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ABSTRACT
In many garbage collected systems, the mutator performs a write
barrier for every pointer update. Using generational garbage col-
lectors, we study in depth three code placement options for remembered-
set write barriers: inlined, out-of-line, and partially inlined (fast
path inlined, slow path out-of-line). The fast path determines if
the collector needs to remember the pointer update. The slow path
records the pointer in a list when necessary. Efficient implemen-
tations minimize the instructions on the fast path, and record few
pointers (from 0.16 to 3% of pointer stores in our benchmarks). We
find the mutator performs best with a partially inlined barrier, by a
modest 1.5% on average over full inlining.

We also study the compilation cost of write-barrier code placement.
We find that partial inlining reduces the compilation cost by 20 to
25% compared to full inlining. In the context of just-in-time com-
pilation, the application is exposed to compiler activity. Regardless
of the level of compiler activity, partial inlining consistently gives a
total running time performance advantage over full inlining on the
SPEC JVM98 benchmarks. When the compiler optimizes all ap-
plication methods on demand and compiler load is highest, partial
inlining improves total performance on average by 10.2%, and up
to 18.5%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms

Keywords
write barriers, copying collection, generational collection, Java

�

This author did this work while at the University of Mas-
sachusetts. This work is supported by NSF ITR grant CCR-
0085792, NSF grant ACI-9982028, DARPA grants F30602-98-1-
0101 and F33615-01-C-1892, and IBM. Any opinions, findings,
conclusions, or recommendations expressed in this material are the
authors’ and do not necessarily reflect those of the sponsors.

ISMM’02, June 20-21, 2002, Berlin, Germany.

1. INTRODUCTION
Many garbage collectors remember pointer stores. To avoid col-
lecting the entire heap, garbage collectors divide the heap into re-
gions and track the pointers between them. For example in a gen-
erational copying collector, the collector scavenges the nursery in-
dependently of higher generations and avoids scanning older gen-
erations by conservatively assuming that any remembered point-
ers into the nursery are live. Collector and mutator performance
depend on the frequency of pointer stores, the number of stores
remembered, and the benefits from scavanging regions indepen-
dently. These tradeoffs almost always improve garbage collector
and total performance [CWB86, CHL98, LH83, Ung84, SMM99]
(see Section 5.4).

The write-barrier code sequence determines whether a pointer store
needs to be remembered, and if so, remembers it. The fast path of
a conditional write barrier determines if the pointer update should
be remembered (i.e., it crosses independently collected regions and
the source will be collected before the target). The fast path is typi-
cally short (3 to 5 instructions) and consists of bit operations, com-
parisons, and perhaps loads. The slow path remembers the pointer
update. In a remembered set scheme, it usually puts the source in
a list. The collector then processes the list at the beginning of a
collection [Ung84]. Efficient collector organizations minimize the
number of remembered pointer stores [App89, BJMM02, HMS92,
SMM99]. Other schemes, such as card marking [Sob88, WM89],
unconditionally set a bit in a bit vector to mark a region of memory
containing the source pointer, and scan for pointers into the incre-
ment being collected at collection time. Card marking schemes
trade off scanning time for a simpler unconditional barrier.

Previous research has explored implementations of write barriers,
remembered sets, card marking, and hybrids [AKPY98, HMS92,
HH93]. Fitzgerald and Tarditi [FT00] suggest putting the cold path
out-of-line. However, no previous work measures the impact of this
choice. This paper investigates the impact of the write barrier on
the application code quality, and on the compilation cost in Jikes
RVM [AAC
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99, AAB
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00] with a variety of garbage collectors we
developed. We compare no write barrier, a completely inlined write
barrier, an out-of-line write barrier, and a partially inlined barrier
(fast path inlined, slow path out-of-line). We implement the out-of-
line cases with a direct procedure call. We use a variety of copying
collectors, and also compare with a semi-space copying collector
which has no write barrier.

Our results first confirm that the slow path is rarely taken (between
0.15 and 3%) for the collectors and SPEC JVM98 benchmarks
we examine, which is consistent with previous languages and sys-



tems [JL96, HH93, Ste99]. Compared with no write-barrier, inlin-
ing increases the application code size by on average 81%, partial
inlining by 33%, and out-of-line by 21%. Partial inlining how-
ever provides the fastest executing application code by a modest
1.5%. Jikes RVM thus integrates and optimizes the fast path in-
structions well, and the overhead of the direct procedure call on the
infrequently taken slow path is minimal. The inlined write barrier
suffers because the slow path bloats the code size, and since it is
rarely taken, yields no performance benefits.

The compilation cost of the write barrier has two components in
the Jikes RVM. (1) The obvious component – the compiler gen-
erates and optimizes more code when the write barrier is inlined
than when it is out-of-line or partially inlined. (2) The compiler
itself executes the write barrier as it runs in the Jikes RVM. Be-
cause the Jikes RVM compiler is written in Java and runs along
with the application in the JVM, it uses the same write barrier as
the application as it compiles the application. Both costs slow down
the compiler when it inlines or partially inlines the write barrier
compared with an out-of-line write barrier. We show that partial
inlining can overcome this degradation with application time im-
provements. An inlined write barrier slows down the application
and a just-in-time compiler twice; by 10.2% on average, and up to
18.5% compared with partial inlining. Even an out-of-line barrier is
competitive with inlining (1.4% worse to 15.5% better) when com-
pilation load is a high percent of total time. Although the overall
result may now seem predictable to the informed reader, we were
startled by the magnitude of the differences. In summary, partial in-
lining is the best choice for a conditional write barrier, and inlining
is especially problematic for a just-in-time compiler.

This paper is organized as follows. We first describe related work
on incremental collectors and their write barriers, including poli-
cies and mechanisms. We then overview the generational collec-
tors, write barriers, and methodology we use. Our results section
demonstrates the static and dynamic application and compilation
costs of the different code placement choices. These results show
the partially inlined barrier is the best choice, and in some circum-
stances, dramatically improves performance over inlining or out-
of-line barriers.

2. RELATED WORK
In this section, we discuss related work on write barrier function
and designs, and general compiler inlining. To our knowledge, no
one has studied the impact of write barrier inlining strategies be-
fore. Write barriers are required in two distinct contexts: incremen-
tal garbage collection and reference counting garbage collection.

Incremental collectors depend on write barriers to record pointers
into independently collected regions of memory called increments.
By tracking all pointers into an increment, the increment can be
safely collected by making the conservative assumption that the
sources of all incoming pointers are live. If the number of incom-
ing pointers is suitably low, incremental collection can be very ef-
ficient. Incremental collection is the basis for a large number of
garbage collectors including generational [LH83, Ung84, App89],
older-first [SMM99], Beltway [BJMM02], and mature object space
collectors [HM92]. Jones and Lins [JL96] describe many more in-
cremental algorithms.

A write barrier for incremental collection can usually be character-
ized in terms of three implementation choices. 1) A mechanism for
determining whether to remember a pointer update. 2) A design

decision as to what should be remembered. 3) A mechanism for
how it should be remembered. The literature records a large num-
ber of alternatives in this space [JL96]. Two broad approaches are
widely used: remembered sets and card marking.

Remembered Sets. Remembered sets typically remember either
the source object or slot (pointer field) [JL96], both of which we
study here. Ungar was the first to suggest the object remembering
barrier [Ung84], and the Jikes RVM generational garbage collec-
tors [AAB
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00] also remember objects. They use a bit in the source
object to avoid duplicates, and to avoid remembering source objects
that reside in the nursery.

Collectors may remember the exact slot instead of the object con-
taining the pointer [App89, HD90, HMS92, Ste99]. Stefanović et
al. developed a very fast address order write barrier that exploits
an address order organization of collection increments in the older-
first collector. The write barrier we use is similar, and depends on
generations being organized within major virtual memory align-
ment boundaries to avoid explicit generational bounds checking.
This structure leads to a very fast barrier (see Figure 1a) and c)),
that does not require loading explicit generation bounds for com-
parison with the source and target pointers.

The literature also reports a number of remembered set implemen-
tations. Hudson and Diwan use a sequential store buffer to remem-
ber slots [HD90, HMS92]. They use virtual memory protection
to detect buffer overflow. The Jikes RVM collectors use a sim-
ilar structure for storing remembered objects although it uses an
explicit bounds check to detect buffer overflow. Our collectors re-
member slots in power-of-two aligned buffers, and use the power of
two alignment to detect buffer overflow without an explicit buffer
bounds pointer.

Card Marking. Card marking uses a table to remember fixed
size regions of memory (cards) as pointer sources [Sob88, WM89].
The write barrier marks cards when necessary, and the collector
treats memory regions corresponding to marked cards as roots, scan-
ning them for pointers. The collector clears the card table at the
end of a collection. Several papers consider the efficiency of card
marking schemes [WM89, Cha92, H9̈3, HMS92], as well as a hy-
brid of remembered sets and card marking [HH93]. Hosking et
al. compare remembered sets and cards in an interpreted Smalltalk
system [HMS92, HH93] and find their performance is similar. Our
study is of limited relevance to card marking because most card
marking barriers use a very short and unconditional code sequence.

Reference Counting. Reference counting algorithms rely on a
write barrier to update reference counts at each pointer store. A
classic [Col60] reference counting algorithm might employ a con-
ditional write barrier (reclaim the object if the count is zero). How-
ever the more widely used deferred reference counting [DB76] ap-
proach depends on an unconditional write barrier. It remembers
pointer stores unconditionally and processes them from time to
time. Our key findings depend on the conditionality of the incre-
mental collector’s write barrier, and the fact that much of the write
barrier is rarely executed. Therefore our results are not likely to ap-
ply directly to reference counting garbage collector write barriers.

Inlining. For a long time, compilers have used inlining to im-
prove code performance, and have for the most part used heuristics
based on code size and/or profiling to limit the code bloat effects of
inlining [AFSS00, ASG97, Sch77]. Cooper et al. find that inlining



can degrade highly optimizing compilers, and expose non-linear
compiler algorithms [CHT92, CHKT93]. Cooper et al. [CHK92]
and Dean and Chambers [DC94] show that not all inlining is equal,
and its judicious application improves performance. Both suggest
frequency as a criteria for their automatic procedure inlining. We
use a Jikes RVM compiler pragma to perform partial inlining and
isolate the infrequently executed instructions. Because the write
barrier is so prolific, this choice has a large impact. Our results sug-
gest partial inlining for other prolific code sequences with hot and
cold paths, such as the allocation sequence, should be profitable.
It might also be worth investigating compiler partial inlining using
branch-frequency profile feedback.

3. COLLECTORS AND BARRIERS
This section briefly presents the generational garbage collectors
that we use in our study. These collectors require a write barrier
and this section describes the two styles we implement.

3.1 Garbage Collectors
We use an Appel-style generational collector [App89] as the ba-
sis of our study because, to our knowledge, it is the best perform-
ing generational collector [BJMM02]. We also gather write bar-
rier statistics for a fixed-size two generational collector to explore
a wider range of collector behaviors. We compare with a non-
generational semi-space collector (which does not require a write
barrier) to reveal the overall cost of using a write barrier. We now
briefly describe these collectors.

3.1.1 Non-Generational Copying Collection
The semi-space copying collector [JL96] simply divides the heap
into two equal-sized semi-spaces, to-space and from-space. It al-
ways uses to-space for allocation. When allocation exhausts the
to-space, the collector is invoked. It first flips the spaces, to-space
becomes from-space, and from-space becomes to-space. The col-
lector then identifies all live objects in from-space by tracing from
the roots (globals, stack variables, etc.). It copies each live object
into to-space. Each time the collector encounters a pointer to an
object in from-space, it replaces the pointer with a pointer to the
object’s new location in to-space. It then reclaims from-space en
masse. The mutator resumes allocating into to-space until it is ex-
hausted, at which point the collection cycle resumes.

3.1.2 Generational Copying Collection
Because researchers observed that ‘most objects die young’, they
constructed generational collectors to collect the youngest objects
more frequently and thus improve upon the simple semi-space col-
lector. This observation is widely known as the weak generational
hypothesis [Ung84]. A generational collector extends the semi-
space collector by allocating into a younger generation (or nursery)
and collecting it frequently. It copies those objects that survive the
nursery into the to-space of the older generation. Filling the to-
space of the older generation triggers a full heap collection. This
collection considers the entire heap and identifies live objects by
tracing from roots just as the semi-space collector does.

In practice most objects do die young, so expensive full heap col-
lections are infrequent, giving generational collection a significant
performance advantage over simple semi-space collection. How-
ever, this advantage depends on collecting the nursery indepen-
dently, i.e., without tracing the full heap to identify live nursery
objects. To achieve this goal, a generational collector remembers

all pointers into the nursery from the older generation.1 When it
collects the nursery, it conservatively assumes all pointers into the
nursery are live. As we discussed in Section 2, there are a number
of approaches to remembering such pointers. All of them depend
on a write barrier to trap pointer stores and, when necessary, re-
member the source of the pointer store.

3.1.3 The Appel-style Generational Collector
Generational collectors are often implemented with a fixed fraction
of the heap reserved for use by the nursery [JL96]. Appel [App89]
describes an alternative implementation which allows the nursery
to consume all the space not used by the higher generation’s to-
space and from-space. Thus initially, when the higher generation’s
to-space is empty, the nursery occupies half of the heap.2 The nurs-
ery shrinks as to-space of the older generation grows. When the
older generation is full, the collector performs a full heap collec-
tion, which will typically shrink the higher generation’s to-space
and thus expand the nursery. By always deferring collection un-
til all of the available heap space is consumed, the flexible nursery
approach makes efficient use of space, and collects the higher gen-
eration less frequently. We find this orginization performs quite a
bit better than a fixed-size nursery collector [BJMM02].

3.2 Write Barriers
We consider an Appel generational collector with two generations,
a nursery and an older generation. We use remembered sets, which
are lists of remembered pointer sources, to track pointers from the
older generation into the nursery. The write barrier produces re-
membered set entries, when necessary. The collector consumes a
remembered set and treats each entry as a root during incremental
collection (i.e., nursery collection).

We examine the two common write barriers: a slot remembering
write barrier, which remembers the slot (object field) containing the
source pointer, and an object remembering write barrier, which re-
members the object containing the source pointer [JL96]. Both are
widely used [Ung84, App89, JL96, SMM99, BJMM02, AAB
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Each barrier makes slightly different tradeoffs. The slot barrier is
likely to remember more pointers. With an object barrier, the col-
lector must scan the source objects during a collection. The point
of this paper is not to explore the relative merits of either approach,
but by examining both we add a degree of generality to our results.

There are two distinct components to the barrier implementation, a
frequently executed fast path, which tests whether a pointer should
be remembered, and an infrequently executed slow path, which
stores the pointer into a remembered set when necessary. We now
describe our implementation of the slot and object barriers.

3.2.1 Slot Remembering Write Barrier
The slot remembering write barrier remembers the addresses of
pointers into the nursery. It tests each pointer store and if the source
is outside the nursery and the target is within the nursery, it remem-
bers the address of the source in a remembered set. The collector

1Not all generational collectors use a write barrier, some go to the
expense of tracing the higher generation as part of each nursery
collection, and in some circumstances a read barrier is an effective
implementation choice [CFS
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00].
2Generational collectors must reserve half of the heap for the
higher generation’s from-space to accommodate the worst case sur-
vival rate in a full heap collection. Thus when the higher genera-
tion to-space is empty, half of the total heap space is available to
the nursery in an Appel-style collector.



1 public static final void writeBarrier(ADDRESS source, ADDRESS target) {
2 if (source < ((target>>>HEAP_K)<<HEAP_K)) {
3 GCTk_WriteBufferSlot.insert(source);
4 }
5 }

a) Java fast path

1 public static final void insert(ADDRESS slot) {
2 // (1) establish the bump pointer address
3 VM_Processor p = VM_Processor.getCurrentProcessor();
4 ADDRESS buf = p.GCTk_WriteBufferBumpPointer;
5

6 // (2) grow buffer if necessary
7 if ((buf & (WRITE_BUFFER_BUF_SIZE - 1)) == 0)
8 buf = growBuffer(buf, WRITE_BUFFER_BUF_SIZE);
9

10 // (3) add the slot
11 buf -= BYTES_IN_WORD;
12 VM_Magic.setMemoryWord(buf, slot);
13

14 // (4) store the new buf pointer back
15 p.GCTk_WriteBufferBumpPointer = buf;
16 }

b) Java slow path.

1 rlwinm r3,r3,0,0,3 ; fast 2
2 cmpw r4,r3 ; fast
3 bge <exit> ; fast
4 addis r3,r2,1 ; slow
5 lwz r3,-16508(r3) ; slow 3
6 ori r4,r16,0 ; slow
7 add r30,r4,r3 ; slow
8 lwz r3,0(r30) ; slow 4
9 andi. r0,r3,32767 ; slow 7

10 bne <line 18> ; slow
11 addis r4,r2,1 ; slow
12 lwz r4,-30240(r4) ; slow
13 lis r5,1 ; slow
14 addi r5,r5,-32768 ; slow
15 mtctr r4 ; slow
16 ori r4,r5,0 ; slow
17 bctrl ; slow 8
18 addi r3,r3,-4 ; slow 11
19 stw r31,0(r3) ; slow 12
20 stw r3,0(r30) ; slow 15

c) PowerPC instruction sequence.

Figure 1: The slot remembering write barrier used by the GCTk generational collectors.

1 public static final void writeBarrier(Object source) {
2 int statusWord = VM_Magic.getIntAtOffset(source, OBJECT_STATUS_OFFSET);
3 if ((statusWord & OBJECT_BARRIER_MASK) != 0) {
4 GCTk_WriteBufferObject.insert(source, statusWord);
5 }
6 }

a) Java fast path

1 public static final void insert(Object source,
2 int statusWord) {
3 // (0) mark the source as "remembered"
4 statusWord = statusWord ˆ OBJECT_BARRIER_MASK;
5 VM_Magic.setByteAtOffset(source, OBJECT_STATUS_OFFSET
6 + BARRIER_BIT_BYTE_OFFSET,
7 statusWord);
8 ADDRESS src = VM_Magic.objectAsAddress(source);
9

10 // (1) establish the bump pointer address
11 VM_Processor p = VM_Processor.getCurrentProcessor();
12 ADDRESS buf = p.GCTk_WriteBufferBumpPointer;
13

14 // (2) grow buffer if necessary
15 if ((buf & (WRITE_BUFFER_BUF_SIZE - 1)) == 0)
16 buf = growBuffer(buf, WRITE_BUFFER_BUF_SIZE);
17

18 // (3) add the source object
19 buf -= BYTES_IN_WORD;
20 VM_Magic.setMemoryWord(buf, src);
21

22 // (4) store the new buf pointer back
23 p.GCTk_WriteBufferBumpPointer = buf;
24 }

b) Java slow path.

1 lwz r3,-8(r31) ; fast 2
2 andi. r0,r3,2 ; fast 3
3 beq <exit> ; fast
4 xori r3,r3,2 ; slow 4
5 stb r3,-5(r31) ; slow 5
6 addis r3,r2,1 ; slow
7 lwz r3,-16508(r3) ; slow 10
8 ori r4,r16,0 ; slow
9 add r30,r4,r3 ; slow

10 lwz r3,0(r30) ; slow 12
11 andi. r0,r3,32767 ; slow 15
12 bne <line 20> ; slow
13 addis r4,r2,1 ; slow
14 lwz r4,-30240(r4) ; slow
15 lis r5,1 ; slow
16 addi r5,r5,-32768 ; slow
17 mtctr r4 ; slow
18 ori r4,r5,0 ; slow
19 bctrl ; slow 16
20 addi r3,r3,-4 ; slow 19
21 stw r31,0(r3) ; slow 20
22 stw r3,0(r30) ; slow 23

c) PowerPC instruction sequence.

Figure 2: The object remembering write barrier used by the GCTk generational collectors.



consumes the remembered set at collection time; it examines each
entry to see if the remembered address still contains a pointer into
the nursery. (The program may have overwritten the pointer with
an uninteresting value after it was recorded in the remembered set.)
If so, the collector marks the pointed-to object live. Otherwise, it
ignores the pointer.

Figure 1a) illustrates the Java code for our fast path implemen-
tation. By locating the nursery and older generation on different
sides of a major virtual memory alignment boundary (2K ), we are
able to apply Stefanović et al’s very cheap address order write bar-
rier [SMM99] to generational collection. We put the nursery in
high memory, and older generations in successively lower memory
regions. We then simply mask the lower K bits in the target and
if the source is less than the shifted target, we remember it (line
2 in Figure 1a)). We use two shifts to perform a mask to avoid a
two-step direct mode and. In fact the two shifts are folded into
a single PowerPC mask operation by the Jikes RVM optimizing
compiler. This barrier generalizes to N generations, as long as each
generation is contained within a 2K-aligned virtual memory region,
and the generation ordering is preserved in the memory organiza-
tion. The PowerPC instruction sequence for the fast path appears
in Figure 1c), instructions 1 though to 3.

When we remember a pointer, we put it in a write buffer, as illus-
trated in Figure 1b). The write buffer is implemented as a simple se-
quential store buffer [HD90, HMS92]. We implement the buffer us-
ing a chain of power-of-two sized chunks (WRITE_BUFFER_BUF_SIZE

� 2n). We exploit the power of two alignment of each chunk to
perform a cheap bounds test (Figure 1b), line 7). The Jikes RVM
optimizing compiler produces tight code for the slow path as shown
in Figure 1c), instructions 4 through to 20. It further optimizes this
code in context after inlining. The slot barrier is the default for the
generational collectors in our garbage collection toolkit (GCTk).3

3.2.2 Object Remembering Write Barrier
The generational collectors that come with Jikes RVM implement
an object remembering barrier [Ung84]. This barrier tests each
pointer store, and remembers the source object if necessary. At
collection time, the collector treats each remembered object as live
and scans it for pointers into the nursery. It marks live any pointed-
to nursery object. As with the slot remembering barrier, this barrier
has a frequently executed fast path, and an occasionally executed
slow path. We now describe our implementation of the object re-
membering barrier in GCTk. (Our implementation closely follows
the Jikes RVM implementation. It differs only in the slow path. We
use the fast power-of-two bounds check described above for the
write buffer, and the Jikes RVM uses a comparison with an explicit
end-of-buffer value, which requires an additional load.)

Figure 2a) illustrates the Java code for the fast path implementa-
tion. This code remembers a source object if the OBJECT_BARRIER

bit is set in the source object’s status word. Once it remembers
the object, it clears the bit. Then it will not remember any subse-
quent stores for an object with a clear OBJECT_BARRIER bit. Note
that because this bit is clear in any newly allocated object, the bar-
rier automatically ensures that it never remembers nursery objects.
When the collector copies an object into the higher generation, it
sets the bit to ensure the barrier will remember subsequent stores

3GCTk implements a number of collectors and works in the Jikes
RVM. We designed it to be more general and extendible than the
existing collectors in the Jikes RVM.

to it. When it processes the remembered set, it resets each object’s
OBJECT_BARRIER bit (which was cleared during the write barrier).
Note that this barrier is somewhat conservative because it remem-
bers all old generation objects into which a pointer is stored regard-
less of whether the pointer is into the nursery. It need not store older
to older generation pointers. The PowerPC instruction sequence for
the object remembering barrier fast path appears as lines 1 through
to 3 in Figure 2c).

The slow path for the object remembering barrier is identical to
that for the slot remembering barrier except that it first clears the
OBJECT_BARRIER bit in the source object. The Java code for this
barrier is illustrated in Figure 2b), and the corresponding instruc-
tion sequence appears in Figure 2c).

4. METHODOLOGY
We explore the impact of write barrier inlining strategies by con-
sidering two metrics: code quality and compilation workload. The
former measures how the choice of inlining strategies impact the
performance of the compiled code, while the latter measures how
the choice impacts on the amount of work the compiler must do to
compile each barrier. Code quality is of obvious importance, and in
a dynamic compilation context, such as Java, compilation workload
is also important because the application is exposed to the compiler
through just-in-time compilation.

We measure code quality by timing the SPEC JVM98 benchmarks
in Jikes RVM, and measure compiler workload by timing the Jikes
RVM optimizing compiler building a Jikes RVM boot image while
running on the Sun HotSpot JVM. We describe this experimental
environment below.

4.1 JIT and GC Environment
We use the Jikes RVM (formerly known as Jalapeño) and GCTk,
which is a GC toolkit for Jikes RVM which we have recently de-
veloped.4 We now overview each of these.

4.1.1 Jikes RVM
Jikes RVM is a high performance VM written in Java that includes
an aggressive optimizing compiler [AAB

�

00, AAC
�

99]. Jikes
RVM offers three compiler choices: baseline, all methods are com-
piled by a quick non-optimizing compiler; optimizing, all methods
are compiled by an aggressive optimizing compiler; and adaptive,
which initially baseline compiles methods and then adaptively re-
compiles hot methods using the optimizing compiler. The adaptive
compiler uses sampling to select optimization candidates, and thus
tends to make slightly different choices for each execution. This
non-determinism makes the adaptive compiler a difficult platform
for any detailed study of the optimizing compiler. Since our fo-
cus is on the behavior of optimizing compilation rather than when
to use it, we measure the optimizing compiler for our key results.
We use the adaptive compiler to contextualize our results with a
realistic indicator of compilation workload.

Jikes RVM can be configured with two levels of ahead-of-time
compilation. A minimal configuration only precompiles those classes
essential to bootstrapping the VM (which does not include the op-
timizing compiler). We use the configuration which precompiles as
much as possible, including key libraries and the optimizing com-
piler. We also turn off assertion checking for our experiments.5

4GCTk is publicly available at http://cs.umass.edu/˜gctk.
5This build-time configuration is known as Fast.



4.1.2 GCTk
GCTk is an efficient and flexible platform for GC experimenta-
tion that exploits the object-orientation of Java and the VM-in-
Java property of Jikes RVM. We have implemented a number of
GC algorithms in GCTk and found their performance to be similar
to those of existing Jikes RVM GC implementations. The GCTk
collectors used here (semi-space, fixed-nursery generational, and
Appel-style generational) are well tuned. Each of the collectors
shares a common infrastructure. The write barriers share common
sequential store-buffer code. The Appel-style and fixed-nursery
generational collectors share all the same code except their collec-
tion triggering rule.

4.2 Benchmarks
In Section 5.2, we measure compiler code quality by timing the
SPEC JVM98 benchmarks. Table 1 shows key compile time and
run time characteristics of each of the benchmarks.

Compile Time Run Time
Bytecodes
compiled

Instructions
generated

Write
Barriers

Minimum
heap

Pointer
stores

201 compress 13.5KB 136.8KB 240 19MB 21K
202 jess 31.1KB 317.1KB 428 11MB 34.0M
205 raytrace 21.7KB 202.8KB 303 15MB 6.6M
209 db 15.0KB 154.0KB 236 22MB 30.0M
213 javac 72.2KB 579.2KB 1929 27MB 25.5M
222 mpegaudio 28.9KB 197.4KB 344 11MB � 1K
227 mtrt 21.7KB 202.1KB 303 22MB 8.1M
228 jack 35.0KB 319.7KB 519 13MB 9.4M

Table 1: Benchmark Characteristics

For these results, we compile each benchmark with the Jikes RVM
optimizing compiler using fully inlined write barriers (which is the
default behavior). For consistency between executions, we do not
use the Jikes RVM adaptive compiler [AFG

�

00]. The optimizing
compiler compiles all methods required for the execution of each
benchmark. The compilation includes the SPEC JVM98 harness
and any additional libraries required by the benchmark that are not
precompiled as part of the Jikes RVM boot image. Table 1 indicates
the volume of Java bytecodes compiled, the volume of instructions
produced, and the (static) number of write barriers compiled.

The minimum heap size column in Table 1 indicates the minimum
heap in which the benchmark will run when using the Jikes RVM
optimizing compiler and the GCTk Appel-style collector (this heap
size is inclusive of the memory requirements of the optimizing
compiler compiling the benchmark). The pointer store column
shows the number of times the write barrier fast path executes in
a run of the benchmark that does not include any compilation over-
head. We obtain this statistic by running the benchmarks twice, and
measuring the second iteration.

4.3 Experimental Platform
We use Jikes RVM version 2.0.2, turn off run-time assertion check-
ing, and use the optimizing compiler with the build-time configu-
ration which pre-compiles as many classes into the boot image as
possible. These experiments use a 733MHz Macintosh PowerMac
G4, with 32KB on-chip L1 data and instruction caches, a 256KB
unified L2 cache, 1MB L3 off-chip cache, and 384MB of memory,
running PPC Linux 2.4.10.

We measure compilation time for the various write barriers by com-
piling the Jikes RVM boot image using its optimizing compiler run-
ning on the Sun HotSpot Client VM version 1.3.1. For this experi-

ment, we use a Dell Precision 340 with a 1.7GHz Intel Pentium 4,
with an 8KB L1 data cache, a 12K L1 instruction cache, a 256KB
unified L2 on-chip cache, and 512MB of memory running Linux
2.4.7.

5. RESULTS
This results section first shows the dichotomy between the slow
and fast path execution frequencies for slot and object write barri-
ers which motivates further exploration of write barrier code place-
ment. We then compare application code quality using the out-of-
line, partially inlined, and inlined write barriers. These results ex-
clude both compilation costs and garbage collection time, and show
that partial inlining yields a small but consistent advantage in exe-
cution time over inlining, which is slightly better than out-of-line,
i.e., code quality improves when the slow path is out-of-line.

We then explore compilation costs. We measure the time taken by
the Jikes RVM optimizing compiler to compile the methods in the
boot image. We attain the expected result that inlining is slowest
to compile, and out-of-line is fastest. The partially inlined barriers
take between 20% and 25% less time to compile than the fully in-
lined barrier, with a similar reduction in the number of instructions
generated. The magnitude of this difference is unexpected. Many
systems inline the entire write barrier.

We also examine the combination of collector and write barrier.
We find, not surprisingly, that despite the runtime overhead of the
write barrier, the Appel-style generational collector performs sub-
stantially better than a semi-space collector. The partially inlined
barrier always achieves the best performance for both just-in-time
(on average 9.9% better than inlining) and ahead-of-time compila-
tion (on average 1.4% better than inlining).

5.1 Slow Path Execution Frequency
As we discussed in Section 3.1, a two generational copying collec-
tor tracks pointers from the older to younger generation to avoid
scanning and copying the older generation. Table 2 shows the rel-
ative number of dynamic pointer stores for each application, in-
cluding compilation. We use this configuration instead of just the
application take rates, because the latter were even smaller, further
exaggerating the results.

We experiment with both a slot and object write barrier, and three
different two generational collector configurations: an Appel-style
collector, and two fixed-size nursery collectors with nurseries con-
sisting of 5% and 10% of the usable heap. We measure the number
of pointers stored over 8 heap sizes from 1 to 3 � 25 � the minimum
heap size as reported in Table 1, and report the geometric mean of
these frequencies. The heap size affects the nursery size, and thus
the frequencies. These results are typical [Ste99], and demonstrate
that these programs take the slow path less than 3% of the time,
and in many configurations, much less than 1%. The next section
shows we can exploit this dichotomy.

5.2 Application Code Quality
We investigate three options for write barrier placement: a fully in-
lined write barrier (inline), an out-of-line write barrier implemented
with a direct method call (out), and a partially inlined write barrier
with the fast path inlined and the slow path out-of-line (partial).
This section presents results for the code quality of the application,
as one would see in a traditional ahead-of-time compiler. In addi-
tion to excluding the compilation time, we also exclude the garbage



Appel-style 5% Nursery 10% Nursery
Slot Object Slot Object Slot Object

201 compress 0.52% 0.47% 0.77% 0.71% 0.77% 0.71%
202 jess 0.47% 0.56% 1.12% 1.72% 0.83% 1.03%
205 raytrace 0.56% 0.56% 1.13% 1.13% 0.77% 1.13%
209 db 0.16% 0.06% 0.47% 0.41% 0.27% 0.23%
213 javac 0.58% 1.07% 1.07% 2.02% 1.07% 1.58%
222 mpegaudio 0.58% 0.45% 1.67% 1.83% 1.19% 1.10%
227 mtrt 0.38% 0.38% 0.93% 0.93% 0.64% 0.93%
228 jack 2.47% 1.11% 1.11% 2.81% 1.11% 1.84%

Geometric mean 0.37% 0.29% 1.34% 1.35% 0.93% 0.94%

Table 2: Frequency with which the slow path is taken for three
collector configurations and two write barriers.

collection time because of the impact of compiler-generated heap
objects on garbage collection.

We measure application time by executing each benchmark twice
using the optimizing compiler which does all its work on the first
iteration. The application time is the total time for the second it-
eration of the benchmark less any garbage collection time during
that iteration. We measure each benchmark five times and record
the best time. We run the benchmark using 8 different heap sizes
from 1 � to 3.25 � the minimum heap size and report the geomet-
ric mean of the best times for each of these heap sizes (see Table 1
for minimum heap size data). We also report the geometric mean
of the application time results for all benchmarks, and normalize
against the inlined barrier.

Slot Remembering Barrier Object Remembering Barrier
Inline Partial Out Inline Partial Out

201 compress 100.0% 99.0% 99.2% 100.0% 99.8% 100.4%
202 jess 100.0% 99.0% 113.7% 100.0% 100.1% 105.9%
205 raytrace 100.0% 92.9% 97.6% 100.0% 99.5% 101.6%
209 db 100.0% 99.2% 102.2% 100.0% 100.0% 102.4%
213 javac 100.0% 97.4% 103.4% 100.0% 98.3% 102.0%
222 mpegaudio 100.0% 99.4% 100.7% 100.0% 99.6% 100.6%
227 mtrt 100.0% 101.1% 105.0% 100.0% 100.1% 101.2%
228 jack 100.0% 99.9% 104.6% 100.0% 99.9% 101.7%

Geometric mean 100.0% 98.5% 103.2% 100.0% 99.7% 102.0%

Table 3: Average application running time (excluding GC),
normalized against running time with an inlined barrier.

Table 3 shows that partial inlining is the best choice for the slot
barrier in all benchmarks, and the best for the object barrier on 5 of
the benchmarks. The out-of-line barrier is the worst of the choices,
on average 2% (the object barrier) and 3.2% (the slot barrier) worse
than inlining, except for 201 compress and 202 jess. We were a
little surprised the out-of-line barrier did not do worse, but this ma-
chine and compiler apparently implement a direct procedure call
very well. On average, partial inlining offers an overall improve-
ment over full inlining of about 1.5% for the slot barrier and 0.3%
for the object barrier.

This result is a little surprising. Common practice might suggest
that fully inlined code will perform better. However, the slow path
frequency numbers in Table 2, the dynamic pointer store statistics
in Table 1, and the compilation statistics reported in Table 4 all
indicate instruction locality as one explanation. The rarely exe-
cuted write barrier slow path is proliferated throughout the com-
piled code, increasing the code volume by around 30% over the
out-of-line case (see Table 4). A second potential explanation is
that increasing the register pressure by inlining the slow path de-
grades code quality. Most likely a combination of these effects
accounts for the performance degradation suffered by the fully in-

lined code.

A call to a static method in Jikes RVM takes a minimum of three
instructions and typically more.6 Thus the call alone increases the
number of instructions inlined by at least 100% on top of the fast
path instruction sequence in the case of partial inlining. The com-
piler could reduce the mixing of hot fast-path and cold slow-path
instructions in the partial inlining case by pushing the call sequence
to the end of a code block [FG02]. We expect this optimization
would further improve the performance of partial inlining, but do
not explore it here.

For traditional ahead-of-time compilation, these results suggest that
a partially inlined write barrier will attain consistent, but small exe-
cution time improvements for the slot barrier on a variety of bench-
marks.

5.3 Compile-time Costs
Dynamically compiled languages like Java directly expose the ap-
plication to the compiler. We now measure the compilation over-
head for the three write barrier code placement strategies. In this
section, we tease apart the compile time to optimize code with dif-
ferent write barriers, and its effect on compilation time itself (be-
cause the Jikes RVM compiler is subject to the choice of write bar-
rier as well).

Because the Jikes RVM optimizing compiler normally executes in
the context of Jikes RVM, changing the write barrier changes the
performance and allocation of the compiler itself as it executes,
i.e., the compiler must execute the same barrier that it is compil-
ing. Direct measurements of the optimizing compiler within the
Jikes RVM are thus problematic because the code quality issues
raised in Section 5.2 are superimposed onto any variation in com-
piler workload the different barriers impose. For these reasons, we
measure the Jikes RVM optimizing compiler when compiling the
Jikes RVM boot image in the context of a host JVM (Sun’s HotSpot
JVM). This strategy holds constant the execution context for the
compiler, and only changes the compiler’s results due to the write
barrier.

The compilation of the boot image is a substantial test of the opti-
mizing compiler. It compiles 9743 methods and 43004 write bar-
riers. For the fully inlined slot barrier, it generates 11.4MB of in-
structions, and spends about 15 minutes in compilation. The results
in Table 4 show the impact of the three code placement strategies
on the compiler workload, as measured by instructions generated,
and time taken to compile the Jikes RVM boot image classes. As
with our other results, we report the best time from five runs.

Slot Remembering Barrier Object Remembering Barrier
Inline Partial Out Inline Partial Out

Output 100.0% 73.8% 66.9% 100.0% 76.6% 69.4%
Time 100.0% 75.2% 62.2% 100.0% 79.1% 69.0%

Table 4: Compiler workload expressed in terms of instructions
generated (Output) and compilation time (Time), for the slot
and object barriers all normalized to inlining using the Jikes
RVM on the HotSpot JVM.

These results indicate that fully inlining write barriers substantially
increases the compiler workload over the other choices. Partial in-

6Note that in Figures 1c) and 2c), the static method calls take seven
instructions (lines 11–17 and 13–19 respectively).



Appel-style generational collector
Slot Remembering Barrier Object Remembering Barrier Semi-space

Inline Partial Out Inline Partial Out

201 compress 100.0% 97.0% 97.6% 99.4% 96.7% 99.6% 108.7%
202 jess 100.0% 86.2% 93.6% 95.0% 88.6% 91.4% 207.8%
205 raytrace 100.0% 88.5% 92.2% 87.5% 82.1% 86.4% 159.8%
209 db 100.0% 98.4% 100.2% 99.8% 98.9% 101.4% 114.2%
213 javac 100.0% 81.5% 84.5% 97.6% 83.0% 84.8% 119.9%
222 mpegaudio 100.0% 90.4% 91.9% 97.3% 91.6% 93.0% 104.5%
227 mtrt 100.0% 90.5% 96.2% 97.4% 93.7% 97.1% 138.1%
228 jack 100.0% 87.0% 89.9% 95.7% 87.5% 89.9% 141.4%

Geometric mean 100.0% 89.8% 93.2% 96.1% 90.1% 92.8% 133.5%

a) Total Time including compilation (first iteration).

Appel-style generational collector
Slot Remembering Barrier Object Remembering Barrier Semi-space

Inline Partial Out Inline Partial Out

201 compress 100.0% 98.8% 99.1% 99.2% 98.9% 100.5% 113.0%
202 jess 100.0% 98.9% 112.6% 97.6% 97.5% 105.4% 372.2%
205 raytrace 100.0% 93.1% 97.7% 94.4% 93.9% 101.0% 238.4%
209 db 100.0% 99.1% 102.1% 99.4% 99.3% 102.3% 116.5%
213 javac 100.0% 96.5% 101.2% 101.1% 98.3% 100.2% 144.6%
222 mpegaudio 100.0% 99.4% 100.7% 99.8% 99.4% 100.6% 99.1%
227 mtrt 100.0% 100.8% 104.8% 101.2% 102.0% 101.5% 174.8%
228 jack 100.0% 99.4% 103.8% 99.5% 98.9% 101.3% 204.6%

Geometric mean 100.0% 98.2% 102.6% 99.0% 98.5% 101.6% 166.8%

b) Total Time excluding compilation (second iteration).

Table 5: Total running time for one iteration of each of the SPEC JVM98 benchmarks, including garbage collection costs.

lining reduces total compiler costs by around 20% to 25%, and the
out-of-line barrier reduces it more, by 30% to 35%. Note also that
the improvements in compilation time are approximately linear in
the reduction in instructions generated. This result means that the
compilation work is proportional to the number of instructions it
generates. (Good news for the compiler!) For our study, the funda-
mental problem is that fully inlining the write barrier increases the
compiler load significantly without any corresponding increase in
the resulting code performance, and, in fact, slightly degrades code
quality.

When compilation time exceeds about 10% of total time and be-
comes more dominant, these results even suggest an out-of-line
barrier as a good choice! As we show in the next section, this
suggestion does not hold up in our system. Instead, the cost of
executing the out-of-line barrier in the very pointer store intensive
compiler degrades the compiler performance by more than the time
to compile it.

5.4 Total Running Time
Having shown that a partially inlined write barrier executes faster
and substantially reduces compiler workload compared to a fully
inlined barrier, and that the out-of-line barrier is more ambiguous
with respect to these criteria, we now examine their overall exe-
cution time impact. Because the total running time is so heavily
impacted by the level of compiler activity, we show best and worst
case results for compiler activity. In this context, best is no compi-
lation (everything is already compiled) and worst is all application
methods compiled at the time of their execution.

Table 5 illustrates total running time results for slot and object bar-
riers compiled inlined, partial, and out-of-line using the Appel-style
generational collector. We include for comparison the running time
for the simple semi-space collector, which has no write barrier. We
again pick the best of 5 runs and compute the geometric mean for
each program and collector over 8 heap sizes. All of these num-

bers are inclusive of garbage collection time. All but two of the
SPEC JVM98 programs spend between 20 and 40% of their time
in the Jikes RVM compiler; 201 compress (9-13%) and 209 db
(5-7%) are the exceptions. Since the semi-space collector has no
barrier, the lowest compilation times are for the semi-space collec-
tor (e.g., a compile time of 5% for 209 db with no write barrier).
When compiling the Jikes RVM boot image, the full, partial, and
out-of-line barriers slowed the compiler down by 71%, 30%, and
10% respectively, relative to the semi-space collector.

Table 5a) shows times for the first iteration of each benchmark and
is thus inclusive of compilation costs. Since the optimizing com-
piler compiles all methods prior to their execution, this table rep-
resents the worst case in terms of compilation load. Comparing
between inline, partial, and out-of-line, a partially inlined slot bar-
rier performs best, on average 10.2% better than inlining. With
the compiler in the picture, an out-of-line slot barrier is better than
an inlined one. The inlined object barrier performs better than an
inlined slot barrier, but slot is the best using partial inlining.

Table 5b) shows times for the second iteration of each benchmark
and is thus exclusive of compilation costs. This table represents
no compilation load, but does include the garbage collection time.
In these results, inlining always performs better than an out-of-line
barrier. Partial inlining offers a small and consistent advantage over
full inlining. These results are consistent with the code quality im-
provements observed in Section 5.2 where we exclude garbage col-
lection performance.

With compilation, even an out-of-line barrier is better than an in-
lined barrier for the slot barrier by 6.8% on average, and for the
object barrier, they differ only by around 3.5% on average. When
compilation is eliminated or minimized, the out-of-line barrier takes
its place as the worst performing barrier.

Regardless of the compilation cost or the barrier code placement



choice, a semi-space collector with no barrier performs worse than
Appel with a barrier. As expected, the incrementality of the Ap-
pel generational collector always yields significantly better perfor-
mance than collecting the whole heap every time with the semi-
space collector. For example, an inlined slot barrier with Appel
is 33% faster than the semi-space collector with the compiler and
66% without the compiler. In fact, these results are somewhat un-
derstated because the second iteration will have lower memory re-
quirements than the first because the heap will not contain any com-
piler objects. In some cases, the semi-space collector is barely ex-
ercised in the second iteration (e.g., 222 mpegaudio and 209 db).

These results indicate that the impact of a partially inlined slot write
barrier ranges from a 0.8% degradation to 18.5% improvement over
a fully inlined write barrier, depending on the level of compilation.
The more compilation, the greater the advantage partial inlining has
over inlining. We also measure the activity of the adaptive compiler
which is typically 12.5% of execution time. This level of activity
is between half and one third that of the optimizing compiler, and
will thus see the benefit of partial inlining.

We obtain very similar results using the same experiment with a
fixed-size nursery collector which, as we show, takes the slow path
more frequently. Thus, we believe these results will hold across
different collectors and compilers.

6. CONCLUSION
The write barrier is a key to the efficiency of many modern garbage
collectors. Garbage collectors pay mutator write-barrier overheads
to reduce copying overhead and improve total performance. Many
researchers have spent their time trying to minimize the impact of
the write barrier on the mutator. We show that the way in which
the barrier is compiled can have a considerable impact on overall
performance, even if it is highly optimized. Write barriers are pro-
lific and have highly regular bimodal execution patterns. These two
characteristics bring into question a common practice of inlining
write barriers.

We find that fully inlining write barriers not only produces subop-
timal code, but dramatically increases the compiler’s workload. By
contrast, partial inlining reduces the compiler’s workload by be-
tween 20% and 25% as compared to full inlining, and consistently
leads to better quality code. This result is general in the context
of write barrier compilation. Furthermore, it is likely to extend to
other contexts, notably compiling allocation sequences which are
also prolific and typically have well defined fast and slow paths.
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