that are implemented are done by calling
simple methods on the VM struct.

3.1.2 Compilation

When a function-version6 is compiled, its AST is passed through several passes
that perform operations such as inlining functions, rearranging the AST into a
tree form, and generating Phi blocks (blocks with the MOVE pseudo-Mu instruction,
which sets one SSA variable to another). Once these high-level passes have fin-
ished, it then goes through a back-end specific instruction selection phase which
generates the actual assembly-code7 for each Mu instruction (see § 4), afterwoods
it performs the back-end independent passes of register allocation, peep-hole op-
timisations and code-emission (i.e. emitting the assembly code to a file).

3Rust’s thread-locals are slow as they are implemented using a map.
4it is also planned to be used for GC allocation, whose performance is critical
5These parts where primarily implemented by Kunshan Wang, an ANU PhD student.
6A particular implementation/version of a Mu function.
7We plan on adding another ‘back-end’ to instruction selection that generates machine-code dir-

ectly, for use with JIT.
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3.1.3 Boot Image Building

When a client calls the make_boot_image function on a MuCtx, Zebus compiles
the Mu IR entities, given in the whitelist argument, to a native executable or
dynamic library. It compiles all the function-versions for white-listed functions,
and records the primordial function (if given) in the current VM struct instance, it
then emits a file called context.S. The context.S assembly file contains the state
of the Mu heap, as well as the VM struct instance.

The heap is dumped by traversing each object reachable from a global cell (includ-
ing the global cell’s contents), and dumping it, giving each one a label (and a label
with the mangled name for global cells), replacing references to objects to assembly
labels (see Figure 3.1). The VM struct instance is also dumped in a similar man-
ner (using the RODAL Rust library [Isaac Oscar Gariano 2017]), by traversing the
needed Rust objects referenced by the VM, unneeded ones are dumped with their
minimal default values (like an empty map for a HashMap). This is needed as a lot
of the information in VM struct is either used by the runtime or potentially usable
by the client (e.g. if it wants to load more IR bundles referencing previously de-
clared entities)8. This approach however does increase boot image building time,
and prevents linking multiple Mu boot images together (due to having multiple de-
clarations of the VM struct9), however it could allow self-modifying boot images (i.e.
during runtime that load new Mu IR, and then call make_boot_image again10).

Zebu then executes Clang to assemble-and link together (as position independent
code) the context.S file, the main.c file (if it’s being compiled as an executable,
see § 3.1.4), the assembly files for each compiled function version, and Zebu itself
(dynamically, by default).

3.1.4 Boot Image Execution

When a boot image is executed, it starts at the C main function defined in main.c,
which overrides the C standard library free and realloc functions (to handle the
case where Rust calls these on an object dumped in context.S)11, it then calls a
rust function mu_main that loads the dumped VM struct (performing some initil-
isation) and starts a new thread for the primordial function (with the primordial
thread-local). The mu_main function then waits (by joining) until there are no Mu
threads running, and then exits the program.

8These features are not properly implemented, and have not been tested as they arn’t currently
needed.

9We can’t simply merge them, as Mu entities may have distinct ID’s and the client made the boot
image depend on these values (e.g. if it stores an ID on the heap).

10This won’t actually work yet as the new boot image will only contain the code for newly defined
functions, and their is no make_boot_image instruction yet.

11an alternative, and more portable approach, is to use Rust’s unstable custom allocator feature
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.typedef Node = struct<int<8> ref<Node>>

.typedef List = struct<int<64> ref<Node>>

.global my_list <List> = {1, .new<Node>{2, 'NULL'}}

(a) Pseudo Mu-IR & HAIL

…
.balign 8

GCDUMP_0_0xFFFFAAA10008:
.byte 0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0
.xword 0

.balign 8

.globl __mu_my_list
__mu_my_list:
GCDUMP_1_0xFFFFAAA00008:

.byte 0x1,0x0,0x0,0x0,0x0,0x0,0x0,0x0

.xword GCDUMP_0_0xFFFFAAA10008
…

(b) context.S file excerpt

Figure 3.1: Heap dumping example of a sized linked list equal to [2].

3.2 Limitations

Though Mu is a ‘micro virtual machine’, its feature set is large and implementing it
is not easy. Some features it provides are complicated, some are currently unused
by clients, and others are not particularly relevant to the problem of generated code
performance.

In particular, I have not yet implemented the following features: vectors, SSA vari-
ables of array or struct type, function exposing, function redefinition, atomic read-
modify-writes, futex instructions, watchpoints, traps, OSR features (frame cursors
and ‘keep alive’s), dynamic top-level-definition lookup and IR-loading, as well as ex-
ceptions for division by zero and null reference/pointer accesses. The only properly
working client we currently have, an RPython AOT-compiler [Zhang et al. 2017],
does not use these features, so we have not chosen to implement them yet. Where
relevant however, this thesis will discuss how the implementation of missing fea-
tures could affect the implementation and/or performance of current features, as
well as how they could be implemented.

In addition, some other features have not been implemented in the x86-64 back-
end, but the AArch64 back-end, which is the primary focus of this thesis, imple-
ments a superset of the x86-64 back-end’s features. The garbage collector has not
been fully implemented yet, so it has been disabled, instead I implemented alloca-
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tion with glibc’s calloc function.
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Chapter 4

The AArch64 Back-End

The implementation details of the AArch64 back-end are of crucial importance to
performance, in addition, parts of this implementation were quite interesting and
challenging, especially due to the high-level abstractions provided by Mu.

The instruction set of Mu provides the operations expected in even the most low-
level imperative programming language or VM, whilst also providing instructions
that interact with the VM runtime, which provide the core abstractions of Mu.
Most of Mu’s instructions are not unusual, but they are essential for any practical
VM, and are the most commonly emitted instructions by high-level languages, as
such their implementation is crucial to performance. However, Mu’s high level
instructions are typically implemented as runtime calls into Zebu. This chapter
describes how the AArch64 back-end implements the Mu instruction set, both in
the code it generates, and the Zebu runtime functions it calls.

The AArch64 implementations for most Mu instructions where derived from the
x86-64 back-end (implemented by Yi Lin), however I have heavily modified them
to optimize more, and to work with the AArch64 architecture. I have completely
rewritten exception handling (it was previously extremely slow, and relied heavily
on dlsym), I have also added support for Mu’s threads and stacks. Yi Lin has
updated the x86-64 back-end to reflect these improvements, in a very similar way
to the AArch64 implementation presented here.

In general, the approach for both architectures has been to follow the platforms
ABI conventions as close as possible (for AArch64 this is the ARM 64-bit, System
V Revision 4 variant, procedure call standard [ARM Limited 2013]). This is done
to maximise compatibility with C code (allowing Mu functions to be called as if they
are C functions), as well as making it easier to integrate with existing debuggers.

4.1 Type System

The implementation of Mu’s type system is crucial and fundamental to the AArch64
back-end. Mu provides a wide variety of parameterised fundamental types, in par-

17
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ticular it provides integer1, floating-point, unmanaged-pointer, managed-reference,
struct, hybrid, array, vector, ‘opaque’ reference types and a 64-bit tagged-reference
type. Implementation of these types (i.e. their size, layout, alignment, register al-
location etc.) is the same as the corresponding type in the ABI, if there is one.
The opaque-reference and managed-reference to object and function types are im-
plemented as if they were unmanaged pointers. Hybrids are treated like C style
structs with a flexible array member (i.e. the Mu type hybrid<T1, …, Tn, Y>
is implemented like the C type struct{T1; …; Tn; Y[];}). The 64-bit tagged-
reference type, tagref64 can hold a double precision floating point value, a tagged
managed-reference, or a 52-bit integer, it is internally treated like a 64-bit integer
(this was chosen over treating it like a ‘double’, since most operations on it heav-
ily involve integer arithmetic). The vector types are currently unimplemented, but
when they are they will probably be implemented as machine-specific SIMD vector
types. The currently implemented ‘opaque’ reference types are merely pointers to
their associated Rust data structures (stackref as a *mut MuStack, thread as a
*mut MuThread and irbuilderref as a *mut CMuIRBuilder).

AArch64 has 64-bit registers, with instructions that operate on the full 64-bits, or
the lower 32-bits (usually reading & setting the upper 32-bits as zero); however
Mu requires support for other integer sizes, specifically 1, 8, and 16-bits. To ac-
commodate this, we assume that the upper unused bits of a register always have
undefined values and can be freely overridden, this is the approach the ABI takes;
if an operation requires the upper bits to have a specific value (e.g. a signed division
would want them to be copies of the sign bit), it will modify them accordingly.

4.2 Basic Instructions
Some of Mu’s low-level instructions required some care and thought in implement-
ing, others however where straightforward and simple. Most of the instructions,
including arithmetic, comparison, addressing, conversion, and branch instructions
where implemented in a standard way. Memory operations (loads, stores, compare-
exchanges and fences) are implemented in the same way as Clang (with the -O3
and -fPIC flags) implements the equivalent C++ (using the standard library for
atomics), these are mostly implemented with single machine instructions, however
compare-exchanges require a loop, as do atomic loads and stores of 128-bit integers.
Heap memory allocation (NEW & NEWHYBRID) is implemented as a simple call to the
C standard calloc function2. Stack memory allocation (ALLOCA & ALLOCAHYBRID)
is implemented by simply growing the stack by the appropriate amount (as well
as a call to the C standard MEMSET function to perform the required zeroing). The
uvm.native.pin, uvm.native.unpin, and uvm.native.get_addr intrinsics 3 are

1Not all are required for implementations, currently only 1–64-bit and 128-bit integers are sup-
ported in the AArch64 back-end.

2A bump-pointer based allocator was previously used, but it was unexpectedly slow.
3Referred to as “common instructions” in the Mu specification.
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implemented as a simple move, while the (non-moving) GC is disabled in the cur-
rent prototype.

Arithmetic instructions for sizes other than 32 and 64-bits where non-trivial to im-
plement, especially since Mu supports returning flags from instructions. In partic-
ular, appropriately extending the operands and/or results was needed for some op-
erations and flags (e.g. signed-division required the operands to be sign-extended),
the carry and overflow flags for addition & subtraction also required some logical
machinery to compute. The AArch64 architecture only provides flags for its ad-
dition, subtraction, logical-and, and logical-and-not instructions, so other instruc-
tion’s flags needed to be computed with a comparison, in particular the carry and
overflow flags for a Mu multiply, require the computation of the upper part of the
multiplication first.

4.3 Functions
All Mu code is contained in functions, so they are at the core of Zebu’s instruction
generation. Mu functions are very similar to LLVM functions, so they have been
implemented accordingly, they have a prologue and epilogue, whose behaviour is
in accordance with the ABI. Zebu’s Mu IR passes replace the Mu RET instruction
with a branch to the epilogue block.

The prologue pushes a ‘frame-record’ (frame-pointer4 & return-address5 pair) to
the stack, sets the frame-pointer to point to this, grows the stack by a fixed amount
to accommodate spills, saves all used callee-saved registers to the stack, saves XR6

(if used), and unloads all the arguments. The ‘epilogue’ reverses this, it loads all the
return values, restores the stack-pointer (to a fixed offset from the frame-pointer),
pops the callee-saved registers, pops the frame-record, and returns. This approach
is a straightforward yet naïve implementation of the calling convention, in partic-
ular:
• It always pushes a frame-record, even if the function is a leaf.
• It does not allow for the frame-pointer to be used for other purposes, if its un-

needed.
• It always loads arguments passed on the stack, even if never used, or doing so

would result in another spill.
• Stack argument space is only ever used to initially load arguments, it is not

used as temporary storage space.
• It always saves and restores callee-saved registers, even if they are not used in

every invocation of the function.
However, Zebu’s back-end and register allocator are not implemented in a way that
would make fixing these problems simple, so it has been left for future research to

4I.e. register X29.
5The value in the link-register, i.e. X30.
6The indirect return location register, an alias for X8.
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see what performance improvement would be gained by doing so.

Calling a (C or Mu) function is done by first evaluating the reference to the function
to be called (if not a constant), then (if needed) reserving space on the stack for the
return value (storing the location into XR) and argument values (if needed), loading
the arguments into registers and the stack, and then calling the function (with a
BL or a BLR instruction). Once the new function returns, the return values are
loaded (from registers and/or the stack), and the stack-space allocated before the
call is deallocated.

The calling convention defined in the ABI does not support multiple return values
(since C doesn’t), yet Mu does. To overcome this, if there is more than one return
value, the function is implemented and called by wrapping the return values into
a struct, and returning that intsead. This is the same thing that Rust does when
marking a function returning multiple values as extern "C". This approach does
however have several drawbacks:
• When returning multiple-values, if the total size (after padding) is greater than

16-bytes (and it is not a HFA, ‘homogeneous floating point aggregate’7) it will
return them on the stack, even if they could all fit in multiple argument re-
gisters.

• When returning multiple values of total-size less than 16-bytes (and not a HFA),
the results are packed into registers, which need to be combined and extracted
(e.g. returnning two 8-bit integers would pack them into the lower 16-bits of a
register, but Zebu treats each register as containing a separate SSA values).

• When returning multiple values in registers (when not a HFA), floating point
values will be placed in integer registers.

A better approach would be to return values in the same was as they are passed
(but this would break the calling convention).

Tail-calls are implemented in the normal way, the reference to the function to call is
evaluated, the arguments are loaded (in registers or on the current functions stack
argument space), the value of XR is restored, callee-saved registers are restored,
the frame record is popped, the stack-pointer is restored to what it was on entry,
and the function is branched to (with a B or a BR instruction). Unfortunately, if
the current function has insufficient stack argument space to hold the tail-call’s
arguments, this approach will not work; the following are two possible solutions:
• Increase the stack argument space, however when the tail-called function re-

turns to the current functions caller, the calling convention requires the stack-
pointer to be the value it was when the current function was called. Changing
the calling convention to instead require functions to pop all of their stack-
arguments before returning would solve this problem, and allow tail-calls to be
implemented properly in all cases.

• Implement the tail call like a normal call followed by a return, this limits ef-
7Defined by the ABI as an aggregate (struct or array) consisting entirely of 1–4 floating point

values of the same size.
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ficiency and makes frame iteration more complex (as the Mu specification re-
quires tail-calls to not create a new frame, but a call would, i.e. it would need
to skip a frame when iterating).

Overall, the implementation of functions has been complicated, and made less ef-
ficient due to the strict adherence to the ABI; however there is a lot of optimisation
opportunities that could be taken, without breaking ABI compatibility.

4.4 Exceptions
Mu’s exception handling is simple, yet powerful; Zebu’s implementation is both
highly performant and uses only minimal code. Exception handling has been im-
plemented based on the so-called ‘zero cost’ principle, i.e. code that potentially
throws an exception should not suffer from a performance penalty if no exception is
thrown, at the expense of greater overhead when if one is. This has been achieved
through the use of a ‘callsite’-table that stores static information needed to find
catch blocks and unwind the stack, the only code that then needs to be executed
at runtime, is the code to throw and catch the exception itself, as opposed to hav-
ing to explicitly check whether an exception was thrown after each call (this is the
approach RPython’s C back-end uses).

The callsite-table is a table mapping the return address of a potentially exception
instruction8, to the address of the associated exceptional destination9 (if there is
one), the size of stack arguments (since the exceptional destination expects the
stack-pointer to have the same value as if the call returned normally), a reference
to a table identifying the location on the stack of all saved callee-saved registers
(there is one such table per function-version, the locations are relative to the frame-
pointer), and the Mu ID of the function version (used only for printing of back-
traces). Some of this information (specifically the callsite’s and exceptional destin-
ation’s addresses) is only known when the associated code is loaded into memory,
as such a slightly different version of the table is created at compile-time and the
real table is computed (using the dlsym function) at run-time (boot-image startup).

When an exception10 is thrown, the runtime assembly function muentry_throw_
exception is called, this function pushes a frame record, and all the callee-saved
registers to the stack. The exception and the base of the callee-saved area (pointing
to the frame-record) is then passed to the throw_exception_internal Rust func-
tion. The throw_exception_internal function ‘walks’ the stack (by using the
frame-records) untill it finds a callsite with an exceptional destination (using the
callsite-table), in which case it calls the exception_restore assembly function. If
it dosn’t find a catch block, it ‘unwinds’ a frame by loading all of the frame’s stored

8Currently this is the BL/BLR or BR instruction used to implement the CALL or SWAPSTACK Mu
instructions.

9I.e. catch block.
10A ref<void> value
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Figure 4.1: Stack layout for exception throwing

callee-saved registers (using the callsite-table to locate them) and places them into
the frame-cursor11, as well as updating its frame-record (see Figure 4.2 for de-
tails). The exception_restore function restores the saved callee-saved registers
from the frame-cursor, pops the frame-record preceding the frame-cursor, updates
the stack-pointer to the value given by throw_exception_internal, and branches
to the exceptional destination. This whole process works due to the layout of the
stack (see Figure 4.1).

The exceptional-destination loads the exception through the mu_tls variable, and
then executes the client specified code to handle the exception.

4.5 Stacks
One of the most powerful and interesting Mu features is stacks (these are highly
usefull for OSR [Wang et al. 2017]), though similar features have been implemented
before ([Dolan et al. 2013]), Mu’s are interesting due to both being low-level, and yet
supporting exceptional continuation. A ‘stack’ (in the sense of the Mu specification)
is an ‘execution-context’; it abstracts over the state of a function, it contains all the
live SSA variables and ‘alloca’ cells, and function call information, as well as an
‘instruction pointer’.

A stack in Zebu is represented by a Rust struct, MuStack, which contains handles
11The passed in pointer to the temporary frame-record & callee-saved register space.
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throw_exception_internal(exception, frame_cursor):
mu_tls→exception = exception

// Acquire a read lock, blocking if a thread is modifying
// the table (e.g. if we are JITing)
callsite_table = READ-LOCK(

mu_tls→vm→compiled_callsite_table);

current_frame_pointer = frame_cursor
(previous_frame_pointer, callsite) = *current_frame_pointer

LOOP:
IF previous_frame_pointer = 0 ||

callsite ∉ mu_tls→vm→callsite_table:
print_bactrace()
// Fatal error, we have reached a native frame, or

stack-bottom
PANIC

callsite_info = callsite_table[callsite]

IF callsite_info.exceptional_destination != 0:
catch_address = callsite_info.

exceptional_destination
stack_pointer = current_frame_pointer + 16 +

callsite_info.stack_args_size
// will not return
exception_restore(

catch_address, frame_cursor, stack_pointer)

// Restore callee-saved registers
FOR (target_offset, source_offset) ∈

callsite_info.callee_saved_registers:
*(frame_cursor + target_offset) =

*(previous_frame_pointer + source_offset)

// Move up to the previous frame
current_frame_pointer = previous_frame_pointer;
(previous_frame_pointer, callsite) =

*current_frame_pointer

// Update the frame-record
*frame_cursor = (previous_frame_pointer, callsite)

Figure 4.2: Pseudo-code for throw_exception_internal
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to ‘mmaped’ memory as well as a saved stack pointer value. The stack pointer
stored here is not kept up to date whilst the stack is active. A stack has a con-
stant, fixed size (currently 4 MiB) together with two fully protected pages before
and after the stack area, so that a stack overflow can be detected when either page
is read or written two (this will cause a segmentation-fault). However, stack over-
flows are not in anyway exposed to language clients, as there is nothing in the Mu
specification referencing them, instead Zebu will simply terminate if there is one.
This is a significant limitation, as clients have no way of communicating to Zebu
how large stacks need to be, this limits what can be implemented in Mu, whilst
also wasting memory. A better solution might be to resize stacks (and move them
around if necessary), whenever the stack overflows, however this will not be simple
to implement, especially due to the possibility of having things outside of the stack
referencing things inside the stack (e.g. the result of an ALLOCA may be stored in
a global cell).

The top of a stack that is ready to be activated (i.e. stack that is newly created, or
previously ‘swapped’ out of) contains a frame-record, the stored frame-pointer will
point to the base of the previous frame (if there is one), which will be somewhere in
the lower part of the stack. Arguments (those that arn’t allocated to registers) are
passed in the area before the frame-record, in the same way as normal function
calls. This layout (see Figure 4.3) tries to minimise the amount of data saved,
as well as respect the calling convention. Swapping to a newly created stack will
call a function, which may expect arguments on the stack in the normal way, but
otherwise the layout of the stack is unspecified by the ABI12. In the case of a stack
that is swapped out of (i.e. not a brand new one), any state that needs saving
(except the frame and stack pointers), must be explicitly saved by it on the stack
(the register allocator will handle this by generating spills). This simple stack
layout means that code, such as a SWAPSTACK, does not need to know or care how
the stack came to be in its current state, whether it was newly created, or recently
swapped out of.

The currently executing stack is stored in a field accessible through the mu_tls
thread local.

4.5.1 Stack Creation & Destruction
Stacks are created with the uvm.new_stack intrinsic, that takes a reference to the
function to be executed when swapped-to. I have implemented this as a call into
the Rust runtime that takes the function, and total size of stack arguments (com-
puted at compile-time based on the functions signature). The runtime function
dynamically creates a new MuStack, initialising it by ‘mmaping’ memory for the
new stack, reserving space for stack arguments, pushing the address of the func-
tion, and a null frame-pointer to the new stack, it then returns a pointer to the new

12AArch64 does not push the return address on the stack, it is passed in the link-register (X30).
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Figure 4.3: Layout of a stack that is ready to be activated (if the stack is brand
new, the lower-part will be empty)

stack (the lifetime of this is not managed by Rust). When a stack is swapped-to (see
§ 4.5.2 or a thread-created with it (see § 4.6.1), the link-register is explicitly set to
0, so that if this stacks function tries to return13 (i.e. by branching to this register),
Zebu will ‘segfault’.

The uvm.kill_stack intrinsic and the KILL_OLD clause in the SWAPSTACK instruc-
tion destroy a stack by calling into the muentry_kill_stack Rust runtime func-
tion. The muentry_kill_stack function merely deallocates the referenced stack,
and lets Rust do any other clean-up (such as deallocating the stack’s memory), this
works as MuStack implicitly implements the Rust Drop trait. As the MuStack is
allocated in Rusts’ heap, the GC cannot automatically free it when it becomes un-
reachable (i.e. to prevent memory leaks the client is expected to specifically kill
stacks). If we were to instead allocate it on the GC’s heap, we would have to imple-
ment a ‘finalizer’ like mechanism to call clean-up code (the Drop::drop function),
however there is no such feature of Mu.

4.5.2 Stack Swapping
Stacks can be swapped using the SWAPSTACK instruction:

(r1, …, rn) = SWAPSTACK stacknew
(RET_WITH<T1, …, Tn> ∣ KILL_OLD)
(PASS_VALUES<Y1, …, Ym>(a1, …, am) ∣ THROW_EXC(e))

It is roughly implemented by evaluating each argument, updating the mu_tls→
stack field, swapping-out of or killing the current stack, updating the stack pointer,
and branching or throwing an exception. For details see Figure 4.4.

To kill the current stack, a call to muentry_kill_stack (see § 4.5.1) is made, how-
13This is undefined behaviour according to the Mu specification.
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ever it needs to be made on the new stack, since it will un-‘mmap’ the old stacks
memory, since Rust functions may freely access their own stack.

To swap out of the current stack, stack space is reserved for the return values (the
same ammount of space that would be used when passing arguments of type T1,
…, Tn to a function), a resumption address (the address of the first instruction
after the branch/exception throw to the new stack), and the frame-pointer are also
pushed to the stack.

To pass values to the new stack, arguments are passed using the normal calling
convention, except that stack arguments are passed starting bellow the frame-
record at the bottom of the stack (at the stack pointer, plus 16). Since argument
registers are defined as ‘temporary’ (i.e. not callee-saved) registers by the ABI, the
call to the Rust muentry_kill_stack function may not preserve this value. Luck-
ily, there are sufficient callee-saved GPRs and FPRs for the arguments to be moved
into these before the call, they are then moved to the argument registers after the
call.

A BR instruction is used to branch to the new stacks code, as opposed to a BLR or RET
instruction, since those confuse the branch predictor (and causes the SWAPSTACK
to be slower).

Throwing an exception to the new stack (when there is a THROW_EXC(e) clause) is
done by reserving space for callee-saved registers, saving the mu_tls value in this
space, and passing the base of this area and e to throw_exception_internal.
This is similar to how exceptions are thrown (see § 4.4), however there are no callee-
saved register values that need to be preserved, since a newly created stack dosen’t
have any state it needs saving, and a swapped-out of stack saves all the state it
needs itself.

Rather than saving all registers on the stack before swapping, the BR/B instruc-
tions that branch to/throw to the new stack are marked as overwriting all machine
registers. This forces the register allocator to spill-store any (normal) registers
whose values are to be used when the stack restores. This differs from a normal
call instruction, BLR/BL, which defines only non-callee-saved registers.

This swap-stack implementation was designed to allow for high-performance stack
swapping, it does so by allowing the register allocator to only save things that are
needed after the swap, and minimises instructions and calls to run-time functions,
similar to that suggested by [Dolan et al. 2013].

4.6 Threads
Many systems have threads, but Mu’s are tightly coupled with stacks, and so their
implementation needs to match, making Zebu’s implementation somewhat differ-
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#for i = 1, …, m:
evaluate ai

stackold = mu_tls→stack
mu_tls→stack = stacknew

#if there is a RET_WITH clause:
SP -= SAS<T1, …, Tn>
LR = ADR(&callsite)
Push-Pair(LR, FP)
stackold→sp = SP

SP = stacknew→sp

#if there is a PASS_VALUES clause:
place all stack arguments in the normal way,

(starting from SP+16 upwards)

#if there is a KILL_OLD clause:
place all register arguments in corresponding callee-saved

registers
BL muentry_kill_stack(stackold)
move callee-saved registers to argument registers

#else there is a PASS_VALUES clause:
place all register arguments in the normal way

#if there is a THROW_EXC clause:
SPold = SP
SP -= 144 // Total size of callee-saved registers
// This call will not preserve any registers
B throw_exception_internal(e, SPold)
callsite: ;

#else there is a PASS_VALUES clause:
LR = 0 // Segfault if it tries to return through this

register
(FP, resumption) = Pop-Pair()
// Execute the new stacks code
BR(resumption) // This call will not preserve any registers
callsite: ;

#if there is a RET_WITH clause:
#if i in 1, …, n:

ri = load argument i from stack or register
SP += SAS<T1, …, Tn>

Figure 4.4: ‘Pseudo-Assembly’ for SWAPSTACK implementation.
Where SAS<T1, …, Tn> is the total size (in bytes) of stack arguments to be passed
back to the current stack (i.e. the size of stack arguments of functions taking ar-
guments of type (T1, …, Tn)).
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ent from others. Mu threads abstract over OS-threads, a thread will start execut-
ing the code of a given stack when created, and will continue executing code (pos-
sibly swapping to different stacks) until the thread exits. Currently the support for
threads in the Mu specification is limited, they can only be created and exited (but
only from within themselves), but they do have thread local state. Major features
that are missing include the ability to join14, cancel (i.e. kill them from another
thread), and suspend and resume15 threads.

The user specified thread-local 16 is got/set by clients, by loading/storing through
the mu_tls thread-local variable.

4.6.1 Thread Creation
Threads are created using the NEWTHREAD instruction:

thread = NEWTHREAD stack [THREADLOCAL(threadlocal)]
(PASS_VALUES<Y1, …, Ym>(a1, …, am) ∣ THROW_EXC(e))

(if the THREADLOCAL clause is absent, the value of threadlocal defaults to a null
pointer).

A NEWTHREAD instruction with a THROW_EXC clause is implemented as a call into a
Rust function which calls mu_thread_launch (passing in the stack, threadlocal
and e values). The PASS_VALUES implementation is similar, except it does not
pass an exception argument, and it passes the arguments a1, …, am, to the new
stack. Stack arguments are passed below stack’s stack-pointer and register argu-
ments are placed above it (note: space is first reserved for all argument registers,
even unused ones); see Figure 4.5. All register arguments are passed through the
stack, so their values can be preserved across the call into Rust code, so a different
internal thread-entry function is not needed for each function signature.

The mu_thread_launch Rust function starts a new Rust thread, whose start func-
tion calls the muthread_start_normal/muthread_start_exceptional assembly
functions, passing them the stack-pointer of the stack, the address to store the
native stack-pointer to, the new value of mu_tls and (if applicable) the exception
to throw to the new-thread. The muthread_start_normal & muthread_start_
exceptional functions swap from the native stack to the given Mu stack, by push-
ing a frame-record, storing the stack-pointer to passed in location, and setting the
stack-pointer to the passed in value. After swapping stacks, the muthread_start_
normal sets the mu_tls register to the passed in value, pops all the argument
registers from the stack, pops a frame-record, sets the link-register to null, and
returns (to the just popped return address). The muthread_start_exceptional
function on the other hand, allocates space for a frame-cursor, storing the mu_tls

14One could emulate this using some kind of global status indicator in global cell for each thread.
15This can be emulated by stack-swapping, then thread-exiting to save the state of, and suspend

the thread; resumption can then be emulated by creating a new thread from the suspended stack.
16A ref<void> value.
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Figure 4.5: Layout of a thread’s stack before it is started

value into it, and branching to throw_exception_internal, similar to how excep-
tions are normally thrown (see § 4.4).

4.6.2 Thread Exiting
A thread can exit itself with the uvm.thread_exit intrinsic, this loads the native
stack-pointer from the mu_tls variable and passes it to the muentry_thread_exit
assembly function. The muentry_thread_exit function implements a simple swap
back to the native stack, it restores the stack-pointer to the passed value, pops
callee-saved registers from the native stack, pops the frame-record and returns (to
the native-stacks code).

4.7 Other Instructions
4.7.1 Tagref64
The tagref64 intrinsics (checking the type of the value held, extracting the held
value, and creating a new instance) are implemented in the same was as the Scala
implementation in Holstein, with the operations merely converted directly to as-
sembly (by translating to C++, and then using Clang).

The tagref64 type is quite limited, and not particularly useful to clients. It would
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be more useful to have a tagged reference type together with the ability to create
unions of arbitrary types (like C unions, but GC aware). However such an approach
could cause data races in concurrent environments (especially with a concurrent
GC), and so will need to be designed and implemented with care.

4.7.2 Metacircular Client Interface

One of the most powerfull features of Mu, is that ability to generate code at runtime,
this feature is directly a part of the instruction set with the metacircular client
interface. This interface provides intrinsics that perform essentially the same op-
erations as various things in the C API, allowing a Mu client to be written in Mu
itself, and operate on the current VM (if one where to use the C API from within
Mu, they would be creating a new Mu VM).

I have implemented the Metacircular IR-Builder interface by transforming each
instruction in the ir-building phase to an equivalent CCALL, that calls the imple-
mentation of the corresponding C API function. The only special case, was that of
the @uvm.irbuilder.new_ir_builder instruction, which created a *mut CMuVM
from the running VM, obtained from the mu_tls thread-local variable. This was
then used to create a new C *mut CMuIRBuilder, this marshalling is probably un-
necessary, but removing it would likely require some non-trivial rewrites to the
API’s implementation.

4.8 Optimisations

Zebu implements a small and simple, yet effective set of optimisations, most of
these are ingrained directly in the back-end, eliminating the need for separate
passes, and thus reducing code-complexity and build-time. Imediates are used as
machine-instruction operands whenever possible, in addition when Zebu generates
instructions internally to perform computations (such as computing the size of an
object before allocating), the back-end will generate minimal and efficient code,
by performing constant-propagation, and transforming complicated arithmetic to
simpler ones (e.g. emitting shift’s instead of divisions). However, arithmetic given
directly in Mu-IR is not optimised by the back-end if unnecessary, rather it is held
to be the responsibility of the ‘client’, or higher-level compilation passes. Another
minor optimisation performed is manual zeroing with ALLOCA’s that allocate at
most 64-bytes (as opposed to doing a more-expensive memset call).

There is a small and simple peep-hole optimisation pass which elides redundant as-
sembly moves and branches. In particular, if a branch branches to another branch,
or to the following instruction, it is removed.
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4.8.1 Memory Addresses
For efficient code generation, instead of generating assembly code directly for memory
addressing instructions, an internal Rust address structure is maintained to de-
scribe addresses. This structure contains base and offset (an SSA variable or
constant) values a scale (a constant) and flag indicating whether the offset is
signed; this represents the address with value base + offset×scale. The scale
is usually 1, it is used to contain the size of shifts when indexing arrays (using
the GETELEMIREF or SHIFTIREF instruction). The base value and offset is re-
computed, by emitting simple arithmetic instructions, as needed (e.g. if using
GETELEMIREF or SHIFTIREF whose element size doesn’t equal the current scale
value). If the address value is used for a memory-assembly instruction (load, store
or pre-fetch) it is converted to an optimised assembly address operand (based on
the address modes supported by the instruction), which will potentially cause in-
structions to be emitted to do the computation (e.g. if the offset or scale values
are outside the range supported by the instruction). If the address is used in any
other assembly instruction, its full value is calculated into a register.

4.8.2 Comparisons
Comparison operations work on a two-stage principle, first the comparison instruc-
tions are emitted (which set processor flags), then the comparison-operation’s res-
ult value is set acordingly. The second stage is omitted when operations can be
performed directly with respect to the processor’s flags (i.e. they don’t need to ex-
amine a value in a register), this is done with Mu select and condition-branch in-
structions, which emit simple AArch64 conditional-select and branch instructions.

4.8.3 Missing Optimisations
There are many more optimisations that can be performed, identifying them, choos-
ing the appropriate ones, and manner in which to implement them, is not an easy
task. I have identified several optimisations that are simple to do, but are not
implemented yet:
• Using the zero-register whenever an instruction operand is zero, this is already

done sometimes, however not all instructions, and instruction-variants, sup-
port the zero-register as an arbitrary argument. To simplify implementing this
optimisation, it might be best to emit moves from the zero-register to the op-
erand’s register, and then allow it to coalesce, however this will not-work with
the current version of the register allocator.

• Combining load/store instructions that operate on adjacent memory locations,
into a single load/store (e.g. combining tow 64-bit loads with offset 0 and 8
(respectively), into a single 128-bit load to two-registers, with offset 0), this
should probably be done in the peep-hole phase (to allow it to work on assembly-
instructions generated from unrelated Mu-instructions), however it will need
to be done carefully, as to not violate the conditions of Mu’s memory model.
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• AArch64 provides some branch-instructions that perform comparisons on re-
gisters internally (as opposed to needing preceding compare instructions), these
check if the register is zero/non-zero, or check whether a subset of their bits are
all-set/not-all-set. There are a moderate set of of possible Mu comparisons that
could utilise these (e.g. various comparisons with 0, or checks against −1), so
pattern matching them may not be simple to implement.

• AArch64 conditional branch instructions can check against arithmetic status-
flags, this could be used to do a conditional branch based on the flag results of a
Mu arithmetic instruction, without having to explicitly put the flag results into
a register. However this could be complicated due to the sometimes complicated
methods by which Mu flags are computedsee § 4.2.

• Division, the slowest of AArch64’s scalar integer instructions, can be simpli-
fied when some of it’s operands are known, some such optimisations can be
done on the IR level (e.g. transforming an unsigned-division by a power of 2 to
a logical-shift-right), however some can take advantage of AArch64 specific in-
structions, that don’t have a direct Mu counterpart (e.g. a signed-multiply-high
can be used to implement division by a constant, by getting the high 64-bits of
a product with a ‘magic-number’ and then dividing it by a power of two (us-
ing a shift)). Implementing such division optimisations is quite difficult to do
correctly, especially with signed-division.

• More peep-hole optimisations could be performed, to take advantage of AArch64’s
instruction set, such as combining multiply and add instructions into a multiply-
add, or using the operand ‘extending’ variant of the add instruction, instead of
shifting an operand first.

4.9 Summary
The concurrency and exception handling instructions were particularly interest-
ing, and great care needed to be taken to avoid unnecessary inefficiency; in addi-
tion, implementing some of the other instructions was not simple. Most of the Mu
instruction set was straightforward to implement, as they were not particularly
high-level or novel. There are however a large range of Mu instructions that have
not yet been implemented, in particular some of the most interesting Mu features,
like the OSR API, and dynamic code generation features (e.g. dynamic global cell
lookup) have not yet been implemented (see § 6.1.1).

Though some optimisations have been implemented, there is still a lot left to do, in
particular optimising Mu’s higher-level instructions in particular cases (such as a
swap-stack, whose resumption point is known), has not yet been explored.
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Evaluation

Though I have done and presented lots of work in creating my AArch64 back-end,
it must be evaluated in order to fulfil its goal of helping answer the question of
Mu’s performance; in this chapter I will present an evaluation of its correctness
and performance.

5.0.1 Correctness
Before evaluating performance, it is necessary to evaluate the correctness of my
implementation of the Mu instruction set on AArch64, as the performance of an
incorrect implementation is meaningless. Zebu includes an extensive suite of cor-
rectness tests, which where mostly developed by Yi Lin and John Zhang, with some
additional ones and modifications done so by myself.

Most of the simpler (and older) tests where written in Rust, using its inbuilt test-
ing mechanism, these create internal Zebu AST nodes and compile them directly;
these are used to test the correctness of instructions, independently of the Mu API
implementation. The other tests where written using pytest, some tested specific
instruction implementations (by either calling the C API directly or passing text
form Mu IR1 through muc [Isaac Oscar Gariano 2016]), others tested the working
of the RPython Mu back-end [Zhang et al. 2017] by compiling high-level RPython
code to Mu. This large set of (about 341) tests all pass on the AArch64 back-end2,
though no testing suite is perfect, this helps show that Zebu is reasonably correct.

However, there are known problems, for example though PyPy (which is written
in RPython) compiles on-top of Zebu, it does not fully work, e.g. it does not cor-
rectly pass command-line arguments, it segfaults, and causes malloc corruption.
These problems could indicate faults in Zebu and/or the RPython to Mu trans-
lator (though the Mu IR it generates has been verified as valid according to the
Mu specification, it still could cause undefined behaviour). There are also back-
end compilation-failing bugs that could theoretically occur, but haven’t yet, such
as branching to a block that is too far away, for its offset to be used as an immediate

1Zebu does not support the text form directly, as it has been deprecated.
2some don’t pass the x86-64 back-end due to unimplemented Mu features
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operand to an assembly branch instruction.

5.0.2 Experimental Performance Results
In order to answer the research question into Mu’s performance, an experimental
evaluation is needed; so I have conducted one, evaluating the performance of Zebu’s
AArch64 back-end.

To evaluate performance, I have run a suite of RPython benchmarks that compile
and run RPython code using its default C back-end, as-well as its prototype Mu
back-end [Zhang et al. 2017]. The benchmarks used are included in the mubench
framework [Cai et al. 2016], mubench itself was used to compile, run, and time
the benchmarks3. The benchmark used are varied and measure a wide variaty of
things, some measure particular operations (such as allocation or function-calling),
others are leading generic language benchmarks (ones taken from [Gouy ]), and
one measures a moderately sized, real-world program (a programming language
interpreter).

The benchmarks used are as follows:
• alloc: this benchmarks allocation by creating a list of 5,000,000 elements, and

assigning each element to a new instance of a trivial class.
• except: this calls a function that recursively call itself. After a call depth of

26,0004 it throws an exception which is then caught at the top of the call chain.
• fib: this calculates the 36th Fibonacci number, using naïve recursion.
• quicksort: this uses the quick-sort algorithm to sort a list of 1,000 random

integers.
• som: runs the test-suite for a SOM (The Simple Object Machine) interpreter

[Marr et al. 2016].
• Several benchmarks taken from ‘The Computer Language Benchmarks Game’

[Gouy ], translated from Python to RPython:
• btree: this creates various binary trees of depth 15.
• fannkuchredux: this performs a ‘fannkuch-redux’ of a 10 element per-

mutation.
• nbody: this performs 50,000,000 n-body computations, using a ‘symplectic-

integrator’.
• pidigits: this calculates and prints the first 1,000,000 digits of Pi.
• spectralnorm: this approximates the spectral norm of an infinite matrix,

using 1,000 iterations.

Each benchmark was compiled 3 times, using RPython’s C back-end (with the GC
turned off and Clang as the C compiler), with both minimum and maximum LLVM
back-end optimisation levels (i.e. the -O0 and -O3 command line flags), and with

3By running mubench in ‘pipeline’ mode with the mubench.yml file included with Zebu.
4Though this depth results in only very small execution times (< 50ms), higher-numbers cause

stack-overflows.
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RPython’s Mu back-end (using Zebu). The LLVM front-end optimisations where
set to maximum (the -O3 flag); this was done due to lower-optimisation levels pro-
ducing LLVM IR that is wildly inferior to the Mu IR, in particular front-end op-
timisation level -O0 causes C variables to be placed in ‘alloca’ cells pn the stack,
as oppesed to SSA form which used by -O3 LLVM IR, as well as the generated Mu
IR. The choice of only using -O3 LLVM IR as a comparison point is also due to
my hypothesis that the Mu IR generated by the RPython back-end is at a similar
level of optimisation as the generated C-code, which in-turn is so low-level that
the -O3 LLVM IR is effectively the same as the C code; this hypothesis seems to
be reasonable based on manual comparison of the generate C code, -O3 LLVM IR,
and Mu IR. The optimisation flag passed to Clang is used to control both the IR
front-end and assembly back-end’s optimisations. In order to disable back-end op-
timisation only, I created a Python script, dubbed clang-O3-O0, which acts as a
drop in replacement to Clang (by setting the CC environment variable to the path
of clang-O3-O0). Whenever the clang-O3-O0 script is called to compile a file to
a (.o) object file, clang is first called to compile the file to a (.ll) LLVM IR file
with -O3, it then compiles the LLVM IR file to an object-file using -O0. When not
compiling to a (.o), clang-O3-O0 merely passes its command-line arguments to
Clang.

Each benchmark was run 50 times, with time measured within the benchmark it-
self (thus excluding any start-up overhead). Start-up overhead was excluded due to
the Zebu version having a significant such overhead (primarily due to unnecessary
heap-space initialisation), since Zebu aims to be a JIT (and not an AOT compiler),
AOT only performance costs are not relevant.

See Figure 5.1 for a graph of the normalized-results, see Figure 5.2 for a table of
the non-normalised results.

The benchmarks were run on a Softiron ‘OverDrive 1000’ (with 8GB of RAM, and
an AMD opteron A1100 SOC (with 4 ARM Cortex-A57 Cores)), running Ubuntu
17.10 and Linux Kernal ‘14.13.0-16-generic’. Version 4.0.1 of Clang/LLVM was used
by the RPython C back-end, and Zebu internally (see § 3.1.3).

5.0.3 Performance Analysis

The performance results are quite varied and inconsistent; they require some care-
ful thinking and investigation in order to understand the reasons why, as well as
their meaning.

There are 2 benchmarks where Zebu outperforms Clang -O3: ‘btree’ and ‘fib’:
• I believe the main reason why ‘fib’ is faster on Zebu is due to function-call over-

head. The majority of the work done in the benchmark is function-calling, with
just some addition, subtraction and an if statement in each function. In RPy-
thon’s C back-end, after each function call there is an explicit check for excep-
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Figure 5.1: Normalized mean (over 50 runs) of each RPython benchmark’s execu-
tion time, relative to the best performing back-end’s execution time (for the given
benchmark). Overall, Zebu is the best performing back-end in 2/10 benchmarks, it
is tied with the best-performing in 1/10 cases, and is the second best in 4/10 cases.
The geometric mean of the benchmarks’ normalized means is 60.8%, 93.7%, and
69.6% for the three back-ends (Clang -O3/O0, Clang -O3, and Zebu, respectively).
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Benchmark Clang -O3/O0 Clang -O3 Zebu

alloc 0.650 0.623 0.694
± 0.020 ± 0.016 ± 0.023

btree 1.069 1.066 1.053
± 0.014 ± 0.016 ± 0.008

except 0.014 0.014 0.045
± 0.000 ± 0.000 ± 0.001

fannkuchredux 1.904 0.555 0.707
± 0.016 ± 0.004 ± 0.002

fib 0.600 0.782 0.416
± 0.001 ± 0.050 ± 0.006

nbody 0.429 0.309 0.392
± 0.008 ± 0.000 ± 0.011

pidigits 0.374 0.258 0.289
± 0.011 ± 0.007 ± 0.010

quicksort 10.882 1.822 4.005
± 0.015 ± 0.202 ± 0.001

som 0.138 0.061 0.158
± 0.000 ± 0.001 ± 0.002

spectralnorm 0.720 0.707 0.707
± 0.000 ± 0.000 ± 0.000

Figure 5.2: Mean benchmark run-time and error (standard-deviation) in seconds.
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tions (by loading a global variable); in the beginning of each function there is
a check for stack-overflows. In RPython’s Mu back-end, these checks need not
be performed as Zebu implements exception-handling in a ‘zero-cost’ way (see
§ 4.4); in addition, Zebu uses the CPU’s memory-protection hardware to check
for stack-overflows (see § 4.5), which is done implicitly. The ‘fib’ benchmark
is particular odd, as it is the only case where Clang with -O3/O0 outperforms
-O0, in fact the standard-deviation of the performance results for -O3/O0 is
extremely high, whereas that of -O0 is very low.

• The ‘btree’ benchmark is designed to be a GC stress-test, since the GC has been
turned of for both RPython back-ends, and the results are mostly the same
across the three back-ends, this benchmark is not particularly interesting.

Zebu is slower thang Clang -O3 in 6 benchmarks, ‘alloc’, ‘except’, ‘fankuchredux’,
‘nbody’, ‘pidigits’, ‘quicksort’, and ‘som’:
• The slowdown for the ‘alloc’ benchmark is likely due to the way Zebu allocates

memory, as it calls calloc (due to Mu’s requirement that allocated memory be
Zeroed), whereas the C back-end uses malloc. A proper GC allocator should
far outperform malloc([Lin et al. 2016]), in particular zeroing GC memory can
be done much more efficiently than calloc([Yang 2011]).

• The ‘som’ benchmark is by far the most complicated benchmark, as it runs lots
of different pieces of code (the test-suite it runs is designed to check various
features of the interpreter), making it very difficult to determine why the per-
formance is so bad (it is about 161% slower on Zebu than Clang -O3). Zebu’s
performance is worse in the Clang -O3/O0 case (by 15%), this suggests that
there are either some inherent inefficiencies in the design of Mu, or more likley
(due the code size), the RPython to Mu back-end needs to be further optimised.
The ‘som’ benchmark is the only one that uses 128-bit arithmetic, this could also
suggest that the implementation or optimisation of this needs to be improved.

• The slowdown in ‘except’ could be due to the the ‘zero-cost’ way in which ex-
ceptions are implemented (see § 4.4). RPython’s C back-end unwinds the stack
by simply returning from each function until it reaches a catch, this is simpler
than Zebu’s unwinding (which requires lots of table lookups).

• The reason for the performance slowdown in the other becnhmarks (‘fanku-
chredux’, ‘nbody’, ‘pidigits’, and ‘quicksort’) is harder to tell, requiring a detailed
analysis. It is likely due to a combination of inefficient generated Mu IR and a
lack of many optimisations in Zebu’s back-end. However, an attempt at manual
optimisation5 of Zebu’s generated code (to make it more similar to Clang -O3’s)
did not yield much (if any) improvement.

Zebu has equal performance in 1 benchmark, namely ‘spectralnorm’:
• The ‘spectralnorm’ benchmark makes the most use of floating-point operations,

which are not in any-way optimized by Zebu. This suggests that on AArch64,

5See § 4.8.3 for examples of such optimisations.
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there aren’t many ways to optimise simple floating point operations6.

Though Zebu is usually slower than Clang -O3, in most cases it does outperform
Clang -O3/O0, suggesting that the main reason for poor performance is Zebu’s
implementation, as opposed to inefficient input Mu IR. In fact, on close inspection,
the Mu IR generated by RPython’s back-end is very close the LLVM IR generated
by Clang -O3, it is only needing a few minor optimisations. However, one notable
difference between the LLVM and Mu IR, is how string constants are handled, the
RPython Mu back-end implements them as hybrids, and placing references to them
in global cells, necessitating an extra load to access the string, whereas the LLVM-
IR puts them as array constants, whose address does not need an indirection to
compute. Fixing this would require a major change to the RPython Mu back-end
(it would need to change the type of the string to a fixed-size array, since a hybrid
can’t be stored in a global-cell).

The overall results are promising, the performance of Zebu is usually not signific-
antly slower than Clang’s, and due to the high similarity between LLVM-IR and
Mu IR, it should be theoretically improvable by simply implementing Clang’s op-
timisations in Zebu directly, as opposed to needing to come up with entirely new
optimisation strategies.

5.0.4 Summary
My evaluation of the correctness and performance of Zebu shows that it is both
reasonably efficient and correct; this shows that Mu itself is designed in a way that
makes quality implementations possible.

My performance analysis left many question unanswered, such as the exact reas-
ons for the observed results and what methods could be used for improving them.
More detailed investigation and experimentation is needed in order to fully answer
these questions.

Though the evaluation of correctness and performance used a variety of tests, there
is still work to be done in further analysing Zebu (and hence Mu). In particular,
my testing has only used a single language client (the RPython one) due to it being
the only one that works with the latest version of Mu. When further clients are
implemented, it would be valuable to use them as a basis for evaluation of Zebu,
this would be particularly useful if they utilise Mu features that are not used by
the RPython client (such as threads and stacks).

6Clang -O3, by default, limits floating-point optimisations to minimise loss of precision, I have
not tested the result of turning on less-precise optimisations.
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Chapter 6

Conclusion

My work presented in this thesis has hopefully answered the research question
of whether or not Mu’s abstraction level is appropriate for performance, however
this research is by no means complete, and other avenues of research are worth
exploring.

6.1 Future Work
No research is ever complete, in particular their is far more work to be done, with
both Zebu and Mu. Here I wish to present some concrete ideas for further explor-
ation.

6.1.1 Further Zebu Development
Many features of Mu, and enhancements to Zebu have not yet been done; in par-
ticular extending Zebu to be an efficiently-compiling JIT compiler is a major goal,
and would help investigate the suitability of Mu for dynamic managed languages.
Development and implementing a garbage collector that appropriately interacts
with Mu’s abstractions is another interesting research direction. One major lim-
itation of Zebu, though not a feature of Mu per-se, is its inability to compile Mu
‘libraries’ that can be linked to other libraries, dynamically loaded from within Mu,
or the generation of libraries based on JIT-ed code; implementing such features is
likely to be extremely difficult, especially with the need to merge Mu IR top-level
entities, but doing so would help make Zebu a more practical and useful compiler
& virtual-machine.

Many instructions have not yet been implemented in Zebu; doing so would be very
useful in order to evaluate their performance. Here I present some ideas on how
they could be implemented efficiently:
• SSA variables of a struct type could be implemented by simply ‘expanding’

out such an SSA variable to a list SSA-variables, such an expansion could be
done on the IR level form. This approach has the advantage that it does not
place unncesarry structural constraints on struct’s, however if the ABI is to
be continued-to be respected, passing structs to functions would be non-trivial
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(they may require merging their values into a specific sequence of registers, or
placing the value on the stack); if the ABI is not to be respected however, they
could be passed and returned as if passing or returning their fields directly.

• Frame-cursor creation and iteration could be implemented using the same meth-
ods as exception implementation (see § 4.4). Frame popping is simple to imple-
ment by unwinding the stack to point to the appropriate frame-record. Push-
ing a frame using a frame-cursor is complicated due to the ABI, whose argu-
ment passing and value returning conventions are different, this could be fixed
by JIT-ing ‘adapter’ frames that convert between these different conventions
(as proposed by [Wang et al. 2017]), this complexity is further compounded by
the possibility of needing to return through XR (whose value is passed in to
a function call). However, an alternative and more efficient approach would
be to modify the way values are returned to be the same as argument passing
(this also requires callees to be responsible for popping stack-arguments, which
would also simplify tail-calls (see § 4.3)), this would eliminate the need to JIT
any code.

• Function exposing can be implemented by simply placing the so called ‘cookie’
into a dedicated register, and recomputing the mu_tls register, then branch-
ing to the Mu function’s code. To get the cookie, it would be loaded within
a Mu function prologue, and stored in an internal SSA variable (freeing the
‘cookie’ register and allowing the register allocater to determine how best to
save the SSA variable), the uvm.native.get_cookie intrinsic would then be
implemented as a simple load from the cookie register. This approach how-
ever would require some special care to presserve argument registers (and the
link-register) through the function call required to evaluate mu_tls.

• Trap instructions could be implemented as a simple swap-stack, that swaps to
a newly created stack, passing in neccesary information. The entry function
for the new stack would then be a runtime-function that branches to the client
provided trap handler (and passing in any necessary information).

• A watchpoint-branch instruction could be implemented as a no-op when dis-
abled (the default), when enable it would then be automatically overridden to
be a branch to the enable destination (this is possible as all AArch64 instruc-
tions are 32-bits, which can be atomically stored).

There are many more features of Mu that have yet to be implemented, and further
research needs to be done in order to determine efficient ways to do so.

6.1.2 Further Mu Research

This thesis was only interested in investigating one aspect of Mu’s design, namely
that it is appropriate for efficient code; however the other goals of Mu should also
be investigated further. In particular, how reasonable and easy it is to use Mu
as a target for various languages, and language features, as well as whether they
would benefit from this should be further explored. It is also interesting to con-



§6.2 Summary 43

sider what effect additional features and changes to Mu’s design would have on its
performance and ease of use is worth further investigation.

6.2 Summary
In summary, though my implementation and evaluation of Zebu (on AArch64) does
point towards Mu being efficient, it is by no means conclusive or exhaustive. In
particular, I have only evaluated performance on a single architecture, and with
a single implementation strategy; what effect implementing Mu differently would
have has not been explored. This work has also no discussed the full performance
implications of all of Mu’s features, nor the performance effect of different mapping
from higher-level languages to Mu IR.

In conclusion, though this thesis ends here, answering the question of Mu’s per-
formance is not finished, and far more research is yet to be done.
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