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Abstract

Garbage collection (GC) is a core component of almost all modern memory safe pro-
gramming languages. The tracing loop is one of the largest costs in tracing garbage
collectors, constituting a significant portion of total collection time. Furthermore,
many reference counting collectors rely on tracing to break cycles. Therefore improv-
ing tracing performance is paramount to reducing the cost of garbage collection.

Despite the high cost of the tracing loop, there has been little research on how
the structure of the loop itself affects tracing performance. Whilst previous work
has identified performance differences between Node- and Edge-ordered enqueueing,
other design choices have not been explored in great detail, including the queue item
type and dual-queueing variants.

One of the primary contributors to the cost of tracing is the poor cache locality of
traversing the heap. Software cache prefetching has been identified as one technique
for improving the speed of tracing garbage collectors by reducing cache misses. How-
ever, in order for it to be an effective optimisation, software cache prefetching needs to
be constantly re-evaluated, as rapidly-evolving modern hardware presents a moving
target. With the last research on the topic being over a decade old, this technique is
long overdue for a revisit. Furthermore, exploring new tracing loop structures could
reveal previously unexplored software prefetching opportunities, which could lead
to further performance gains.

This thesis explores how the performance of production tracing garbage collectors
can be improved by choosing the tracing loop structure that enables the most effective
software prefetching. It provides three key contributions: (i) a novel framework for
evaluating variations on the tracing loop of garbage collection algorithms, which I
call auxiliary tracing; (ii) a taxonomy for classifying tracing loop designs, alongside
performance evaluations of seven possible structural variations; (iii) a comprehensive
performance evaluation of software cache prefetching techniques when applied to the
tracing loop of garbage collectors. I conduct my studies in the context of real-world
benchmarks on modern hardware (including recent CPU microarchitectures).

My results show that the Edge-ObjRef loop (which performs edge-ordered en-
queueing of object references) is the highest-performing tracing loop design, yielding
an 8.3% performance improvement on AMD Zen 4, and a 15.6% improvement on
Intel Coffee Lake, with respect to the default MMTk tracing loop implementation.
Furthermore, the Edge-ObjRef algorithm demonstrates an 8.1 to 11.1% performance
advantage over the canonical tracing loop design (Node-ObjRef ), despite requiring 2.6
times as many queueing operations on average.

Furthermore, I demonstrate that software cache prefetching consistently increases
tracing speed across a wide variety of benchmarks. On Zen 4, the addition of prefetch-
ing boosts the performance of the Edge-ObjRef and Node-ObjRef tracing loops by
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10.7% and 15.1% respectively, reducing the performance gap but still leaving Edge-
ObjRef as a clear winner. On Coffee Lake, the Edge-ObjRef design does not benefit as
much from prefetching, allowing the optimised Node-ObjRef algorithm to perform
2.2% better on average.

This work fills a major gap in our understanding of the performance charac-
teristics of tracing loops in garbage collectors. It enables language designers and
implementers to make informed choices about the structure of the core tracing loop,
regardless of the constraints of their collector (whether it be non-moving or copy-
ing). My in-depth analysis of numerous prefetching strategies shows high potential
performance improvements, but also highlights the microarchitectural sensitivity of
prefetching, demonstrating a need for hardware-specific tuning. Furthermore, my
research demonstrates the power and flexibility of the auxiliary tracing framework as
a tool for evaluating changes to the core tracing loop.
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Chapter 1

Introduction

In a world where computer security is paramount, software developers are increas-
ingly choosing to use memory-safe programming languages for their projects. One of
the ways that managed languages provide memory safety is through automatic mem-
ory management of dynamically allocated memory. Apart from the notable example
of Rust, almost all modern programming languages use garbage collection for memory
management.

One of the most common paradigms of garbage collection is tracing garbage
collection, which involves performing a transitive closure of the heap to identify
live objects. Tracing is a core component of many production garbage collectors,
including collectors for V8 [Marshall, 2019], Ruby [Ruby Contributors, 2023], and
OpenJDK (G1 [Detlefs et al., 2004], Shenandoah [Flood et al., 2016], ZGC [Liden
and Karlsson, 2018a,b] and C4 [Tene et al., 2011]). Even modern high-performance
reference counting collectors such as RCImmix [Shahriyar et al., 2013] and LXR [Zhao
et al., 2022] rely on tracing to collect cycles in the object graph, in order to avoid
memory leaks.

The tracing loop is responsible for traversing the object graph, marking and
scanning all objects. This makes it one of the most performance-critical aspects of a
tracing collector. Previous research has estimated that the tracing loop constitutes as
much as 57% [Boehm, 2000], 70% [Cher et al., 2004], or 96% [Garner, 2011] of total
collection time - primarily due to the low cache locality of tracing the heap. Despite
the high cost of the tracing loop, there has been relatively little research of alternative
designs and structural variations which could improve performance. Although some
variations on the canonical tracing loop design have been explored, including edge-
ordered enqueueing [Garner et al., 2007], other aspects have not been examined in
as much detail. This includes enqueuing slots instead of (or in addition to) object
references, and dual-queue designs. This thesis explores several new designs and
evaluates their effectiveness.

Since the cache locality of the tracing loop is so poor, one other area of previous
research has been to introduce software cache prefetching instructions into the loop,
to preemptively bring data into cache before it is needed [Boehm, 2000; Cher et al.,
2004; Garner et al., 2007]. This technique has been shown to be relatively successful,
reducing garbage collection time by up to 20-30%. However, despite the ever-changing
nature of modern hardware, these results have not been re-evaluated in a modern
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2 Introduction

context. Furthermore, I believe that exploration of new tracing loop designs could
uncover additional opportunities for software cache prefetching that were not possible
before, potentially improving tracing performance. Thus, the potential impact of
software prefetching in contemporary setting is an open question.

In this thesis, I primarily examine the application of prefetching to the core trac-
ing loop. Other prefetching opportunities in garbage collectors (e.g. for allocation
or reference counting) are possible interesting avenues for future research, but are
beyond the scope of this thesis.

1.1 Thesis Statement

Optimisation of tracing loop performance is critical to reducing the cost of garbage
collection. I believe that the performance of production tracing garbage collectors can
be improved by choosing the tracing loop structure that enables the most effective
software prefetching.

1.2 Contributions

In this thesis, I provide four major contributions:

1. I introduce auxiliary tracing, a novel evaluation framework which can be used
to:

(a) measure and compare the performance of structural variations on the core
tracing loop of garbage collectors;

(b) assess the performance implications of the heap layouts generated by a
wide spectrum of garbage collection algorithms;

2. I propose a new taxonomy for classifying tracing loop designs, based on two
primary axes: the queueing strategy, and the queue item type;

3. I evaluate seven different tracing loop designs, comparing performance charac-
teristics and identifying potential compatibility issues;

4. I perform a comprehensive performance evaluation of a wide variety of soft-
ware cache prefetching techniques which can be applied to the tracing garbage
collectors, in the context of five of the previously identified tracing loop designs.

The results presented by this thesis provide a much-needed update to an area of
research that has not been revisited in over a decade. All of my studies are performed
in a modern environment, with recent CPU microarchitectures and contemporary
benchmark suites which are representative of real-world applications.



§1.3 Thesis Structure 3

1.3 Thesis Structure

Chapter 2 provides background information on several of the key topics that form the
basis of this thesis, including garbage collection, the Memory Management Toolkit
(MMTk), and hardware/software cache prefetching.

Chapter 3 explores existing research on the applicability of software cache prefetch-
ing to tracing garbage collectors. Furthermore, I evaluate the software cache prefetch-
ing techniques implemented into OpenJDK’s stock collectors, to determine their
effectiveness.

Chapter 4 introduces auxiliary tracing, a novel methodology for evaluating vari-
ations on the GC tracing loop. I discuss the design and implementation decisions
made, validate auxiliary tracing correctness and performance against existing produc-
tion collectors, and explore two case studies to demonstrate the power and flexibility
of this new tool.

Chapter 5 details the possible design choices that can be made when implementing
the tracing loop of a garbage collector, and proposes a new taxonomy which classifies
new and existing designs. I evaluate the performance of seven different tracing loop
algorithms and compare key statistics.

Chapter 6 discusses several opportunities for software cache prefetching in the
context of GC tracing loops. A wide range of prefetching configurations are evaluated,
followed by a critical evaluation of the the results.

Chapter 7 summarises the key findings of this thesis and expands on several
potential avenues for further research.
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Chapter 2

Background

This chapter introduces the background information necessary to understand several
of the core topics in this thesis. Section 2.1 begins with an introduction to garbage
collection, a common technique used for automatic memory management. Section 2.2
discusses MMTk, the broader framework used for implementation and evaluation
in this thesis. Finally, Section 2.3 gives an overview of hardware and software cache
prefetching techniques.

2.1 Garbage Collection Terminology

Garbage collection (GC) is one of the most common forms of automatic memory man-
agement used in modern programming languages. The purpose of a garbage collector
is to run in tandem with an application (known as the mutator) and manage the heap,
which is the region of memory that stores dynamically allocated objects. Objects in
the heap are said to be live if they are transitively reachable through the mutator roots
(that is, the stack, local and global variables, and other objects directly accessible by
the application), or dead if they are not. Garbage collectors are responsible for the
allocation of new objects, and the identification and reclamation of dead objects.

Allocation can be implemented via either bump-pointer or free-list allocation. Bump-
pointer allocation involves allocating objects contiguously in a region of free memory
at the current cursor, which is subsequently advanced by the size of the object to
point to the next free space. If the cursor reaches the the end of the allocation buffer
(known as the limit or watermark), or if there is not enough space left in the buffer, a
new chunk of memory is allocated by the memory management system for future
allocations. Alternatively, a free-list allocator can be used, which stores chunks of
free memory in one or more linked lists (known as free lists). During allocation, the
mutator traverses the free list to find a chunk that is large enough to store the desired
object, pops it from the free list, and overwrites the free list metadata with the object
contents.

Dead objects can be identified indirectly via tracing garbage collection, or directly via
reference counting. Tracing garbage collection, which was first invented by McCarthy
[1960] for the Lisp programming language, involves performing a transitive closure of
the heap, marking all live objects. This is discussed in detail in Section 2.1.1. Reference
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6 Background

counting, which was later introduced by Collins [1960], involves keeping track of the
number of references pointing to each object, through a reference count. Whenever
a reference is created to an object, its reference count is incremented, and when
the reference is overwritten or removed, the reference count is decremented. When
an object’s reference count reaches zero, it is deallocated, which in turn involves
decrementing the reference count of child objects and potentially triggering their
deallocation. Note that if a cyclic reference is present, the reference count will never
reach zero and thus the object will never be deallocated. To avoid leaking memory, it
is necessary to occasionally run a tracing garbage collector, or force the programmer
to manually break cycles using weak references.

Once an object is identified as being dead, it needs to be reclaimed so that its
memory can be reused for other objects. Non-moving garbage collectors perform a
sweep over the heap, identifying objects which were not marked during an earlier
tracing phase (i.e. objects which are dead), and joining them onto one of the allocator
free lists. Moving garbage collectors (also known as copying collectors) may choose to
copy the object to a new location, either within the same heap space (compaction) or to
a new space (evacuation). Although object copying can be expensive (due to the cost
of the moving the object and updating references to it), it can also improve mutator
performance by reducing fragmentation and improving the locality of the heap.

These allocation, identification and reclamation strategies can be combined to
form a variety of garbage collection algorithms. Common algorithms include Mark-
Sweep (which uses free-list allocation, tracing for identification, and sweeping for
reclamation), Mark-Compact (free-list, tracing, compaction), SemiSpace (bump-pointer,
tracing, evacuation), and Reference Counting (free-list, reference counting, sweeping).
Most production garbage collectors combine several spaces managed by one or more
algorithms. For instance, generational garbage collection involves allocating new objects
into a small nursery space, which is frequently collected. Any objects which survive a
collection are evacuated to the mature space, which is only collected when a full-heap
GC occurs. According to the weak generational hypothesis [Lieberman and Hewitt,
1983; Ungar, 1984], most objects will die quickly (often before their first collection),
and thus frequent collections of the nursery will result in shorter pause times than
collecting the whole heap.

For further discussion of garbage collection terminology, see Jones et al. [2023].

2.1.1 Tracing Garbage Collection

At the heart of all tracing garbage collectors is the tracing loop, which is responsible
for identifying all live objects by performing a transitive closure of the heap (or some
part of the heap), starting at the roots and marking/scanning all objects.

Before discussing the mechanical details of the tracing loop, it is first necessary
to understand terminology relating to object structure. An object consists of several
fields (also known as slots), each of which may contain an object reference (a pointer to
another object on the heap), or a scalar (an immediate value stored within the field,
like an integer or boolean). This is shown in Figure 2.1. In this thesis, we typically use
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the term ‘slot’ to refer to the memory location that contains a reference to the current
object, and ‘fields’ to denote the words inside the current object which may contain
pointers to other objects. However, these two terms are often used interchangeably,
because the slot which contains a reference to this object is always a field of another
object.

Figure 2.1: Key terminology in tracing garbage collection: the slot vs the object reference

To trace an object, it is first necessary to load the slot which contains a reference
to the object. Then, the referent object should be marked; either by setting a mark
bit in the header of the object, or by modifying some side metadata (e.g. a mark
bitmap) at a location determined by the object reference. If the object was already
marked, then we can stop; this ensures that the tracing loop terminates. Otherwise, it
is necessary to scan the object. This is achieved by identifying the fields of the object
which contain pointers (as opposed to scalars), and tracing each of the child objects
referenced from those fields.

In order to keep track of the objects waiting to be scanned, tracing loops usually
employ some form of queue or stack. In single-threaded collectors, the use of a stack
data structure will force a depth-first traversal of the heap, whereas a first-in-first-out
queue will cause the traversal order to be breadth-first. A depth-first traversal of the
heap is known to be preferable [Garner, 2011], as it exhibits better cache locality due
to the fact that parent and child objects are often allocated near each other. However,
many modern collectors parallelise the tracing loop, which makes the traversal order
less clear. Ossia et al. [2002] note that the work packet mechanism employed by
many parallel collectors (including MMTk) searches the heap breadth-first locally,
but depth-first globally.

When tracing an object, it is necessary to determine which fields contain references
to child objects1. There are a wide variety of techniques which can be used, many of
which are discussed by Garner et al. [2011]. For instance, in statically typed object
oriented programming languages like Java, a common pattern is to include a pointer
to the class information in the object header, which can be used to determine the
pointer fields. As another example, some dynamically typed languages like Ruby
tag the lower-order bits of each field with type information which can be used to
determine whether the field contains a pointer or some scalar value (integer, boolean,
floating point number, etc) [Shaughnessy, 2013].

1Conservative garbage collectors are able to collect garbage without precise knowledge of the pointer
fields of objects; however they are beyond the scope of this thesis.
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2.2 MMTk

The Memory Management Toolkit (MMTk) [2023] is a language agnostic library which
enables easy integration of a large selection of high-performance garbage collection
algorithms into production programming language runtimes. MMTk is designed
to be as flexible as possible and is built around the core principles of modularity,
composability, and abstraction without cost, which makes it an excellent platform for
researchers to test new garbage collection techniques in a real-world environment.

The original version of MMTk [Blackburn et al., 2004a,b] was part of JikesRVM
[Alpern et al., 2000], a meta-circular JVM written in Java. After a successful pilot study
by Lin et al. [2016], MMTk was rewritten in Rust to improve safety and performance,
and to enable integration with wider variety of runtimes. It currently has full or
partial support for OpenJDK (Java), JikesRVM (Java), V8 (JavaScript), MRI (Ruby),
GHC (Haskell) and Julia.

MMTk implements a variety of stop-the-world tracing and reference counting2

garbage collectors. Almost all collection work is parallelised using work packets, which
are finite units of work that can be distributed and processed by a pool of stateless
GC worker threads. Work packets are organised into work buckets, which are used to
order and synchronise the phases of the collection. Workers will only process work
packets from a work bucket if all previous work bucket stages are empty. For more
information on MMTk’s work distribution system, see Xu et al. [2022] and Huang
et al. [2023].

2.3 Cache Prefetching

Over time, the gap between CPU performance and memory bandwidth/latency has
widened significantly [Wulf and McKee, 1995]. In order to mitigate the effects of
high memory latency, almost all modern CPUs feature a complex hierarchy of caches
designed to exploit two common memory access patterns: spatial locality (after access-
ing a memory location, an application is likely to access nearby memory locations),
and temporal locality (applications are likely to access the same memory addresses
multiple times in short succession). This is typically achieved by loading chunks of
memory into the cache in units of cache lines (typically 64 B on modern systems) and
using sophisticated cache replacement policies (typically some approximation of the
least-recently-used policy) to avoid evicting recently-accessed data.

However, these techniques alone are not enough to mitigate all cache misses. For
instance, even a simple linear traversal of an array will trigger a compulsory cache
miss every time it reaches the end of a cache line and loads the first word of the next
line. As another example, given an array of pointers which need to be loaded, it is
possible to easily predict in advance the sequence of memory locations which will be
accessed, despite the memory access pattern exhibiting poor locality.

2Note that LXR [Zhao et al., 2022], the only reference counting collector implemented in MMTk so
far, is not part of the mainline release. However, it is currently in the process of being upstreamed.
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In such cases, the hardware and/or software may have additional insights which
could enable more effective cache usage. Cache prefetching is one technique which
can be used to reduce cache misses by bringing data into the cache before it is
needed. This exploits the memory parallelism of the system to hide the latency of
memory accesses behind other instructions, reducing back-end stalls in memory-
bound applications.

There are two forms of prefetching: hardware prefetching (Section 2.3.1), where the
CPU speculatively issues prefetches based on the past pattern of accesses; and soft-
ware prefetching (2.3.2), where the programmer or compiler may manually introduce
prefetch instructions based on application-specific insights.

Regardless of whether prefetching is implemented on a hardware or software level,
there are several fundamental tradeoffs which need to be considered. The timing of
the prefetch matters - if the prefetch is issued too early, other useful data may be
prematurely displaced from the cache (leading to unnecessary cache misses), or even
worse, the prefetched data may be evicted before it ever gets used, wasting memory
bandwidth. If a prefetch is issued too late, the memory subsystem will not have
enough time to load the data into cache, yielding little to no benefit. In the extreme
case of prefetching immediately prior to a load, the performance may decrease, as
there is a non-zero cost associated with processing the prefetch instruction itself.
Therefore the most effective prefetching distance is inherently related to the latency
of main memory accesses. Futhermore, coverage and accuracy need to be balanced;
correctly prefetching all upcoming loads can reduce the number of cache misses, but
incorrectly prefetching memory locations that will never be loaded can lead to cache
pollution and memory bandwidth saturation.

2.3.1 Hardware Prefetching

Hardware prefetchers watch the pattern of memory locations accessed by the program
and attempt to predict future accesses. Since they lack application-level insights,
hardware prefetchers are generally limited to predicting relatively simple patterns,
such as array accesses with a regular stride distance. Hardware prefetchers are usually
less effective on short access stream sequences, as the prefetching unit must observe a
sequence of cache misses in order to ‘warm up’ [Lee et al., 2012]. This is particularly
the case in prefetcher units for the lower-level caches, which can only observe the
subset of memory accesses which miss the higher level caches. Furthermore, large
numbers of concurrent access streams or negative stride lengths can limit prefetcher
effectiveness due to hardware limitations [Falsafi and Wenisch, 2014]. Therefore for
complex access patterns, software prefetching is more likely to yield performance
benefits.

As an example, modern Intel x86 processors feature a streaming prefetcher (which
detects sequential accesses within the same cache line, triggering a prefetch of the
next line), a stride prefetcher (which separately tracks the stride length of individual
load instructions), and a spatial prefetcher (which for every 64 B cache line loaded
into the L2 cache, prefetches the adjacent cache line to form a 128 B-aligned pair)
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[Intel, 2023].
Some recent microarchitectures (including those from Intel [2022] and Apple

[Vicarte et al., 2022]) are capable of performing data-dependent prefetching (also known
as data memory-dependent prefetching), which optimises for the ‘array of pointers’ access
pattern. This type of prefetcher can monitor prefetched cache lines for words which
look like a 64-bit pointer, and prefetch the data referenced by those pointers. In the
context of garbage collection, data-dependent prefetching is more likely to improve
tracing performance than simple stride-based prefetchers.

Note that hardware prefetching mechanisms can vary from one microarchitec-
ture to another (even between microarchitectures from the same vendor), so software
developers should not rely on the exact operation of hardware prefetchers. Fur-
thermore, hardware prefetching is inherently speculative, and is not guaranteed to
improve application performance.

2.3.2 Software Prefetching

In addition to hardware prefetching, it is possible for software to issue prefetch instruc-
tions which tell the CPU to prefetch the relevant section of memory. This is useful
in cases where the programmer or compiler has higher-level insights into the future
memory access patterns of the application (e.g. based on the data structures being
used). Software prefetch instructions may be inserted manually by the programmer
using compiler intrinsics (e.g. _mm_prefetch), or automatically by the compiler (as
described in Luk and Mowry [1996]). Software prefetch instructions are usually
non-blocking and do not affect the behaviour of the program.

x86-64 offers a variety of instructions for software prefetching. The PREFETCHT0,
PREFETCHT1, and PREFETCHT2 instructions fetch the relevant cache line into the L1,
L2, or L3 cache respectively. The PREFETCHNTA (non-temporal prefetch) instruction
fetches data as close as possible to the core whilst minimising cache pollution, which
is useful for prefetching data that is unlikely to be used more than once. Finally, when
a write to a memory location is expected, the PREFETCHW instruction can be used to
both prefetch the relevant data, and transition the cache line to a ‘modified’ state.
This invalidates any instances of the cache line in other cores’ caches, and avoids
having to wait for the cache coherency protocols to give exclusive ownership of the
cache line.

Note that software prefetch instructions are merely hints and their effect is often
dependent on the exact microarchitectural implementation. For instance, the memory
management unit may ignore the prefetch locality hint (T0, T1, etc) or skip prefetch
requests where loading the memory location might trigger a page fault. Therefore
the performance impact of software prefetching can be microarchitecturally sensitive.

2.4 Summary

This chapter gave a general overview of garbage collection, including the tracing
loop, which is at the core of all tracing garbage collectors. Furthermore, MMTk
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was introduced as a platform for experimental GC research, and cache prefetching
techniques were discussed. The following chapters build on this discussion, exploring
ways in which software cache prefetching can be used to speed up the tracing loop.
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Chapter 3

Related Work

The previous chapter discussed garbage collection, a form of automatic memory
management, and software cache prefetching, a technique for reducing cache misses.
The combination of these two ideas, using software prefetching to improve the speed
of the tracing loop, has been one area of interest in the research community. This
chapter gives an overview of prior work in this area (Section 3.1), and presents an
evaluation of the software prefetching implemented into OpenJDK’s included garbage
collectors.

3.1 Software Cache Prefetching for Garbage Collection

3.1.1 Applications to Tracing Garbage Collection

Boehm [2000] was one of the first to apply software cache prefetching in the context
of tracing garbage collection. Building on the tricolour abstraction introduced by
Dijkstra et al. [1978], Boehm proposes the strategy of prefetch-on-grey. Whenever an
object is first visited, it should be ‘greyed’ (marked) as normal, but also prefetched.
This increases the probability that the object will be in the cache by the time it is
popped from the mark stack, reducing the number of cache misses. In addition
to this, Boehm suggests prefetching a few cache lines ahead when scanning the
fields of each object, with the goal of reducing the number of cache misses incurred
when scanning objects larger than a cache line. This has the supplementary effect of
prefetching adjacent objects, which may be traced in the near future.

Boehm implements these changes into the BDW collector [Boehm and Weiser,
1988], a library-based conservative garbage collector for C and C++. Together, these
techniques eliminate over a third of cache miss overheads, reducing benchmark time
by 1-17%. However, it should be noted that the most impressive of these results
were only observed on a small set of synthetic GC-intensive microbenchmarks, which
inflate the overall impact of these improvements. Real-world applications (ptc and
ghostscript) only saw up to a 5% speedup.

Cher et al. [2004] conduct a deeper analysis of Boehm’s prefetching strategy and
propose an alternate design. They confirm that prefetch-on-grey improves the per-
formance of the BDW collector by an average of 16% in GC-intensive benchmarks.

13
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However, when simulating this technique using the SimpleScalar [Austin et al., 2002]
architecture simulator, the authors observe that a large proportion of prefetch instruc-
tions are mistimed, with up to 27% arriving too early and 15% arriving too late. This
is because the BDW collector traverses objects in a depth-first order (using a first-in-
last-out mark stack), and hence the time between an object being prefetched and its
fields being examined can vary greatly, depending on the shape of the object graph.
Thus, prefetches are often rendered ineffective.

To solve this problem, Cher et al. propose altering the core tracing loop to add a
small queue known as a prefetch buffer. As each object is popped off the mark stack, it
is prefetched and moved onto the prefetch buffer queue. Then, the object at the head
of queue (which was prefetched some time ago) can be popped, loaded and scanned,
allowing its child objects to be marked as usual. This buffered prefetching design
ensures that objects are prefetched and scanned in a predictable, first-in-first-out order.
Furthermore, for optimal timing, the size of the prefetch buffer can be tuned according
to the memory latency of the system. Overall, buffered prefetching substantially
reduces the number of ineffective prefetches, yielding an average speedup of 27% in
GC-intensive benchmarks.

Since Cher et al.’s paper was published, multi-core CPUs have become common-
place, and parallel collection is now the norm. Modern parallel GC algorithms do not
necessarily traverse the heap in the same depth-first manner as the single-threaded
BDW collector used in this paper. Despite this, the core findings of the paper still
stand today: software prefetching is most effective when applied in a consistent,
timing-controlled manner, independent of the heap traversal order.

Van Groningen [2004] implements buffered prefetching into the runtime of Clean
[Brus et al., 1987], a functional programming language. Similar to the approach taken
by Cher et al., they add a FIFO mark buffer in front of the existing mark-sweep
tracing loop. Van Groningen observes speedups of 11-34% in a compiler compilation
benchmark, 19-81% in a linker benchmark, and 20-61% in a merge sort benchmark.

Garner et al. [2007] explore how an alternative tracing loop design can influence
the performance of the mark-sweep collector in JikesRVM [Alpern et al., 2000]. The
authors develop a sophisticated analysis methodology which they call replay tracing,
and use it to examine the performance of each individual component of the tracing
loop. They observe that the primary costs associated with scanning an object are the
two separate memory accesses which need to occur: the load/store of the metadata to
mark the object, and the load of the object itself to scan it for pointers. Furthermore,
they find that the cost of the mark stack queueing operations (push/pop) are relatively
low, accounting for a maximum of 11% of the total running time of the tracing loop.

Based on this insight, Garner et al. propose a new tracing algorithm which delays
the mark operation until after the object is popped from the mark stack, improving the
temporal locality of the mark and scan operations for a given object. This has the side
effect of unconditionally enqueueing all non-null objects, even ones that may already
be marked. Although this inflates the number of queueing operations by an average
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of 40%, the queueing operations themselves are not the bottleneck; any additional
costs are outweighed by the improved locality of marking/scanning. The authors
describe this variation of the tracing loop as edge-ordered enqueueing, since the number
of queue operations will be proportional to the number of edges (references) in the
heap graph. Node-ordered enqueueing is the term they use to describe the standard
mark-sweep tracing loop design, since every node (object) will only be enqueued
exactly once.

One major advantage of this alternate tracing design is the increased opportu-
nities for software prefetching. In configurations where the mark bits are stored in
the object header, Garner et al. find that the combination of edge enqueueing and
buffered software cache prefetching can reduce collector time by 20-30% across a
variety of real-world benchmarks.

Wu et al. [2013] build upon the optimisations described by Cher et al. and Garner
et al., and propose a new technique to reduce the number of unnecessary prefetches.
Whenever a CPU issues a prefetch, the entire cache line is brought into cache. The
authors observe that if multiple objects in the same cache line are queued for scanning,
then multiple prefetch instructions will be issued for the same cache line. These
unnecessary prefetches could potentially reduce performance.

In order to eliminate duplicate prefetches, Wu et al. modify the JikesRVM tracing
loop to keep track of the last prefetched address in a local variable. Then, before
issuing a prefetch to the next object address, they check to make sure that the dis-
tance between the two addresses is less than a particular threshold. The value of this
threshold can be varied according to the cache line size. In their evaluations of this
technique, the authors demonstrate a 5% average speedup in tracing time of both the
mark-sweep and semispace collectors.

Tracing garbage collection can be viewed as a graph traversal problem. Graph traver-
sal involves a lot of pointer chasing, which cannot easily be accelerated through
prefetching. This is due to the fundamental limitation that in a pointer chain, the
address of the nth node can only be determined after loading the contents of the
(n − 1)th node. There have been several attempts [Luk and Mowry, 1996; Roth and
Sohi, 1999] by compiler researchers to improve graph traversal speed by adding jump
pointers to each node. Jump pointers are fields which contain the address of another
node that will be accessed in the near future, based on the ordering recorded during
a previous traversal of the graph. This allows the traversal algorithm to determine
which nodes will be accessed in advance, without having to load the intermediary
pointer chain. Jump pointers are useful when combined with software prefetching,
in a technique known as jump pointer prefetching or history-based prefetching.

Cahoon [2002] implements compile-time generation of jump pointers into Vortex
[Dean et al., 1996], an optimising compiler for object oriented languages like Java.
During mutator execution, jump pointer prefetching is used to optimise the traversal
speed of linked data structures. To maintain the jump pointers, Cahoon uses the GC
traversal order to update the jump pointer values on each collection. Furthermore,
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they modify the garbage collector to respect the weak reference semantics of jump
pointers. However, Cahoon does not use jump pointer prefetching to optimise the
actual garbage collection trace itself.

To my knowledge, there has been no other research on the effectiveness of us-
ing jump-pointer prefetching for tracing garbage collection. However, one major
disadvantage of any such attempted optimisation would be the considerable space
overhead (one extra word for every object). Garbage collection is fundamentally a
space-time tradeoff, and benefits of jump-pointer prefetching are unlikely to outweigh
the higher costs of a larger heap. Furthermore, in modern production environments,
heap sizes are deliberately kept small to enable compressed pointers to be used, which
are known to have significant performance1 and memory footprint advantages.

3.1.2 Other Applications to Garbage Collection

Cache prefetching has also been applied to aspects of garbage collection beyond the
main tracing loop. Although such applications are beyond the scope of this thesis,
they are discussed here for context.

Paz and Petrank [2007] explore the applications of software cache prefetching to
reference counting collectors. They identify five major opportunities for prefetching:
two in increment processing, two in decrement processing, and one when scanning
the mark bitmap to determine which objects to move to the free list. Based on these
observations, they implement software cache prefetching into JikesRVM’s reference
counting collector. Overall, these changes result in an overall reduction in GC time of
8.7%, and an overall benchmark time improvement of 2.2%.

Yang et al. [2011] measure the direct and indirect costs of bulk zeroing, hotpath
allocator zeroing, and concurrent zeroing in OpenJDK and JikesRVM. The authors
evaluate a wide range of zeroing methodologies, both with hardware prefetching
enabled and disabled. They find that an effective hardware prefetcher is essential for
high performance hotpath zeroing, in order to avoid cache misses on each allocation.

Newer versions of OpenJDK [2023] expand on this idea by introducing software
prefetching into the allocator hotpath. This is discussed in further detail in Section 3.2.

3.1.3 Reflection on Prior Work

The field of garbage collection has evolved considerably since many of these works
were published. Heap sizes have grown from megabytes to gigabytes and even
terabytes. Parallel garbage collection is necessary to make use of the hardware
available; commodity desktop-class CPUs now come with up to 16 cores, and recent

1A quick A/B comparison of enabling and disabling compressed pointers in OpenJDK indicates that
they improve mutator time by 2-3% and GC time by up to 35%.
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server hardware sports up to 128 cores (256 threads) per socket with over 1 GB of last-
level cache [Alcorn, 2023]. The architectural simulators used to obtain measurements
in several of the prior papers are not necessarily representative of the immense
complexity of today’s speculative, out of order, superscalar CPUs with asymmetric
core designs and complex cache hierarchies. Recent work uses richer workloads,
including the DaCapo [Blackburn et al., 2006] and Renaissance [Prokopec et al., 2019]
benchmark suites which are more representative of today’s production applications
that usually have many threads and large heap sizes. It is more common to evaluate
new designs in the context of production language runtimes such as OpenJDK, as
opposed to research virtual machines like JikesRVM. Operating systems now provide
powerful, low-overhead mechanisms such as eBPF which can be used to obtain
high-fidelity measurements of collector internals [Huang et al., 2023]. Given the
changing hardware and software landscape, it is clear that new research on the topic
is necessary.

3.2 Software Cache Prefetching in OpenJDK

In the previous section, prior work on software cache prefetching for tracing garbage
collectors was discussed. However, findings from academic research are not always
directly integrated into production software. In this section, the software prefetching
implementations in OpenJDK are evaluated, in order to gain an understanding of
how state-of-the-art real-world collectors are taking advantage of these techniques.

3.2.1 Overview of OpenJDK Prefetching

All OpenJDK GCs perform bump-pointer allocation into a thread-local allocation
buffer (TLAB) [Shipilev, 2019]. OpenJDK uses software prefetch instructions to fetch
memory locations ahead of the allocation cursor, so that when new objects are al-
located and initialised the relevant memory will already be in cache. In workloads
with high volumes of allocation, this can avoid some back-end stalls resulting from
full store buffers [Jaffer and Warburton, 2020]. OpenJDK has several run-time flags
which can be used to configure the behaviour of the allocator prefetcher, including
the prefetch distance ahead of the cursor, the number of cache lines to be prefetched,
the type of prefetch instruction to use, and whether to check the TLAB limit before
prefetching.

Software cache prefetching is used relatively minimally within the collectors them-
selves. In the Parallel GC used for our evaluation below, prefetching is employed to
optimise the compaction phase of full-heap collections. When compacting the heap,
the collector maintains a source cursor (which performs a linear scan through the
space, looking for live objects), and a destination cursor (which indicates the free
memory location that live objects will be copied to). Prefetch instructions are issued
ahead of both of these pointers, to avoid cache misses on subsequent compaction
operations. Notably, prefetching does not appear to be used as part of the tracing
loop.
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3.2.2 Evaluation

In order to evaluate the effectiveness of software cache prefetching in OpenJDK, three
configurations were tested:

• All prefetching disabled (this was achieved by commenting out the source code
responsible for generating prefetch instructions);

• GC prefetching enabled, allocator prefetching disabled (controlled by passing
the -XX:AllocatePrefetchStyle=0 option)

• Both GC and allocator prefetching enabled (this was the default configuration
of OpenJDK)

All experiments were run on OpenJDK 11 (jdk-11.0.19+1-mmtk branch2), using the
Parallel GC (-XX:+UseParallelGC). This collector was chosen due to it being a stop-
the-world GC (rather than a concurrent GC, like G1, ZGC, etc), which makes it more
comparable to the collector implementations used in prior research. The DaCapo
suite [Blackburn et al., 2006] was used for benchmarking, configured to run 5 itera-
tions and 40 invocations for each benchmark. Other details of the test environment,
including the hardware and operating system information, are discussed in Section
4.3.1.

Figure 3.1 plots the total stop-the-world GC time on AMD Zen 4 across the three con-
figurations, with times normalised to the scenario where prefetching is completely
disabled. The results demonstrate that the combination of both GC and allocation
prefetching has little to no impact on GC time, averaging only a 0.4% performance
improvement. The mutator observes a small slowdown of 0.3%. Enabling GC prefetch-
ing (but leaving allocation prefetching disabled) actually negatively impacts the per-
formance of some benchmarks, with biojava and spring observing an 18.2% and 10.7%
increase in GC time respectively. This is despite a 1% reduction in L1 cache misses
and a 4% reduction in back-end stalls. Notably, there is not a single benchmark that
exhibits a statistically significant performance improvement as a result of enabling
some form of prefetching.

Figure 3.2 shows the same experiments run on Intel Coffee Lake. Only a single
benchmark (h2) experiences a statistically significant reduction in GC time (1.2%) as
a result of enabling prefetching. On average, the performance impact of GC and
allocation prefetching is slightly negative, with the GC time increasing by 0.4% (for
GC prefetching only) and 0.8% (GC and allocation prefetching). Furthermore, these
prefetching techniques had no measurable impact on mutator time.

In summary, this evaluation demonstrates that OpenJDK’s prefetching strategy is in
the best cases ineffective, and sometimes results in a performance regression. This is
in stark contrast to the existing body of research on software prefetching for tracing
garbage collection, which has been able to achieve consistent, significant performance

2Commit 28e56ee32525c32c5a88391d0b01f24e5cd16c0f

https://github.com/mmtk/openjdk/commit/28e56ee32525c32c5a88391d0b01f24e5cd16c0f
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Figure 3.1: Comparison of software prefetching options in OpenJDK (Zen 4)
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improvements. These results could be explained by a number of factors, including the
possibility that software prefetching may not be as effective when applied to moving
garbage collectors, or that OpenJDK’s prefetching implementation may be misguided.

3.3 Summary

This chapter discussed a variety of prior work on software cache prefetching for
tracing garbage collection. GC prefetching has been explored in a number of papers
over the years, however the full design space of tracing loops, and its relation to
software cache prefetching, has not been explored in great depth. Furthermore, it
is clear that the prefetching implemented into OpenJDK is not very effective. These
findings indicate there is a significant mismatch between the known state-of-the-art in
academic research, and the real-world implementations of mature, production-grade
language runtimes.

In the following chapter, I introduce auxiliary tracing, a framework for evaluating
new tracing loop designs and prefetching implementations in a controlled environ-
ment. This enables significantly greater scope for analysis of these ideas, in a way
that would be difficult or impossible in the context of OpenJDK’s native GCs.



Chapter 4

Auxiliary Tracing

The previous chapter discussed a variety of previous work on reducing the cost of
garbage collection by improving the performance of the main tracing loop. In this
chapter, I propose a new technique - called auxiliary tracing - that enables efficient
implementation, evaluation and comparison of both new and existing tracing loop
designs.

I begin in Section 4.1 by introducing the auxiliary tracing framework and dis-
cussing the motivating factors that led to it’s creation. Section 4.2 discusses how I
designed and implemented the auxiliary tracing framework into MMTk, a versatile
platform for GC research. Next, in Section 4.3.2, I validate the correctness and perfor-
mance of this implementation. Finally, I demonstrate versatility of auxiliary tracing
through two case studies: one which determines the effect of heap ‘layout’ on tracing
speed (Section 4.4), and second, I perform a performance evaluation of an object
scanning technique.

4.1 Introduction

The tracing loop is known to be one of the most performance-critical components of
any tracing garbage collector. Understandably, it has been the focus of significant
research efforts, with many design alternatives being explored including structural
variations, new object scanning techniques, and different heap traversal orders.

Research of new tracing techniques requires (i) implementation of changes to the
tracing loop, and (ii) rigorous evaluation, with respect to a pre-existing baseline.

However, from a software engineering perspective, depending on the specific
nature of the required changes, this can be can be very difficult. In the same way
that assumptions about garbage collection behaviour often leak into programming
language implementations and specifications [Jibaja et al., 2011], assumptions about
tracing loop behaviour are also often baked into the garbage collector itself. This
makes it hard to change the core tracing loop without introducing unintended side
effects that may affect collector performance or correctness.

To enable easier research and experimentation, I developed auxiliary tracing, a
novel framework for implementing and evaluating new and existing tracing loop
designs. The auxiliary trace is a standalone trace of the heap which occurs directly

21
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before the main closure phase of the collection cycle (Figure 4.1). It solely marks and
scans objects; no actual collection work is done as part of the auxiliary trace. Instead,
the main garbage collection algorithm is responsible for tracing the heap a second
time, and sweeping, evacuating or compacting objects as usual.

Figure 4.1: Timing of the auxiliary trace with respect to the main closure phase

Crucially, the auxiliary trace is entirely side-effect free: it maintains it’s own meta-
data, and never makes any modifications to the heap which could interfere with the
main collection. This makes it an extremely useful framework for experimentation
and research.

The auxiliary trace is deliberately run before the main trace, to ensure that the
cache reacts similarly to the auxiliary trace as it would to the main trace; if the
auxiliary trace were run after the main trace, then that would displace data in the
cache and make it harder to form reliable, realistic measurements of tracing speed.

Auxiliary tracing offers two main possibilities which may have previously been
difficult to implement:

• The ability to test tracing irrespective of heap layout or collection algorithm
(Section 4.4).

• The ability to easily implement and evaluate a wide variety of tracing algorithm
designs.

Whilst the auxiliary trace may seem similar to the Sanity GC implemented in
MMTk (and similar debugging GCs implemented in other collection frameworks), it
has several key differences.

• Sanity GC is designed for debugging, and has numerous assertions enabled
that are unnecessary during regular garbage collector operation. The auxiliary
trace is designed for performance evaluation, and thus only performs the checks
necessary for collector correctness.

• The sanity GC is designed to be as simple as possible, so that its correctness
can be verified by visual inspection (even if this simplicity comes at the expense
of performance1). On the other hand, the auxiliary trace must have maximum
performance, and may sacrifice simplicity to achieve this goal. (However, the

1For instance, the sanity GC in the current version of MMTk core ‘marks’ objects by adding their
object reference to a hash set. This is extremely time and space inefficient.
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axillary tracer is still significantly simpler than the main trace, due to the lack
of object reclamation)

• The auxiliary trace runs before the main trace, whereas the sanity GC runs
after it. This has implications with regards to the heap ’shape’, as well as the
observed cache behaviour (since the main trace pollutes the cache turing the
heap traversal).

4.2 Design and Implementation

I implement auxiliary tracing into the new Rust version of MMTk [MMTk Contrib-
utors, 2023]. On a high level, the auxiliary tracing framework presents a trait called
AuxiliaryTraceWork, which describes a work packet for an abstract tracing loop
algorithm that is based around a queue containing some form of Item. Every con-
crete tracing loop algorithm that implements the AuxiliaryTraceWork trait needs
to choose a specific item type for the queue (e.g. Edge, ObjectReference, etc), and
implement four methods:

• new - this is simply boilerplate code to create a new AuxiliaryTraceWork packet
of the correct type.

• process_queue_item - this defines how a single queue Item should be pro-
cessed.

– For instance, in a Node-ObjRef tracing algorithm (Section 5.2, Listing 5.3),
this method will be passed a single ObjectReference as input. It needs to
scan the object, load the pointer fields, mark each of the children, and call
add_child_element() on every child reference that needs to be enqueued.

• scan_unmarked_slots and scan_unmarked_objrefs - these define how roots
should be processed.

– Depending on the requirements of the runtime being used, roots may be
provided as slots or object references or both.

– However, depending on the tracing algorithm, it may expect items on the
queue to be already marked or waiting to be marked, or might expect the
queue items to be of a different type (e.g. if the roots are provided as slots
but the algorithm expects object references).

– Therefore some pre-processing of roots may be necessary before they can
be added to the main queue. For instance, if provided with a list of root
slots, the Node-ObjRef algorithm may load each slot to obtain an object
reference, then mark the child objects and enqueue them for scanning
using regular AuxiliaryTraceWork packets.

– Where possible, I parallelise the process of processing the roots using a
dedicated work packet. Otherwise, the performance of the auxiliary trace
is harmed due to the serial execution of the root processing function.
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Furthermore, the AuxiliaryTraceWork trait has several other methods that provide
the machinery necessary for processing the queue, marking objects, adding new
elements to the queue, and flushing the output queue to a new AuxiliaryTraceWork
packet when it gets full. These methods have default implementations that are
adequate for most designs. However, if a particular tracing loop algorithm wishes to
override a specific aspect of the auxiliary tracing framework (e.g. to implement dual-
queues, or implement prefetching), it can simply re-implement one of the provided
methods.

Finally, the auxiliary tracing framework has two additional work packet types
(called AuxiliaryPrepare and AuxiliaryRelease) which are responsible for starting
and stopping the trace. This involves passing the roots to the scan_unmarked_slots
and scan_unmarked_objrefs functions to generate the first AuxiliaryTraceWork
packets, resetting metadata from the previous collection, and starting/stopping statis-
tics loggers.

To enable the auxiliary trace to run before the main trace, I added several new
work buckets called AuxPrepare, AuxClosure, and AuxRelease (Listing 4.1). The
AuxiliaryPrepare, AuxiliaryTraceWork and AuxiliaryRelease packets are added
to each of these buckets. This ensures that the auxiliary trace only begins after root
scanning is finished, and prevents the main closure phase from starting until after
the auxiliary trace is complete. Furthermore, the guarantees of MMTk’s work bucket
system ensure that no other work will be interleaved with the auxiliary trace, allowing
fair measurement of the tracing time.

Listing 4.1: Work bucket stages for the auxiliary trace
1 pub enum WorkBucketStage {
2 Unconstrained, // Always open
3 Prepare, // Preparation work & root scanning
4 AuxPrepare, // Generate AuxiliaryTraceWork packets
5 AuxClosure, // Perform trace of the heap
6 AuxRelease, // Auxiliary tracing cleanup
7 Closure, // Transitive closure via strong references
8 SoftRefClosure, // Handle Java-style soft references
9 ...

10 }

Together, these design elements allow a fully-functional, high-performance, paral-
lelised tracing loop to be created by implementing just four simple methods. A
visualisation of an auxiliary trace is shown in Figure 4.2.

4.3 Validation

In order for the auxiliary trace to be an effective model of the main tracing loop, it
needs to be both correct and performant. This section discusses how the auxiliary trace
was validated against existing baseline implementations.



§4.3 Validation 25

Figure 4.2: A visualisation of an auxiliary trace, generated using the GC visualisation
techniques developed by Huang et al. [2023]. The lilac work packets (left of center) rep-
resent the auxiliary trace, and the orange work packets (center of the diagram) repre-
sent the main trace. This trace performs the Edge-Slot-Dual tracing algorithm, using the
AuxTraceEdgeSlotPackets which implement the AuxiliaryTraceWork trait.

4.3.1 Experimental Methodology

The following is the standard empirical evaluation methodology used throughout
this thesis. For completeness, all hardware and software information is discussed,
even aspects which are not directly relevant to the following section.

Three primary hardware platforms are used to perform all experiments: two AMD
machines (based on the Zen 2 and Zen 4 microarchitectures), and an Intel machine
(based on the Coffee Lake microarchitecture). Their specifications are listed in Table
4.1. All three machines run Ubuntu 22.04.3 LTS with a 6.2.0-33-generic kernel. To
reduce noise in measurements, frequency scaling is disabled on all machines, and
almost all background daemons are disabled.

All evaluations use a development version of mmtk-core2, based on the v0.18 re-
lease. I use the OpenJDK runtime [OpenJDK contributors, 2023] for my evaluations,
as it is the most mature and well-optimised VM integrated with MMTk. Compati-
ble versions of the mmtk-openjdk binding3 and OpenJDK fork4 are used. MMTk is
built with version 1.66.1 of the Rust compiler in release mode using profile-guided
optimisation5.

Experiments are run across seventeen up-to-date, diverse benchmarks from RC16

of the Chopin branch of the DaCapo Benchmark Suite [Blackburn et al., 2006]. The
batik and jme benchmarks are excluded because they do not perform a GC with the
configured heap size. The tradesoap and tradebeans benchmarks are also excluded

2Commit f1a0bb7fbec97dd84e35a40e8be01cf5018f2f9e
3Commit 54a249e877e1cbea147a71aafaafb8583f33843d
4Commit 28e56ee32525c32c5a88391d0b01f24e5cd16c0f (branch jdk-11.0.19+1-mmtk)
5PGO is based on profiling data from 5 iterations of the fop benchmark with a 4 MB stress factor to

increase the frequency of garbage collection.
6DaCapo 23.8-Chopin Release Candidate 1. At the time of writing, the official release of Chopin, the

new major DaCapo version, is imminent.

https://github.com/mmtk/mmtk-core/commit/f1a0bb7fbec97dd84e35a40e8be01cf5018f2f9e
https://github.com/mmtk/mmtk-openjdk/commit/54a249e877e1cbea147a71aafaafb8583f33843d
https://github.com/mmtk/openjdk/commit/28e56ee32525c32c5a88391d0b01f24e5cd16c0f
https://github.com/dacapobench/dacapobench/releases/tag/v23.9-RC1-chopin
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Table 4.1: Hardware specifications

Architecture Coffee Lake Zen 2 Zen 4

Manufacturer Intel AMD AMD

Model Core i9-9900K Ryzen 9 3900X Ryzen 9 7950X

Year 2018 2019 2022

Technology node 14 nm 6nm/7 nm (Core/IO) 5 nm/6 nm (Core/IO)

Clock 3.6 GHz 3.8 GHz 4.5 GHz

SMT × Cores 2 × 8 2 × 12 2 × 16

L1 Data Cache 32KB × 8 32KB × 12 32KB × 16

L2 Cache 256KB × 8 512KB × 12 1MB × 16

L3 Cache 16MB × 1 16MB × 4 32MB × 2

Memory Size 128GB 64GB 64GB

Memory Type DDR4 3200MHz DDR4 2133MHz DDR5 4800MHz

due to known compatibility issues7. Unless otherwise specified, the heap size for
each benchmark is set to be twice the minimum heap size needed to complete the
benchmark within the timeout period of 20 mins (i.e. a 2x minheap).

When executing benchmarks, the following JVM arguments are applied: -server
to use the C2 JIT compiler; -XX:-TieredCompilation -Xcomp to speed up the warmup
of the JVM; -XX:+DisableExplicitGC to disable application-initiated collections;
-XX:MetaspaceSize=500M to make the metaspace large enough to avoid any need for
metaspace garbage collection (since MMTk does not handle this); and -XX:+UseThirdPartyHeap
to force OpenJDK to use MMTk as its memory manager.

Each benchmark is invoked 20 times, unless otherwise specified. In a deviation
from standard empirical evaluation guidelines in the garbage collection literature,
only a single iteration (-n 1) is used for each benchmark invocation, rather than
performing multiple iterations and measuring the last. This approach is taken for
three main reasons: (i) mutator performance is not being measured, so there is no
need to wait for the JIT compiler to warm up; (ii) in our testing, increasing the number
of invocations and reducing the number of iterations gives the most stable results with
the smallest spread; and (iii) performing additional iterations dramatically increases
the total running time of the benchmark suite8, without any noticeable benefit.

Finally, unless otherwise specified, the Immix [Blackburn and McKinley, 2008]
algorithm is used in the main trace to perform the actual garbage collection. This is
configured at run-time using the environment variable MMTK_PLAN=Immix.

7https://github.com/dacapobench/dacapobench/issues/198
8This was a major concern, as longer benchmark running times would have reduced the number of

experiments that could be run, particularly in Chapter 6, where there was a very large state space to
explore.

https://github.com/dacapobench/dacapobench/issues/198
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Figure 4.3: Distribution of errors in GCs with an incorrect number of marked objects (Zen 2)

4.3.2 Validation of Correctness

To validate the correctness of the auxiliary tracer, I configure MMTk to run an aux-
iliary trace and a sanity trace on every GC, and log the number of unique objects
marked by each. If the two traces report the same object counts, then we can have a
high degree of confidence that the auxiliary trace is correctly implemented.

For the majority of benchmarks, the sanity and auxiliary trace report exactly the
same number of marked objects for every collection cycle. However, for three of the
benchmarks (lusearch, sunflow, and xalan), in a small number of collection cycles (0.7%)
the sanity GC marks more objects than the auxiliary trace. For the remaining 99.3% of
collections, the number of objects marked by each trace is identical. Of the collection
cycles which have incorrect object counts, the error is usually less than 0.1%. Figure
4.3 plots the relative magnitude of the error for all collection cycles which exhibited a
different number of marked objects.

Although we were not able to definitively diagnose the source of this issue, my
hypothesis is that it is related to Java’s finalisation semantics. In Java, an object which
is undergoing destruction can resurrect itself using a finaliser, by adding a reference
to itself from another object which is still live. In MMTk, finalisers are processed
in the FinalRefClosure work bucket stage, which occurs after the auxiliary trace is
finished. However, the sanity GC is not scheduled until the Final work bucket stage,
which can only be processed after finalisation is complete. Therefore it is possible
that the size of the heap may increase between the auxiliary GC and the sanity GC.
This hypothesis is supported by the observation that the sanity GC never marks less
objects than the auxiliary trace, only more. Furthermore, only specific benchmarks
are affected by this issue, which makes sense as not all benchmarks would implement
finalisers.

Regardless of the root cause of this problem, my measurements show that the issue
is extremely rare. Even when the auxiliary trace marks a different number of objects,
the relative difference is small enough that any variation in the time taken to execute
the auxiliary trace would be smaller than our measurement precision. Therefore, I
argue that these minute differences do not cast doubt on the main findings of this
thesis.
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4.3.3 Validation of Performance

In order for auxiliary tracing to be an effective model of the main tracing loop, it must
have competitive performance. One way to validate the tracing speed of the auxiliary
tracing implementation is to compare its execution time to that of the closure phase
of the main garbage collector.

Since the auxiliary trace does not compact or evacuate objects, it is important
to compare it to a non-generational non-moving garbage collection algorithm. This
ensures that both traces perform a similar amount of work. MMTk features two
garbage collectors which meet this criteria: non-moving immix (a variation of the
immix [Blackburn and McKinley, 2008] collection algorithm that does not perform
defragmentation), and mark-sweep. However, MMTk’s mark-sweep implementation
is known to have some serious performance issues, so the non-moving immix collector
is chosen as a baseline.

Note that when measuring the time taken by the main trace, it is important not
to run the auxiliary trace beforehand, as it may displace data in the cache and affect
the performance results. Therefore I create two builds of MMTk, one which has the
auxiliary trace enabled, and another which has it disabled. Both builds use non-
moving immix as the underlying garbage collection algorithm, to ensure that the
underlying heap structure is roughly the same.

I run twenty invocations of the benchmark suite on Zen 2, with the heap size set
to four times the minimum heap9. For each configuration, I record the total time
spent executing the relevant tracing loop across all garbage collection cycles. This is
divided by the number of GCs triggered during the benchmark, to obtain the average
duration of each trace of the heap. The results are presented in Figure 4.4. Overall,
the auxiliary trace is 4% faster, beating the non-moving immix trace in 14 of the 16
benchmarks. However, in two of the benchmarks, eclipse and zxing, it performed
substantially worse, taking 2.2x and 2.9x as long to trace the heap, respectively. When
these two benchmarks are excluded, the auxiliary trace outperforms the main trace
by 16.5% on average.

The cause of these two outlier results is unclear. Performance counter data indi-
cates that on eclipse, the auxiliary tracer experiences 1.4x as many L1D cache misses
and 1.7x as many back-end stalls as compared to the main trace; however on zxing the
auxiliary tracer exhibits opposite statistics, with 6.8% and 27% less misses and stalls
respectively. Many of the other benchmarks also display wide-ranging variations in
these statistics, indicating that cache misses and back-end stalls may not have a large
impact on some benchmarks. Furthermore, a visual inspection of the execution the
auxiliary trace (using the GC visualisation techniques introduced by Huang et al.
[2023]) on the eclipse benchmark did not uncover any major work packet distribution
problems that might have an outsized impact on tracing time.

Overall, these results show that the auxiliary tracer is competitive with the existing
tracing loop implementation. This makes it a credible platform for evaluating new

9Smaller heap sizes were unable to run most benchmarks due to the inability of the non-moving
immix GC to defragment the heap, which resulted in out-of-memory errors.
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Figure 4.4: Average execution time of auxiliary trace vs non-moving immix trace (Zen 2)

performance optimisations in the context of the tracing loop.

4.4 Case Study: Comparison of Heap Layouts

The logical structure of the heap is defined by the shape of the object graph. However,
the physical organisation of the heap in memory can change depending on where
each object is located. These varying heap layouts can have an impact on performance,
particularly if the physical placement of objects is reflective of the logical relationships
between them (with respect to the object graph).

Compacting and evacuating garbage collectors can alter the layout of the heap
by moving objects, thereby changing application performance. For instance, it is
well known that the semispace collector improves mutator performance by copying
objects to the tospace in heap traversal order [Blackburn et al., 2004a]. Researchers
have even explored online object reordering schemes which reorder objects based on
observed mutator access patterns to improve locality [Huang et al., 2004; Yang et al.,
2020]. Even non-moving collectors can influence the heap layout: design choices in
the allocator (e.g. free list vs slab vs bump-pointer, global vs thread-local buffers,
range of size classes, etc) can impact where objects are placed in memory. Although
the potential impact of heap layout on mutator performance is clear, one question
remains unanswered: how does the heap layout affect garbage collector performance?
In particular, how does the heap layout produced by a garbage collector affect the
speed of the subsequent tracing collection?

In the past, this has been difficult to benchmark because object movement happens
during the tracing phase, meaning that the tracing speed will be directly impacted
by any changes to the object movement code. However, auxiliary tracing enables us
to decouple these two aspects of the collector, allowing us to measure tracing speed
independently of the algorithm responsible for generating a particular heap shape.

To answer the question posed by this case study, I select five different garbage
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Figure 4.5: Average auxiliary trace time, by garbage collection algorithm (Zen 2)

collection algorithms which generate a spectrum of heap layouts: semispace, mark-
compact, immix, non-moving immix, and mark-sweep. These algorithms vary sig-
nificantly based on allocation policies and the degree to which they move objects. I
configure the auxiliary tracer to use the canonical mark-sweep tracing loop design
(also known as Node-ObjRef 10), and run it in front of each of the five GC algorithms.
The average execution time of the auxiliary tracing loop for each GC algorithm is
shown in Figure 4.5 below, normalised to the semispace results.

Unsurprisingly, the heap layout produced by the semispace algorithm results in
the shortest auxiliary tracing time. This is because semispace copies objects to the
tospace in direct traversal order; hence, any subsequent traversals of the heap will
effectively be a linear scan through memory, which is a very cache-friendly operation.
On the other hand, the mark-compact algorithm, despite producing a heap layout
with a small memory footprint, does not improve auxiliary trace times as much
as the semispace collector. This could possibly be because the Lisp 2 compaction
algorithm implemented in MMTk simply compacts all objects down to the start of the
space, without changing their ordering. Therefore the compaction operation does not
improve the locality of objects with respect to the heap traversal order. Surprisingly,
the Immix algorithm, which can perform defragmentation, leads to lower tracing
performance than the mark-sweep collector, which is non-moving. This could be
because the defragmentation algorithm used in Immix does not take traversal order
locality into account when moving objects. Finally, the non-moving immix collector
exhibits similar results to the main immix algorithm, presumably because they use
the same heap structure.

This case study demonstrates that the auxiliary tracing framework opens up new
evaluation possibilities which were not previously possible.

10See Section 5.2 for more details on this naming scheme
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Figure 4.6: Execution time impact of alignment encoding (Zen 2)

4.5 Case Study: Alignment Encoding

Recently, Cai [2023] implemented an object scanning optimisation known as alignment
encoding into the MMTk OpenJDK binding. This technique, which was originally
proposed by Garner et al. [2011], involves encoding within the klass pointer (that
resides in the header of each object) the locations of the object’s pointer fields. This
optimisation is motivated by the observation that (i) all instances of a class must
contain a klass pointer to the same type information block (TIB), and (ii) all instances
of a class have the same layout of pointer fields. By controlling the location at which
the TIB is allocated, it is possible to encode some information about the object ‘shape’
in the address of the TIB. Therefore, for most objects, the locations of the pointer fields
can be determined simply by reading the klass field, without needing to actually load
the pointer. This reduces the cost of object scanning.

As a case study of the flexibility of the auxiliary tracing algorithm, I added support
for alignment encoding to the auxiliary tracing loop, and benchmarked it against the
standard object scanning strategy. The results are shown in Figure 4.6.

Overall, the alignment encoding optimisation reduces heap tracing times by ap-
proximately 4.3%. This is in line with the results observed by Cai, who saw a 4.0%
speedup. The fact that these two results are extremely similar helps validate the
effectiveness of the auxiliary tracing framework as a model of the main tracing loop.

4.6 Limitations

Whilst it is clear that auxiliary tracing is a flexible and powerful tool for evaluating
new tracing loop designs, it is not a perfect model. Namely, there are a few limitations
of what can be tested using the auxiliary tracing loop:

• The auxiliary trace cannot be used to evaluate evacuation or compaction tech-
niques, since it is designed to be side-effect free, and hence must not move
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objects.

• In order to avoid interfering with the main tracing loop, all marking metadata
for the auxiliary trace is stored on the side in a dedicated bytemap. Although it
would be possible to implement in-header mark bits for the auxiliary trace, this
would either require the addition of an extra word in front of every allocation,
runtime-specific support for the auxiliary mark bits, or reusing the existing
mark bits in the object header and clearing them before the main GC. None of
these solutions are optimal. Therefore, the main tracing loop may be a better
environment for evaluating the effect of the location of the mark bit.

• As currently implemented, the auxiliary tracer can only model a full-heap trace,
not nursery collection. Therefore the insights gained from experimentation
with the auxiliary trace may not be directly applicable to generational collectors.
However, in principle, it shouldn’t be impossible to implement auxiliary tracing
of only part of the heap.

• Auxiliary tracing can only measure changes in execution time for the tracing
loop, not the overall GC time

Despite these limitations, I believe that auxiliary tracing is a useful tool, as demon-
strated by the following chapters of this thesis.

4.7 Summary

In this chapter we introduced a new framework for evaluating variations on the
tracing loop. We also presented a study of how this technique can be used to evaluate
object scanning techniques. In the next chapter, we use our new auxiliary tracing
framework to evaluate structural variations on the core tracing loop.



Chapter 5

Study of Tracing Loop Algorithms

Chapter 4 presented auxiliary tracing, a novel framework for performing performance
analysis on the canonical garbage collection tracing loop. In this chapter, I leverage
this framework to evaluate variations on the structure of the core tracing loop present
in all tracing garbage collectors.

In Section 5.1, I discuss several possible design decisions that can be made when
implementing a tracing loop. Then, in Section 5.2, I present a novel taxonomy which
can be used to classify tracing loop algorithms. Finally, in Section 5.3 I implement
seven different tracing loop algorithms in the auxiliary tracing framework and eval-
uate both their performance, and the number of queueing operations performed by
each algorithm.

5.1 Introduction

Although it is well known that the tracing loop is one of the most significant cost
contributors to tracing garbage collection, there has been surprisingly little research
on how various tracing loop design decisions can impact performance.

For instance, consider the canonical tracing loop algorithm for mark-sweep garbage
collection (Listing 5.1), as described by Jones et al. [2023]. For a detailed discussion
of each of the steps in this algorithm, see Section 2.1.1.

Listing 5.1: The canonical mark-sweep tracing loop [Jones et al., 2023]
1 for objRef in root_set:
2 objRef.testAndMark()
3 queue.add(objRef)
4

5 while not queue.isEmpty():
6 objRef = queue.remove()
7 gcmap = objRef.getGcMap()
8 for field in gcmap.pointers():
9 childRef = field.load()

10 if childRef != null:
11 if childRef.testAndMark():
12 queue.add(childRef)

33
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This tracing algorithm maintains a queue of references to objects which have been
marked, but are still waiting to be scanned. When an object is popped from the queue,
it gets scanned, and each of the child objects are marked and possibly enqueued for
further processing. According to the conventional wisdom, this is the best tracing
loop design, because objects are only added to the queue if they have not already
been scanned. This limits the number of queueing operations to be proportional to
the number of objects in the heap, reducing queue overheads.

However, Garner et al. [2007] conducted an analysis of this tracing loop design
using replay tracing, and found that queueing operations were not a bottleneck. In
fact, queue operations accounted for no more than 11% of the total trace execution
time. They proposed an alternative design, called ‘edge-ordered enqueueing’ (Listing
5.2), which enqueues objects before they are marked. This change increases the number
of queueing operations (since there is nothing stopping multiple references to the
same object being enqueued), however that is counteracted by other positive factors.
Namely, the temporal locality of the tracing loop is improved, as both the mark and
scan operations occur contemporaneously during the same iteration of the loop.

Listing 5.2: Edge enqueueing tracing loop [Garner et al., 2007]
1 for objRef in root_set:
2 objRef.testAndMark()
3 queue.add(objRef)
4

5 while not queue.isEmpty():
6 objRef = queue.pop()
7 if objRef.testAndMark():
8 gcmap = objRef.getGcMap()
9 for field in gcmap.pointers():

10 childRef = field.load()
11 if childRef != null:
12 queue.add(childRef)

Since Garner et al.’s study was conducted in the context of the mark-sweep
garbage collector, there is one limitation of the edge-ordered design that was not
directly addressed. Namely, it is not compatible with copying garbage collection algo-
rithms. Typically, in the tracing loop of a copying collector, the objRef.testAndMark()
operation is replaced by a field.forward() operation. If the object referenced by
the field has not previously been marked, the forwarding function is responsible for
moving the object and updating the field to point to its new location1. However, in
the edge-ordered tracing algorithm, if the object needs to be moved (on line 7), it is
impossible to store the new object reference back to the slot, as the location of the
field was discarded in a previous iteration of the loop.

1This is a gross simplification of what is involved in the forwarding operation. Typically, an object
can be in one of three states: unforwarded, being forwarded, or forwarded. The state of the object is
tested and set atomically to ensure that multiple threads do not attempt to forward the same object.
Any thread which observes an object in the ‘being forwarded’ state waits for it to be moved before
proceeding. True or False is returned by the forwarding function to indicate whether the calling
thread was the one which moved the object, and thus is responsible for scanning it.
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This limitation of the edge-ordered tracing algorithm naturally leads to two pos-
sible design alternatives: enqueueing slots rather than object references, or possibly
enqueueing a tuple of both the slot and the object reference. Both of these tracing
loop designs would enable support for copying garbage collection, at the expense of
either lower temporal locality of slot accesses, or higher queueing overheads. The
possible performance tradeoffs of these two designs have not been evaluated.

This short thought exercise exposes a previously-underexplored design aspect of
tracing loop algorithms, and suggests the need for a more thorough exploration of
the design space.

5.2 Taxonomy of Tracing Loop Designs

In the previous section, I demonstrated that there are two key design decisions which
can influence the structure of the tracing loop: when objects are marked, and what
type of items are added to the queue. Based on this observation, I propose a novel
taxonomy which classifies existing tracing loop designs and uncovers several new
tracing loop structures which have not previously been evaluated.

The first axis of my taxonomy describes the timing of when objects are marked.
To mirror the existing literature, I use the following terminology:

• Node-ordered enqueueing describes algorithms which test and mark objects
before they are enqueued. Objects which were previously marked are not added
to queue to avoid scanning the same object multiple times.

• Edge-ordered enqueueing describes algorithms which unconditionally add ob-
jects to the queue. Instead, objects are only tested and marked after they are
popped from the queue. Although multiple references to the same object may
be enqueued, each object is still scanned exactly once.

The second axis of my taxonomy corresponds to the type of the items pushed to the
queue. There are three possibilities:

• ObjRef enqueuing, which involves first loading the slot to obtain a reference to
the object, and then enqueueing the object reference.

• Slot enqueueing, which simply involves enqueueing the location of the slot
itself. After the slot is popped from the queue, it is necessary to load it to
determine the object reference.

• Tuple enqueueing involves pushing a tuple of both the slot and the object
reference to the queue.

This taxonomy describes six possible tracing algorithms: Node-ObjRef, Node-Slot,
Node-Tuple, Edge-ObjRef, Edge-Slot, and Edge-Tuple. For completeness, the pseu-
docode of each tracing algorithm is listed in Figure 5.1.
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Listing 5.3: Node-ObjRef
1 while not queue.isEmpty():
2 objRef = queue.remove()
3 gcmap = objRef.getGcMap()
4 for field in gcmap.pointers():
5 childRef = field.load()
6 if childRef != null:
7 if childRef.testAndMark():
8 queue.add(childRef)

Listing 5.4: Edge-ObjRef
1 while not queue.isEmpty():
2 objRef = queue.remove()
3 if objRef.testAndMark():
4 gcmap = objRef.getGcMap()
5 for field in gcmap.pointers():
6 childRef = field.load()
7 if childRef != null:
8 queue.add(childRef)

Listing 5.5: Node-Slot
1 while not queue.isEmpty():
2 slot = queue.remove()
3 objRef = slot.load()
4 gcmap = objRef.getGcMap()
5 for field in gcmap.pointers():
6 childRef = field.load()
7 if childRef != null:
8 if childRef.testAndMark():
9 queue.add(field)

Listing 5.6: Edge-Slot
1 while not queue.isEmpty():
2 slot = queue.remove()
3 objRef = slot.load()
4 if objRef != null:
5 if objRef.testAndMark():
6 gcmap = objRef.getGcMap()
7 for field in gcmap.pointers():
8 queue.add(field)

Listing 5.7: Node-Tuple
1 while !queue.isEmpty():
2 slot, objRef = queue.remove()
3 gcmap = objRef.getGcMap()
4 for field in gcmap.pointers():
5 childRef = field.load()
6 if childRef != null:
7 if childRef.testAndMark():
8 queue.add((field, childRef))

Listing 5.8: Edge-Tuple
1 while not queue.isEmpty():
2 slot, objRef = queue.remove()
3 if objRef.testAndMark():
4 gcmap = objRef.getGcMap()
5 for field in gcmap.pointers():
6 childRef = field.load()
7 if childRef != null:
8 queue.add((field, childRef))

Figure 5.1: Pseuodocode of the six tracing algorithms described by my taxonomy. Each
tracing algorithm has two key design factors: the queueing strategy (edge- or node-ordered
enqueueing), and the queue item type (slot, object reference, or a tuple of both). As discussed
in Section 5.2.2, the Node-Slot and Node-Tuple algorithms are not necessarily sensible designs.
Although they are included here for completeness, they are shown in grey.
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5.2.1 Dual-Queue Designs

MMTk’s main tracing loop implements an interesting variation on the Edge-Slot de-
sign. Instead of having a single loop which performs a load, mark, and scan operation
on every item in a queue, MMTk uses a dual-queue and dual-loop algorithm2, which
I call Edge-Slot-Dual. Each ProcessEdgesWork packet accepts a list of slots as input,
known as the edge queue. The first loop processes this input list, dereferencing each
slot to obtain the contained object reference, and marking each object. Objects which
were not previously marked (i.e. objects which require scanning) are added to a
secondary node queue. The second loop then processes the node queue, scanning each
object and enqueueing it’s pointer fields into a new ProcessEdgesWork packet. Once
the new work packet is full, it is added to the relevant work bucket and processed
by the next available GC worker. This tracing loop design can be expressed by the
pseudocode in Listing 5.9.

Listing 5.9: Edge-Slot-Dual tracing loop
1 while not edgeQueue.isEmpty(): # Handled by the work bucket system
2 while not edgeQueue.isEmpty():
3 slot = edgeQueue.pop()
4 objRef = slot.load()
5 if objRef != null:
6 if objRef.testAndMark():
7 nodeQueue.add(obj);
8

9 while not nodeQueue.isEmpty():
10 objRef = nodeQueue.pop()
11 gcmap = objRef.getGcMap()
12 for field in gcmap.pointers():
13 edgeQueue.add(field)

This dual-queue style of design is adaptable to several of the other tracing algorithms
in my taxonomy. For instance, a Node-ObjRef-Dual algorithm could be created by
exchanging the loops on lines 2-7 and 9-13. This makes it a candidate for a third
axis of the taxonomy. However, in this thesis, I only focus on single queue designs,
because I believe that the memory access patterns generated by a single loop are
generally more likely to be cache-friendly. This hypothesis is supported by the
performance measurements shown in Section 5.3.1 and Chapter 6. However, I still
include the Edge-Slot-Dual algorithm in my performance evaluations as a baseline
for comparison. Further exploration of dual-queue designs is left as an area for future
research.

2This design is originated in historical necessity. Early in the porting phase of each runtime to
MMTk, it is necessary to call out to the runtime to scan each object. The most practical way to collect
the results of this operation is to have the runtime add the work a separate queue. Once optimized,
the scanning code can be moved to the binding, opening the possibility of easily implementing other
designs. This dual queue design was established during the original ports of MMTk and has remained
in place, apparently on the basis of historical inertia.



38 Study of Tracing Loop Algorithms

Table 5.1: Properties of tracing loop designs

Name Supports copying GCs
Before enqueueing...

Checks if null Checks if marked

Edge-Slot-Dual ✓ ✗ ✗

Edge-Slot ✓ ✗ ✗

Edge-ObjRef ✗ ✓ ✗

Edge-Tuple ✓ ✓ ✗

Node-ObjRef ✓ ✓ ✓

Node-Slot ✓ ✓ ✓

Node-Tuple ✓ ✓ ✓

5.2.2 Discussion

The seven algorithms discussed above present fundamentally different tradeoffs with
respect to the number of items enqueued, the size of the items enqueued, the spatial
and temporal locality of the slot loading, object scanning and marking operations,
and more. Several of the differences between the tracing algorithms are summarised
in Table 5.1 and discussed below.

The total number of queueing operations performed by each tracing design is depen-
dent on the timing of the mark operation. In node-ordered designs, each object is
only enqueued for scanning when it is first marked. Therefore the number of queue
operations will be proportional to the number of nodes (objects) in the heap. On the
other hand, the Edge-ObjRef and Edge-Tuple designs enqueue all non-null references,
regardless of whether they point to an object that has already been marked. Hence,
the amount of queue operations is proportional to the number of edges (references)
in the heap. However, the Edge-Slot and Edge-Slot-Dual algorithms are even worse,
enqueueing null references in addition to the non-null references. This is because it is
impossible to determine whether a slot contains a null reference without first loading
the slot. The Edge-Slot algorithms delay the slot loading operation until after the slot
is popped from the queue, which means that even null-containing slots get enqueued.

As discussed in Section 5.1, the Edge-ObjRef design is not directly adaptable to
moving garbage collection. This is because the field.forward() operation (which
normally replaces the testAndMark operation) only occurs after the location of the slot
has been discarded. Therefore it is not possible to write the new location of the object
back into the slot that originally referenced it. All of the other edge-ordered designs
are compatible with copying garbage collection, because the slot is passed through
the queue so that it is accessible at the time of the forwarding operation. On the other
hand, the node-ordered designs are all implicitly compatible with copying garbage
collectors, because the forwarding operation occurs immediately after loading the slot.
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Figure 5.2: Average auxiliary execution time, by tracing algorithm (Zen 2, Zen 4, Coffee Lake)

Although the taxonomy describes Node-Slot and Node-Tuple designs, they are not
likely to be sensible algorithms to implement. The Node-Slot design (Listing 5.5) is
similar to Node-ObjRef, except the slot is enqueued, instead of the object reference.
This means that the slot needs to be loaded twice: once on line 6, and a second time
on line 3. The Node-Tuple design (Listing 5.7) is slightly better in that it enqueues
both the object reference and the slot, to avoid any need to load the slot a second
time. However, after the slot is popped from the queue on line 2, it is never used
again. This introduces extra queueing overheads no reason. Furthermore, neither
of these designs offer alternative advantages (e.g. better support for copying GCs)
that would make them a good choice over Node-ObjRef. Since neither the Node-
Slot nor the Node-Tuple design are sensible, in Figure 5.1 they are both greyed out.
However, for the sake of completeness, I still implement both designs and evaluate
their performance characteristics.

5.3 Evaluation

I implemented all seven of the tracing loop algorithms using the auxiliary tracing
framework. All implementations were run through the same validation procedures
described in Section 4.3.2 to ensure that they are both correct and performant.

5.3.1 Performance Analysis

Figure 5.2 shows the relative performance of each of the seven tracing loop designs.
The graph is normalised to the Edge-Slot-Dual result for each microarchitecture, to
enable easy comparison to MMTk’s default tracing algorithm.
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Figure 5.3: Number of objects enqueued by each tracing algorithm (Zen 2)

These results demonstrate that Edge-ObjRef is the fastest tracing algorithm. On
Zen 4, it is 8.3% faster than the default Edge-Slot-Dual tracing algorithm; on Zen 2
and Coffee lake, it is almost 16% faster. Generally speaking, the Edge-Slot algorithm
performs better than the Edge-Tuple algorithm, which may make it a better candidate
for copying garbage collectors. Unsurprisingly, the Node-Tuple and Node-Slot de-
signs perform worse than Node-ObjRef, which makes sense as they are not sensible
algorithms. Therefore we exclude them from further analysis.

Node-ObjRef performs very differently depending on the microarchitecture: on
Zen 2 and Coffee Lake, it is the second-fastest tracing algorithm; on Zen 4, it is the
worst out of the 5 sensible tracing loop designs. This was a surprise, as I expected
Zen 4 to behave comparably to the Zen 2 microarchitecture, which is very similar.
However, even with fresh builds of each of the tracing loops and a rerun of the
evaluation process, the results were reproducible.

5.3.2 Enqueued Objects

I instrumented the add_child_element() function of the auxiliary tracing framework
to count every item which gets added to the queue. Figure 5.3 shows the number of
objects enqueued by each tracing loop.

The three node-enqueueing designs perform a similar number of enqueueing
operations, as all non-null objects get enqueued exactly once (since they are only
queued when they are first marked). The Edge-ObjRef and Edge-Tuple designs incur
a greater number of queueing operations (2.6 times as many as the node-ordered
designs) because every object reference is enqueued, regardless of whether the object
it points to is already marked. The Edge-Slot and Edge-Slot-Dual designs see an
even even larger number of queueing operations (4.9x as many as the node-ordered
designs), as null references are additionally enqueued. However, these factors are all
very workload dependent, as they can vary significantly based on the connectedness
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of the object graph, the frequency of null references, etc. For instance, h2 has little to
no null references, so there is little difference between the Edge-Slot and Edge-ObjRef
designs; whereas pmd has a significant number of null references. Similarly, in avora,
each object is referenced on average 3.4 times, whereas on tomcat it is only referenced
1.7x times, therefore increasing the number of operations that the edge-enqueueing
designs have to perform. The biojava benchmark is a massive outlier, with almost 168
times as many references as objects.

One major observation based on these results is that the queue operations do not
define tracing loop performance. Even in the biojava benchmark, which forces the edge-
enqueueing designs to perform a very large number of queueing operations, there is
relatively little difference in measured performance between edge- and node-ordered
designs. See Appendix B for benchmark-specific comparisons of each of the tracing
loops, both with and without prefetching.

5.4 Summary

The object tracing loop is at the heart of every tracing garbage collector and is critical
to garbage collection performance. In this chapter, I identified various design deci-
sions that can be made with respect to the structure of the tracing loop, and proposed
a taxonomy that can be used to categorise the design space. Using the auxiliary trac-
ing framework, I evaluated several variations on the standard tracing loop structure.
I discovered that the Edge-ObjRef tracing loop performs the best by default (without
any prefetching) on all tested hardware platforms. However, the comparative speed
of each tracing loop can vary significantly depending on the microarchitecture.
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Chapter 6

Prefetching

In Chapter 5, I identified five viable tracing loop designs, each with a unique set of
tradeoffs. One factor that was left unexplored was the effect of prefetching on each
of the designs: what opportunities are there for software cache prefetching, and how
effective are they?

In this chapter, I explore the relationship between software cache prefetching
and tracing loop algorithms. In Section 6.1, I identify the three main prefetching
opportunities (slots, objects and metadata), and identify the structural limitations that
each tracing algorithm places on prefetching. Section 6.2 discusses how I physically
implemented the prefetching into MMTk without introducing unintended overheads.
In Section 6.3, I measure the effects of each type of prefetching (and various prefetch-
ing distances) on each of the tracing loops. Following this, in Sections 6.4 and 6.5 I
evaluate each of the different types of prefetching instruction.

6.1 Opportunities for Prefetching

In order to scan an object, there are three1 primary memory accesses which need to
occur:

i) Load the slot (to obtain the object reference)

ii) Load the object (to scan the fields)

iii) Test and set the mark bits for that object (to mark it)

In theory, each of these accesses are potential candidates for prefetching. However, in
practice, the effectiveness of prefetching in each of these scenarios may be limited by
the structure of the tracing loop.

For instance, in node-ordered designs, during the process of object scanning it is
necessary mark each of the object’s children. This involves loading each of the fields
containing child object references, and modifying the metadata for those objects (in

1In object-oriented programming languages like Java, a fourth load is also necessary, in order to
fetch the type information block so that the pointer fields of the object can be found. Implementing
prefetching for this load is left as an area for future work.

43
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order to mark them). However, it is not feasible to prefetch the fields (slots) in this
case, because the location of each field is only identified immediately before it is
loaded; there is no delay during which the field contents could be prefetched into
memory. Similarly, it is not possible to prefetch the metadata without knowing the
value of the object reference stored in the field, and since the marking operation occurs
immediately after the field load, there is no opportunity for prefetching. Therefore,
in node-ordered tracing loop designs, only prefetching of child object references is
effective, since the prefetch operation can occur whilst the object reference is on the
queue waiting to be scanned.

The Edge-ObjRef and Edge-Tuple tracing algorithms are similar to the node-
ordered designs, in that they do not support slot prefetching. During the scanning
process, each field is immediately loaded so that the object reference can be added to
the queue, so there is no benefit to prefetching the slots. However, the mark operation
is delayed until after the object reference (or the tuple) is popped from the queue;
therefore it is possible to prefetch the metadata in advance, whilst the object is waiting
in the queue.

Although the Edge-Slot and Edge-Slot-Dual algorithms support all three types
of prefetching, there are still some restrictions. Namely, the object and metadata
prefetch operations both require the object reference. However, the value of the object
reference is not known until the slot is loaded. Hence, if the object and metadata
need to be prefetched at distance X, it is necessary to first prefetch the slot at some
distance X + Y, so that the slot is in the cache when it is loaded at time X.

Prefetching is also possible in the root processing packets. For instance, the
Node-Slot tracing algorithm expects all roots to be marked and enqueued as ob-
ject references. Since OpenJDK provides the roots as a list of unmarked slots, a
AuxTraceNodeObjRefRoots packet is created to load each slot, mark the object ref-
erence contained within it, and enqueue the object reference for regular processing.
This is a simple queue processing problem, which is easily adapted to use prefetch-
ing (by prefetching ahead of the head of the queue). However, the effect of adding
prefetching to these packets would be relatively small, since root processing packets
only constitute a relatively small proportion of the overall tracing work.

The prefetching opportunities available in each tracing loop design are sum-
marised in Table 6.1.

6.2 Implementation

The modular design of MMTk enables easy implementation of prefetching operations
on slots, objects and metadata.

First, it is necessary to implement prefetch operations on the Address data type,
which is the fundamental representation of a location in memory. I add two meth-
ods, prefetch_load and prefetch_store, which conditionally call the relevant com-
piler intrinsics, depending on architecture support2. Initially, I use the non-temporal

2Stable versions of Rust currently only support prefetching on x86/x86_64 architectures which have
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Table 6.1: Prefetching opportunities by tracing loop design

Name Slot Object Metadata Root Slots Root Metadata

Edge-Slot-Dual ✓ ✓ ✓† - -

Edge-Slot ✓ ✓† ✓† - -

Edge-ObjRef - ✓ ✓ ✓ -

Edge-Tuple - ✓ ✓ ✓ -

Node-Slot - ✓ - ✓ ✓†

†Dependent on a prior prefetch and load of the slot

prefetch instruction (PREFETCHNTA) for load operations, and the write prefetch instruc-
tion (PREFETCHW) for store operations. Alternatives to these instructions are evaluated
in Section 6.4.

Listing 6.1: Implementation of prefetching on the Address type
1 pub struct Address(usize);
2 impl Address {
3 // ...
4 pub fn prefetch_load(self) {
5 #[cfg(all(target_arch = "x86_64", target_feature = "sse"))]
6 unsafe {
7 arch::_mm_prefetch(self.to_ptr(), arch::_MM_HINT_NTA);
8 }
9 }

10

11 pub fn prefetch_store(self) {
12 #[cfg(all(target_arch = "x86_64", target_feature = "sse"))]
13 unsafe {
14 arch::_mm_prefetch(self.to_ptr(), arch::_MM_HINT_ET0);
15 }
16 }
17 // ...
18 }

Object references and metadata are represented by the ObjectReference and
SideMetadataSpec types respectively. For each of these types, I implement two
methods (prefetch_store and prefetch_load), which convert the object reference to
a object/metadata address and call the relevant prefetch operations on the underlying
Address type. See Listing A.1 and A.2 for the relevant code snippets.

Finally, slots are represented by the Edge trait3. As before, I add two additional
methods to the trait, prefetch_load() and prefetch_store (Listing A.3). Although

the SSE extension.
3Throughout this thesis, I have used the term ‘slot’ to refer to the MMTk Edge datatype,

for consistency with the terminology used in my taxonomy. In future, we plan to change the
name of the Edge datatype to Slot, to avoid any confusion with edge-ordered enqueueing. See
https://github.com/mmtk/mmtk-core/issues/687 for more details.

https://github.com/mmtk/mmtk-core/issues/687
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the exact implementation of the trait is VM-specific, I provide a default empty imple-
mentation, so that VMs which do not support slot prefetching can simply fall back
to a no-op. In the mmtk-openjdk binding, the Address type is used to implement the
Edge trait, and thus the relevant prefetch methods are already implemented.

Within the auxiliary tracing code itself, prefetching is implemented by overrid-
ing the process_queue function to look a certain distance ahead in the queue and
prefetch the relevant items. For instance, Listing 6.2 shows how object prefetching is
implemented into the Node-Objref tracing loop.

Listing 6.2: Implementation of object prefetching in Node-ObjRef
1 impl<VM: VMBinding> AuxiliaryTraceWork for AuxTraceNodeObjRef<VM> {
2 // ...
3 fn process_queue(&mut self) {
4 for i in 0..self.queue.len() {
5 #[cfg(feature = "prefetch_objects")]
6 {
7 let obj_pf_index = i + Self::PF_OBJECT_DIST;
8 if obj_pf_index < self.queue.len() {
9 self.queue[obj_pf_index].prefetch_load::<VM>();

10 }
11 }
12

13 self.process_queue_item(self.queue[i])
14 }
15 }
16 // ...
17 }

Conditional compilation is used so that each of the types of prefetching can be
individually enabled and disabled via Cargo feature flags. Furthermore, for each type,
the prefetch distance is configurable via a build-time environment variable, which
sets the relevant constants (PF_OBJECT_DIST, PF_METADATA_DIST, etc). I decided to
use build-time configuration to eliminate any possibility of introducing additional
run-time overheads4. For instance, this ensures that the prefetch distance is directly
encoded as a constant offset in the relevant instruction rather than triggering an
additional load (as shown in Listing 6.3).

Listing 6.3: Encoding of prefetch distance in assembly instruction
1 # rax: head of the queue
2 # rdi: index of item currently being processed
3 # 0x80: 16 queue items, the distance to prefetch ahead
4 226729: 48 8b 84 f8 80 00 00 mov rax,QWORD PTR [rax+rdi*8+0x80]

4In retrospect, it would have been worthwhile measuring the overhead of implementing run-time
configuration of prefetching types and distance. I expect that the costs of checking an environment
variable and doing a comparison would be minimal, since those operations both are cache and branch
predictor friendly. Furthermore, build-time configuration is very inconvenient: hundreds of OpenJDK
builds take up hundreds of gigabytes of disk space, and having to generate a profile-guided optimised
build for every configuration takes a considerable amount of time. I would also expect that in a
production build, in order for the prefetch distances to be tuned depending on the microarchitecture of
the target machine, the prefetch distance would have to be run-time configurable anyway.
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5 226730: 00
6 226731: 0f 18 00 prefetchnta BYTE PTR [rax]

6.3 Prefetching Types & Distance

As discussed in Section 2.3.2, one of the major factors which can influence prefetch-
ing effectiveness is the prefetch timing or distance. Too early, and the prefetch may
prematurely evict other data from the cache and cause unnecessary pollution; too
late, and the memory hierarchy will not have enough time to bring the relevant data
into cache before the load occurs. Therefore, it is necessary to test a wide variety
of prefetching distances and choose the configuration that performs best on a given
hardware platform.

However, with 5 tracing algorithms, 3 prefetching types that can be turned on
or off (each of which can be tested with a wide variety of prefetch distances), and 2
microarchitectures, the state space available for exploration is extremely large. In the
interests of time, it was necessary to make some informed decisions in order to reduce
the number of configurations that needed to be tested5. I ran some initial experiments
with a small number of invocations to test my assumptions of prefetching behaviour.
Based on these initial experiments, I made the following decisions with regards to
my experimental methodology:

• I only test the distances 0, 4, 8, 16, and 32. I found that no tracing algorithm
(on either microarchitecture) gained additional meaningful improvements from
prefetch distances beyond 32. Although a zero prefetch distance (i.e. prefetching
immediately prior to each load) is known to negatively impact performance,
I include it in the benchmarks to measure the cost of the prefetch instruction
itself.

• When object or metadata prefetching is dependent on loading the relevant slot
(in order to obtain the object reference), I only test object/metadata prefetching
configurations where slot prefetching is also enabled. After all, there is little
sense in enabling object or metadata prefetching if loading the slot will cause a
stall anyway.

– In these cases, the slot prefetch distance may be greater than 32, as the slot
prefetch needs to be issued in advance of the object/metadata prefetch.

• When choosing the configurations to test, I begin by measuring the impact of
enabling only a single type of prefetching. This type of prefetching is chosen
based on my estimates of which would be the most impactful for the given
tracing loop design - usually slot or object prefetching. Based on the results
from these experiments, I pick the best-performing configuration, and add
another type of prefetching, and so on.

5The benchmarks for this section alone already required over a thousand hours of machine time.
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• In general, I assume that object and metadata prefetch distances should be the
same. This is simply to reduce the size of the state space requiring exploration

– This assumption is not necessarily valid, as the metadata for an object is
more likely to be in cache than the object itself (since the metadata for many
objects is densely packed into a small space, which increases the ‘hotness’
of the relevant cache lines). Therefore it may be more appropriate to
use shorter metadata prefetching distance than object prefetching distance.
This is left as an area for future research.

– In order to test a wider variety of configurations, I only perform 10 in-
vocations for each benchmark. Although this means that the confidence
intervals on my results are wider than with 20 invocations (as shown in
Appendix B), it is enough to display overall trends. When comparing the
best prefetching configurations in Section 6.3.4, I re-run the benchmarks
with 20 invocations to improve the accuracy of the results.

– Since garbage collection is a single-pass algorithm, I use the PREFETCHNTA
instruction for prefetching, as recommended by Intel [2023]. Alternative
prefetch instructions are evaluated in Sections 6.4 and 6.5.

– I do not measure the effect of prefetching on the Node-Slot and Node-
Tuple tracing algorithms, as they are not sensible designs. The reason for
this is discussed in Section 5.2.2.

In the following sections, prefetch configurations are described as follows. The suffix
PFExx denotes a slot6 prefetching distance of xx. Similarly, the PFOyy and PFMzz
suffixes represent the object and metadata prefetching distances respectively. If a
suffix is absent, then that indicates that the corresponding type of prefetching is
completely disabled for that configuration.

In each graph, the Zen 4 results are displayed on the left and the Coffee Lake
results are displayed on the right. The y-axis is truncated to the range [0.80, 1.05]
to make the trends across prefetching distances easier to see. A consistent colouring
scheme is used across all graphs to indicate which combinations of prefetching are
enabled (PFE, PFE+PFO, etc).

6.3.1 Edge-Slot-Dual & Edge-Slot

The evaluation results demonstrate that the Edge-Slot-Dual (Figure 6.1) and Edge-Slot
(Figure 6.2) tracing loops show similar performance characteristics when prefetching
is implemented. Both loops show a high degree of sensitivity to the prefetching
distance, particularly on Zen 4, where there is a clear trend between higher prefetch
distances and improved tracing performance. Benchmark-specific results are available
in Figure B.1 & B.2 (Edge-Slot-Dual), and in Figure B.3 & B.4 (Edge-Slot).

6The ‘E’ in ‘PFE’ stands for Edge, which is the MMTk data type that represents slots. Internally,
within my code I use the term edge; in this thesis, I use the term slot, to avoid confusion with edge-
ordered enqueueing.
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Figure 6.1: Edge-Slot-Dual prefetch distances (Zen 4, Coffee Lake)

Figure 6.2: Edge-Slot prefetch distances (Zen 4, Coffee Lake)
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Across the board, slot prefetching yields a consistent performance improvement.
Interestingly, for a given distance configuration, the Edge-Slot algorithm benefits more
from slot prefetching than the the Edge-Slot-Dual algorithm. For instance, in PFE32
(the highest performing slot-prefetch configuration), the Edge-Slot-Dual tracing times
were reduced by 3.4% on Zen 4 and 4.8% on Coffee Lake, whereas the Edge-Slot
tracing times were reduced by 4.3% and 5.2% respectively. This can be explained
by the differences between the two algorithms. Each iteration of the Edge-Slot loop
performs more work than a single iteration of the relevant loop in the Edge-Slot-Dual
algorithm (lines 2-7 of Listing 5.9), as it needs to scan each object in addition to
loading the slot and marking the object. If a prefetch is issued at some distance X,
the Edge-Slot algorithm will take a greater number of clock cycles to reach that point
the queue (as compared to Edge-Slot-Dual), since it takes longer to process each item.
Therefore the absolute time between the prefetch and the load will be larger for the
Edge-Slot algorithm, allowing more time for the relevant data to be brought into
cache. Since both Edge-Slot-style designs benefit from earlier slot prefetching, this
yields better performance at a given ‘distance’.

On Zen 4, the addition of object prefetching further improves tracing performance.
In a similar trend to the slot prefetching results, longer prefetch distances are prefer-
able. However, on Coffee Lake, the story is not as clear. Object prefetching yields
a performance improvement for Edge-Slot-Dual, whereas on Edge-Slot, it results in
a performance degradation with respect to slot prefetching alone. This could possi-
bly be because in the Edge-Slot algorithm, in order to prefetch the object it is first
necessary to prefetch the slot. This dependency could cause a stall if the contents
of the slot are not in the cache at the time it needs to be loaded in order to obtain
the object reference for object prefetching. On the other hand, the Edge-Slot-Dual
algorithm loads all of the slots as part of the first half of the tracing loop (lines 2-7 of
Listing 5.9), so when the objects are accessed in the second loop (lines 9-13), there is
no dependency which could reduce the effectiveness of prefetching. However, this
hypothesis does not explain the variances between microarchitectures.

Finally, implementing metadata prefetching in addition to slot and object prefetch-
ing has a small positive performance impact on Zen 4, but reduces tracing speed on
Coffee Lake. Generally speaking, longer object and metadata prefetching distances
yield higher performance.

Performance counter data indicates that these performance improvements are
primarily driven by a reduction in back-end stalls where the CPU is blocked on the
memory subsystem. Slot prefetching eliminates 24% of L3 cache misses and reduces
the number of stalls by 9-10%, whereas the addition of object and/or metadata
prefetching eliminates up to 80% of L3 cache misses, resulting in a total stall reduction
of 18-20%. Interestingly, as the prefetch distance increases the number of L3 cache
misses also increases, but the number of stalls decreases, in line with the total tracing
time.
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6.3.2 Edge-ObjRef & Edge-Tuple

The Edge-ObjRef and Edge-Tuple tracing algorithms are very similar, with the only
difference being that the Edge-Tuple algorithm additionally adds the slot to the queue
in order to enable support for copying garbage collectors. Thus, unsurprisingly, they
have very similar performance characteristics, as shown in Figure 6.3 and Figure 6.4.
On Zen 4, the best performance is achieved with a short slot prefetching distance (4)
and a medium object/metadata prefetch distance (16), whereas on Coffee Lake the
slot and metadata prefetching should be disabled for improved tracing performance.

Both tracing loop algorithms benefit from object prefetching, with the Edge-Tuple
algorithm experiencing speedups of up to 6.1% and 3.8% and the Edge-ObjRef al-
gorithm displaying speedups of up to 7.3% and 3.3%, on Zen 4 and Coffee Lake
respectively. However, the effect of metadata prefetching is relatively mixed, with
neither tracing loop or microarchitecture demonstrating major gains as a result of
enabling it. Slot prefetching is relatively ineffective for these two tracing loop designs,
as slots are only be prefetched in the root processing packets, which represent a
small portion of the overall tracing time. In the main tracing loop, it is impossible to
prefetch the slots because they are immediately loaded during object scanning.

One interesting phenomenon in the benchmark-specific data (Figure B.5 & B.6
for Edge-ObjRef, and Figure B.7 & B.8 for Edge-Tuple) is that biojava exhibits almost
no change execution time as a result of adding any form of prefetching. Looking at
the performance counter data, it appears that this occurs because the biojava bench-
mark only experiences modest decrease in L3 cache misses (in the order of 20-30%)
when enabling prefetching, as opposed to the substantial reductions observed in
other benchmarks (usually up to 60-70% with all three types of prefetching enabled).
Therefore the number of memory-bound back-end stalls is higher.

6.3.3 Node-ObjRef

Figure 6.5 displays the effects of adding object, slot and metadata prefetching to the
Node-ObjRef tracing algorithm. On both microarchitectures, the best results were
obtained when using a short object prefetch distance and a long slot prefetch distance.

Although the Node-ObjRef algorithm is not the best performing tracing loop
design by default (Figure 5.2), it does experience some of the most substantial gains
from prefetching. Object prefetching alone can reduce tracing time by up to 14.7%
on Zen 4 and 11.8% on Coffee Lake. Improvements are consistently seen across all
benchmarks on both Zen 4 (Figure B.9) and Coffee Lake (Figure B.10). Performance
counter data from Coffee Lake indicates that object prefetching reduces the number
of last level cache misses by approximately 50%, therefore decreasing the number of
cycles stalled on the memory subsystem by 18%. However, on Zen 4, the root cause of
these performance improvements is less clear: the frequency of back-end stalls varied
significantly between different benchmarks and prefetch configurations.

Slot and metadata prefetching have relatively little impact on the performance of
the Node-ObjRef tracing loop. This is because slot and metadata prefetching are only
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Figure 6.3: Edge-ObjRef prefetch distances (Zen 4, Coffee Lake)

Figure 6.4: Edge-Tuple prefetch distances (Zen 4, Coffee Lake)
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Figure 6.5: Node-ObjRef prefetch distances (Zen 4, Coffee Lake)

applied to the root processing packets, which constitute a relatively small portion of
the overall tracing workload.

6.3.4 Comparison

Now that I had a broad understanding of prefetching behaviour across microarchi-
tectures and tracing loop algorithms, I selected the best prefetching configuration for
each type of prefetching and tracing loop. Then, I re-ran these configurations through
the benchmark suite (this time with 20 invocations), so that all of the results can be
compared against each other.

Figure 6.6 presents the results on Zen 4, normalised to Edge-Slot-Dual with no
prefetching. The Edge-ObjRef tracing loop had the lowest tracing time overall, achiev-
ing a total speedup of 18.1% over Edge-Slot-Dual-NoPrefetch (a model of MMTk’s
primary tracing algorithm). Although the Node-ObjRef tracing algorithm achieved
the most significant speedups as a result of prefetching, it was only the third fastest
tracing design overall. If compatibility with copying garbage collectors is desired,
then the Edge-Slot tracing algorithm would be a better choice.

The Coffee Lake results, shown in Figure 6.7, paint a remarkably different picture.
Firstly, without any prefetching enabled, the Node-ObjRef algorithm was positioned
second overall, as opposed to on Zen 4, where it was the slowest tracing loop design.
Then, when prefetching was applied, the Node-ObjRef algorithm saw the greatest
performance improvements, which allowed it to overtake the Edge-ObjRef algorithm.
Therefore, for both copying and non-copying garbage collectors, the Node-ObjRef
tracing loop is the best choice on Coffee Lake.

These microarchitectural differences highlight a need for hardware-specific tuning
of both the tracing loop design and the software prefetching configuration. Neither
element can be
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Figure 6.6: Overall comparison of prefetching performance (Zen 4)

Figure 6.7: Overall comparison of prefetching performance (Coffee Lake)
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6.3.5 Discussion

To measure the cost of the prefetch instruction itself, I included tests of a zero prefetch
distance in all of my evaluations. A zero prefetch distance effectively means that the
prefetch is issued immediately prior to the load. This

Across all of the tracing loop algorithms, metadata prefetching had relatively little
impact on tracing performance, particularly when compared to the gains observed
by enabling slot and/or object prefetching. One possible explanation is the fact that
metadata is more likely to already be in cache than objects or slots. This is because the
side metadata is contiguously allocated and tightly packed (each cache line contains
the metadata for 64 objects), and is accessed very frequently, which prevents it from
being evicted from the cache. Therefore software prefetch instructions are unlikely
to have any major effect, and the overhead of the instruction itself may lead to a
performance decrease.

In general, Coffee Lake seems to perform better when less types of prefetching are
enabled, whereas Zen 4 benefits from having all types of prefetching enabled. One
reason for this could be because the Coffee Lake CPU has a significantly smaller cache
capacity (8x less L2 cache and 4x less L3 cache) than the Zen 4 machine. Therefore, if
too many prefetch operations are issued, useful data may have to be evicted from the
cache, inducing unnecessary cache misses and wasting memory bus traffic.

One overarching factor which may be limiting the effectiveness of prefetching is
the size of each AuxiliaryTraceWork packet. If a work packet is smaller than the
prefetch distance, then none of the items in the work packet will be prefetched. Based
on my visual observation of the auxiliary tracer (using Perfetto traces like the one
shown in Figure 4.2), many work packets appear to be small. However, I have not
quantitatively evaluated the distribution of work packet sizes to determine whether
this is a major issue. This is one area for potential future research.

6.4 Prefetch Locality

One interesting phenomenon which was observed in the performance counter data
for each of the benchmarks in Section 6.3 was that the introduction of prefetching
can noticeably increase the number of level 1 data cache misses. For instance, the
Edge-Tuple, Edge-Slot and Edge-ObjRef tracing algorithms exhibit an 8%, 10% and
12% increase in L1 cache misses respectively. On the other hand, the Edge-Slot-Dual
and Node-ObjRef algorithms exhibit neither an increase nor decrease in cache misses.
This phenomenon is relatively stable across all benchmarks (with the exception of
biojava, which rarely displays any difference, regardless of the tracing algorithm), and
does not appear to be dependent on the specific prefetching configuration (distance,
types of prefetching enabled, etc).

This data is in stark contrast to the other recorded statistics. Generally speaking,
prefetching causes a large reduction in last-level cache misses, memory-bound stalls,
and reduces the overall time taken to execute the auxiliary trace. One possible
explanation for this is that the prefetching instructions pollute the L1 cache, but do
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Table 6.2: Microarchitectural implementations of prefetch instructions

Microarchitecture Instruction L1 L2 L3

Zen 4

PREFETCHT0
PREFETCHT1
PREFETCHT2

✓ ✓ ✓

PREFETCHNTA ✓ ✓⋆ ✗

Coffee Lake

PREFETCHT0 ✓ ✓ ✓

PREFETCHT1
PREFETCHT2

✗ ✓ ✓

PREFETCHNTA ✓ ✗ ✓†

⋆Marked for faster replacement; will not fill L3 cache upon eviction [AMD, 2023a]
†Marked for faster replacement than a regular cache fill [Intel, 2023]

an excellent job at bringing the relevant data into the second and third level caches,
therefore reducing stalls on L2 and L3 cache misses, which are far more costly.

As discussed in Section 2.3.2, the x86 architecture offers several variations on the
prefetch instruction which may allow us to reduce the number of L1 cache misses,
without sacrificing the benefits of prefetching data into the lower-level cache. All
of the benchmarks in Section 6.3 were conducted with the PREFETCHNTA instruc-
tion, which aims to bring the data into the L1 cache without polluting the lower
levels. There are also PREFETCHT0, PREFETCHT1 and PREFETCHT2 instructions which
bring data into the L1, L2 and L3 cache respectively. However, the exact microar-
chitectural implementation of each of these instructions can vary. For instance, on
Zen microarchitectures, AMD ignores the locality hint, so the PREFETCHT0/T1/T2 in-
structions behave identically [AMD, 2023a]. On modern Intel Core processors, the
PREFETCHT1/T2 instructions are implemented identically, however the PREFETCHT0
instruction is distinct. The differences in behaviour between these instructions on
different microarchitectures is summarised in Table 6.2.

For each tracing loop, I chose the best performing prefetch configuration from
Section 6.3 and created a new build for each of the different types of prefetching
instructions. On each microarchitecture, we only test instructions with distinct under-
lying behaviour. These were evaluated across 20 invocations of the benchmark suite.
The results are shown in Figure 6.8, and are normalised to the non-temporal access
(NTA) instruction, which was used in prior sections.

On Zen 4, the PREFETCHT0 instruction yields a small performance improvement
across all tracing algorithms, ranging from 0.5% on Node-ObjRef to 3.1% on Edge-
Tuple. Although the exact magnitude of these improvements varies from benchmark
to benchmark (Figure B.11), most benchmarks exhibit some form of improvement
from the PREFETCHT0 configuration. On Intel, the same instruction yields a perfor-
mance improvement of up to 4.0% on Edge-Slot-Dual, but decreases performance
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(a) NTA vs T0 (Zen 4) (b) NTA vs T0 vs T1 (Coffee Lake)

Figure 6.8: Relative performance of the auxiliary trace when the PREFETCHNTA, PREFETCHT0
and PREFETCHT1 instructions are used. On Zen 4, the PREFETCHT0 instruction yields a
consistent performance improvement, whereas on Coffee Lake it has mixed effects. The
PREFETCHT1 instruction generally harms performance.

by 2.0% on Edge-Slot. The PREFETCHT1 decreases performance across all tracing
algorithms. This differed from my expectations, as I thought that the PREFETCHT1
instruction would reduce the number of Level 1 cache misses caused by pollution
whilst maintaining the benefits of having the data prefetched into the lower-level
caches. Although the performance counter data indicates that the L1 cache misses
marginally decreased with this configuration, it appears to have had no positive
impact on tracing performance.

6.5 Write Prefetching for Metadata

When marking an object, it is necessary to perform an atomic compare and exchange
operation on the side metadata. Internally within the CPU, this requires two things
to occur: 1. the relevant cache line needs to be brought into the L1 cache, and 2. with
respect to the cache coherency protocol, the core needs to transition the relevant cache
line to the ‘modified’ state, and if other cores have the same line in cache, they need
to be invalidated. Although the read prefetch instructions (PREFETCHNTA/T0/T1/T2)
can speed up the first of these operations, the second still needs to be performed at
the time of the store operation. The PREFETCHW instruction is designed to speed up
this use case, by performing both actions in advance of the line being written to.

I generated new builds of MMTk with the metadata store prefetch operations
replaced with the PREFETCHW instruction. I used the objdump command to view the
assembly listing for the generated MMTk library to confirm that a PREFETCHW instruc-
tion was actually generated7. Then, I benchmarked the best prefetch configuration

7One would think that this is an unnecessary step. However, after a cursory glance at the assembly
listing, I noticed that the Rust compiler was emitting a PREFETCHT0 instruction instead of a PREFETCHW
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for each tracing loop (according to the results in Section 6.3) using both the NTA and
write prefetch instructions, measuring across 20 invocations of the benchmark suite.
I only evaluated write metadata prefetching on the Zen 4 microarchitecture, as none
of optimal prefetching configurations on Coffee lake use metadata prefetching.

Figure 6.9: Relative performance of the auxiliary trace when using PREFETCHNTA and
PREFETCHW for metadata writes (Zen 4). The write prefetch instruction causes a small but
consistent speedup in most benchmarks.

A summary of the results are shown in Figure 6.9. Benchmark-specific results are
shown in Figure B.13. In most of the benchmarks tested, write prefetching offers a
small but consistent performance improvement, in the range of 0.4% to 3%.

One major outlier is the biojava benchmark, which takes 12-14 times as long
to complete when write prefetching is enabled on the edge-ordered designs. This
unusual behaviour is explainable by the fact that in biojava, on average each object is
referenced a disproportionately large number of times compared to other benchmarks
(as shown by our queueing operation counts in Figure 5.3). In edge-ordered designs,
every reference to an object triggers a write prefetch of the metadata in preparation
for the upcoming testAndMark() operation. This invalidates the metadata cache
line in all other cores, causing them to incur a full cache miss when they need to
write to the cache line. Furthermore, a single cache line shares the metadata for 64
objects, therefore amplifying the number of invalidations that occur. Obviously, this
cache contention puts enormous pressure on the memory subsystem, leading to poor
performance.

However, Node-ObjRef does not suffer the same performance penalties exhibited
by edge-ordered designs, despite executing the same number of testAndMark() oper-
ations. This is because metadata prefetching is only implemented in the root tracing

instruction. After some investigation, I discovered that this was occurring because PREFETCHW is part
of the x86 3DNow! ISA extension, which is not enabled as a feature on the default target CPU used for
Rust compilation. As Thompson [1984] said, “You can’t trust code that you did not totally create yourself”!
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packets for node-ordered loops. The main AuxiliaryTraceWork packets, which per-
form the majority of tracing work, do not use metadata prefetching. Therefore when
we enable write prefetching, Node-ObjRef does not suffer from the same pathological
performance penalties, since it uses significantly less metadata prefetching.

In summary, despite the switch from read to write prefetching being a very
small change, we see that the performance impacts can vary wildly depending on
the tracing loop design and workload-specific behaviour. Therefore this technique
should only be applied on a case-by-case basis.

6.6 Summary

In this chapter, I explored three main prefetching opportunities in the core tracing
loop: slots, objects, and metadata. I evaluated a range of prefetch types and distances,
and concluded that the Edge-ObjRef tracing algorithm performs the best on Zen 4
and the Node-ObjRef algorithm performs the best on Coffee Lake when prefetching is
enabled. Finally, I explored the effects of each of the different prefetching instructions
available within MMTk, and found that the PREFETCHT0 and PREFETCHW instructions
can provide small additional improvements in tracing speed if applied correctly.
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Chapter 7

Conclusion & Future Work

7.1 Concluding Remarks

The tracing loop is one of the greatest contributors to the cost of tracing garbage collec-
tion. This thesis demonstrates that choosing the tracing loop structure which enables
the most effective software prefetching can dramatically improve the performance of
the tracing loop.

In this thesis, I introduced auxiliary tracing, a novel framework for evaluating
both new and existing tracing loop algorithms. I also demonstrated how it can be
used to fairly measure the impact of different ‘heap layouts’ on tracing performance.

Furthermore, I proposed a new taxonomy of tracing loop algorithms, which
classifies designs based on two factors: the queueing strategy (edge- or node-ordered
enqueueing), and the queue item type (slot, object reference, or a tuple of both).
Using the auxiliary tracing framework, I implemented seven different tracing loop
algorithms, and evaluated the performance of each of the designs. I found that the
Edge-ObjRef loop was the highest performing tracing algorithm, yielding an 8.3%
and 15.6% performance improvement on the Zen 4 and Coffee Lake architectures
respectively.

Finally, I conducted a detailed study of the effects of software cache prefetching
on five tracing loop algorithms. I was able to demonstrate consistent improvements
in tracing speed across a wide variety of benchmarks. For instance, on Zen 4, the
addition of prefetching boosted the performance of the Edge-ObjRef and Node-ObjRef
tracing loops by 10.7% and 15.1% respectively. Overall, the Edge-ObjRef tracing
algorithm was the best performer. On Coffee Lake, the Node-ObjRef tracing algorithm
saw more significant speedups from prefetching, thus allowing it to perform 2.2%
better than the Edge-ObjRef loop on average. These microarchitectural differences
highlight a need for hardware-specific tuning to take full advantage of software cache
prefetching.

In summary, my thesis deepens our understanding of the performance charac-
teristics of tracing loops in garbage collectors, including the relationships between
the tracing loop structure and software cache prefetching techniques. It delivers net
improvements over MMTk’s current default Edge-Slot-Dual design of 18.1% (Edge-
ObjRef) and 18.9% (Node-ObjRef) for the Zen 4 and Coffee Lake microarchitectures
respectively.

61
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This thesis provides a much-needed re-examination of the performance of a core
element of tracing garbage collectors, using modern workloads, a modern runtime,
modern hardware, and modern methodology. It reaffirms that prefetching is an
important, if overlooked, aspect of garbage collection performance.

7.2 Future Work

Although, as an undergraduate research thesis, the scope of this work was limited by
the time frame available, it poses several new avenues for possible research. In this
section, I discuss some areas that could be the basis of future work.

7.2.1 Implementation into MMTk’s Tracing Loop

This thesis explores many prefetching techniques in the context of the auxiliary
tracing framework. A natural next step is to implement the best prefetching config-
urations for the Edge-Slot-Dual algorithm into the main tracing loop of MMTk. Not
only would this improve the performance of MMTk, but it would also enable us to
evaluate the effectiveness of my prefetching techniques on a copying collector like
Immix.

7.2.2 Copying and Concurrent Garbage Collectors

By design, the current implementation of the auxiliary tracing framework does not
support moving garbage collectors, in order to stay side effect free. One possible way
that auxiliary tracing could be modified to emulate copying collection algorithms
would be to duplicate the entire heap prior to performing the auxiliary trace. This
would allow the auxiliary trace to freely move and copy objects without affecting
the main tracing algorithm. However, this approach has two major downsides. First,
duplicating the heap is extremely expensive (especially when the heap size is large),
and hence this would slow down benchmarks significantly. Second, this technique
would cause significant cache pollution, which would alter the memory access tim-
ings observed by the auxiliary trace. However, an auxiliary tracing framework that
supports copying operations may be able to yield previously undiscovered insights,
which may make these downsides worthwhile.

Auxiliary tracing could also be applied in the context of concurrent garbage
collectors to evaluate prefetching. It is well known that concurrent collectors cause
significant cache pollution [Carpen-Amarie et al., 2023]; hence adding prefetching
to the tracing loop may be more of a risk than it is in a non-moving, stop-the-
world context. It would be very interesting to evaluate the tradeoffs involved in
software cache prefetching for concurrent garbage collectors. However, one significant
methodological challenge would be determining how to exactly measure the side
effects of the prefetches in a concurrent environment.
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7.2.3 Further Evaluation on Different (Micro)architectures

The results of Chapter 6 demonstrate that the same prefetching configuration can
have very different performance implications on distinct microarchitectures. There
are many possible causes for this, including differences in cache capacity, cache re-
placement policies and existing hardware prefetching mechanisms. One potential
area for future research would be to evaluate how a wide cross-section of x86 mi-
croarchitectures (both old and new) respond to software prefetching techniques, to
determine whether any trends are emerging over time.

One other possible avenue for future work would be to explore the effects of
software prefetching on completely different architectures such as ARM. Research
on this topic has been difficult in the past, as the ARM ecosystem is still maturing.
For instance, OpenJDK did not have adequate support for ARM until relatively re-
cently. Furthermore, high-performance desktop-class ARM hardware has not been
readily available for purchase. However, with the emergence of Apple’s M1/M2
chips, and the broadening deployment of server-class ARM hardware in the cloud
(e.g. from vendors like Ampere), GC performance tuning on ARM has never been
more important. Therefore this is an area worth exploring.

It would also be interesting to investigate the applications of software prefetch-
ing to tracing garbage collection in RISC-V, an architecture which is the subject of
significant excitement in the research community.

7.2.4 Relationships Between Scanning Techniques and Prefetching

Section 6.1 describes three main memory loads during the tracing loop: the slot, the
object, and the metadata. However, in many object oriented languages like Java, it is
also necessary to load the class information (based on a klass pointer in the head of
the object) in order to determine the locations of the pointer fields of the object. With
the application of prefetching elsewhere in the tracing loop, this operation may be a
new bottleneck. This suggests three possible strategies which should be investigated
further:

1. Prefetch the class information. This would require a minimal amount of modifi-
cation to the runtime.

2. Encode the locations of the pointer fields as tag bits in the klass pointer. This is
known as alignment encoding, and is discussed in Section 4.5.

3. Encode the locations of the pointer fields as tag bits on the object reference. This
would enable the addresses of the slots within a given object to be determined
without having to touch the object itself.

7.2.5 Hardware Prefetchers

Currently, the impact of hardware prefetching on tracing garbage collection algo-
rithms is poorly understood. However, on some Zen 4 server CPUs, it is possible to
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individually turn each of the five hardware prefetching units on or off [AMD, 2023b].
Another area for further research would be to measure the impact of enabling and
disabling each of these prefetching units to determine whether they make a positive
or negative contribution to tracing garbage collection.

Furthermore, modern CPU microarchitectures have been integrating smarter and
smarter hardware prefetching units. One hardware prefetching mechanism of partic-
ular interest is data-dependent prefetching (discussed in Section 2.3.1). Many tracing
algorithms exhibit some form of array-of-pointers access pattern. For instance, the
Node-ObjRef tracing loop maintains a queue of object references, which it iterates
through and loads each object reference in turn (in order to scan the object). Data-
dependent prefetchers are designed to optimise for this access pattern, and thus they
could render some forms of software prefetching ineffective or counterproductive. It
would be worthwhile investigating how the findings of this thesis change in the face
of data-dependent prefetchers.

7.2.6 Prefetching for Other Types of Garbage Collection

Prefetching could also be applied to reference counting garbage collectors like LXR
[Zhao et al., 2022]. In particular, reference increment and decrement processing could
benefit from software prefetching. Additionally, the prefetch techniques that are
applicable to tracing algorithms could be applied to the SATB trace, which is used by
LXR to collect cycles and objects with stuck reference counts. The work done by Paz
and Petrank [2007] could be a good starting point for this.

7.2.7 More Tracing Loop Designs

In this work, we a single dual-queue design (Edge-Slot-Dual) as a baseline comparison
for MMTk’s core tracing loop. However, no other dual-queue designs were tested
because I made a prediction that dual-queue designs may have lower performance
than single-queue designs. Although my evaulation demonstrated this to be true for
the Edge-Slot-Dual tracing loop, this may be not be the case for other dual-queue
designs. It may be desirable to implement and evaluate several other dual-queue
designs.

Furthermore, I imagine there are also other variations on the tracing loop which
I have not envisaged, that could be implemented in the auxiliary tracing framework
and evaluated.
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Prefetching Implementation

Listing A.1: Implementation of prefetching on the ObjectReference type
1 pub struct ObjectReference(usize);
2 impl ObjectReference {
3 // ...
4 pub fn prefetch_load<VM: VMBinding>(self) {
5 self.to_address::<VM>().prefetch_load();
6 }
7

8 pub fn prefetch_store<VM: VMBinding>(self) {
9 self.to_address::<VM>().prefetch_store();

10 }
11 }

Listing A.2: Implementation of prefetching for metadata
1 pub trait AuxiliaryTraceWork {
2 // ...
3 fn prefetch_load_metadata(o: ObjectReference) {
4 MARK_BITS.prefetch_load(o.to_raw_address());
5 }
6

7 fn prefetch_store_metadata(o: ObjectReference) {
8 MARK_BITS.prefetch_store(o.to_raw_address());
9 }

10 // ...
11 }
12

13 pub struct SideMetadataSpec {...}
14 impl SideMetadataSpec {
15 // ...
16 pub fn prefetch_load(&self, data_addr: Address) {
17 let meta_addr = address_to_meta_address(self, data_addr);
18 meta_addr.prefetch_load();
19 }
20

21 pub fn prefetch_store(&self, data_addr: Address) {
22 let meta_addr = address_to_meta_address(self, data_addr);
23 meta_addr.prefetch_store();
24 }
25 // ...
26 }
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Listing A.3: Implementation of prefetching on the Edge trait
1 pub trait Edge: Copy + Send + Debug + PartialEq + Eq + Hash {
2 fn load(&self) -> ObjectReference;
3 fn store(&self, object: ObjectReference);
4

5 fn prefetch_load(&self) {
6 // no-op
7 }
8

9 fn prefetch_store(&self) {
10 // no-op
11 }
12 }



Appendix B

Benchmark-Specific Results

In Chapter 4, I presented a variety of graphs which summarise the effect of various
prefetching algorithms on tracing loop performance. However, in order to present the
data in a way that aids visual analysis, I had to discard benchmark-specific data. This
appendix includes expanded versions of each the graphs in Chapter 6, to illustrate
the results of each of the 18 benchmarks used for evaluation in this thesis. These can
be used to determine whether the overall summary statistics are representative of
individual benchmark results, or simply a product of noise.

For readability, each graph is set on a standalone page.
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