
Barriers: Friend or Foe?

Stephen M Blackburn

Department of Computer Science
Australia National University

Canberra, ACT, 0200, Australia
Steve.Blackburn@anu.edu.au

Antony L Hosking ∗

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA
hosking@cs.purdue.edu

ABSTRACT
Modern garbage collectors rely on read and write barriers imposed
on heap accesses by the mutator, to keep track of references be-
tween different regions of the garbage collected heap, and to syn-
chronize actions of the mutator with those of the collector. It has
been a long-standing untested assumption that barriers impose sig-
nificant overhead to garbage-collected applications. As a result,
researchers have devoted effort to development of optimization ap-
proaches for elimination of unnecessary barriers, or proposed new
algorithms for garbage collection that avoid the need for barriers
while retaining the capability for independent collection of heap
partitions. On the basis of the results presented here, we dispel the
assumption that barrier overhead should be a primary motivator for
such efforts.

We present a methodology for precise measurement of mutator
overheads for barriers associated with mutator heap accesses. We
provide a taxonomy of different styles of barrier and measure the
cost of a range of popular barriers used for different garbage col-
lectors within Jikes RVM. Our results demonstrate that barriers im-
pose surprisingly low cost on the mutator, though results vary by
architecture. We found that the average overhead for a reasonable
generational write barrier was less than 2% on average, and less
that 6% in the worst case. Furthermore, we found that the aver-
age overhead of a read barrier consisting of just an unconditional
mask of the low order bits read on the PowerPC was only 0.85%,
while on the AMD it was 8.05%. With both read and write barriers,
we found that second order locality effects were sometimes more
important than the overhead of the barriers themselves, leading to
counter-intuitive speedups in a number of situations.

Categories and Subject Descriptors: D.3.3[Language Constructs
and Features]

General Terms: Languages, Design, Performance, Algorithms

Keywords: Write barriers, memory management, garbage collec-
tion, Java

∗This work is supported by NSF ITR CCR-0085792, ARC
DP0452011, and IBM. Any opinions, findings and conclusions ex-
pressed herein are the authors and do not necessarily reflect those
of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’04, October 24–25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/0010 ...$5.00.

1. Introduction
Modern garbage collectors rely heavily on mechanisms to monitor
accesses by the mutator to objects in the garbage-collected heap.
Commonly referred to as read or write barriers, they encapsulate
actions to be performed whenever the mutator reads/writes a refer-
ence from/to some field of a heap object. Typical actions include
recording the accessed object or object field, perhaps conditionally
with respect to the object/field and the reference itself. The in-
formation recorded by a barrier can be used to partition the heap
into separately-collected regions, and to synchronize actions of the
mutator and the garbage collector. A general overview of such bar-
riers and their use in garbage collection can be found in Jones and
Lins [20].

The impact of different barriers on garbage collector perfor-
mance and on overall application performance has been widely
studied [30, 12, 26, 31, 2, 16, 15, 14, 4, 29, 9]. Questions regarding
the form of the barrier (e.g., conditional, inlined) and the impact
of such decisions on mutator code quality and compile times have
also been studied [6]. There have been scattered measurements of
direct barrier overheads: Zorn reported write barrier overheads of
2-6% and read barrier costs of up to 20%; Bacon et al. [5] report
the cost of their Brooks-style [11] indirection-based read barrier
as 4% on average and 10% maximum for SPECjvm98. Thus, it
has been widely assumed that barriers impose significant overhead
on the mutator. This assumption has led to efforts to reduce bar-
rier overheads using approaches based on static analysis and com-
piler optimization [10, 17, 33, 5]. Others have cited barrier cost to
justify the development of new garbage collection algorithms that
eliminate the need for barriers while preserving garbage collection
properties such as partitioned collection of the heap [13].

What has been lacking is a comprehensive and comparative eval-
uation of precise barrier costs on modern processors. Understand-
ing the costs of the barriers is important for implementors, since
barriers impact aspects of the compiler, optimizer, and run-time
system. Barrier costs are also important to algorithm designers,
since the style of barrier can directly influence algorithmic design
choices (e.g., copying, generational, concurrent, parallel). The re-
sults we report here reveal that, depending on the hardware plat-
form, carefully engineered read and write barriers typically con-
sume a minimal fraction of total execution time. Our results have
two-fold impact: language implementors can choose among barri-
ers depending on their target platform and the GC algorithm they
must support, while algorithm designers can judiciously incorpo-
rate barrier requirements into their algorithms without fear of un-
necessarily expensive mutator overheads. Moreover, the evaluation
methodology we use is one that other implementors should be en-
couraged to replicate for evaluation of barriers within their own
systems.

1.1 Our contributions
Our specific contributions include:

• An evaluation methodology allowing meaningful compari-
son of the precise overheads of different barrier implemen-
tations. We supplement the reachability information con-
tained in remembered sets with exact reachability informa-
tion, thus allowing us to ignore remembered sets while hold-
ing all other elements of program behavior constant. This
allows us to include or exclude or include barriers without
impacting the correctness of the collector.

• Implementation of this methodology for MMTk and Jikes
RVM.

• Evaluation of a range of barriers for standard Java bench-
marks on a number of platforms, revealing that certain barri-
ers have overheads that are a minimal fraction of total execu-
tion time. We implement standard write barriers and a num-
ber of read barriers which are representative of broad classes
of read barrier.

2. Related Work
There are three broad areas of prior work related to the study we
present here. The most direct precursors are studies of mutator bar-
rier overheads. Zorn [34] gathered heap access profiles for several
large Lisp programs, in the form of counts for the access events
to which barriers need to be applied. Based on these counts, and
by timing the cost of postulated barriers within a tight loop on the
SPARC, MIPS, and MC68020 processors, Zorn was able to come
up with an estimate of the total cost of the barriers per application
and platform. By measuring total execution time for the bench-
marks on each platform (without the overhead of profiling) he was
able to calculate the barrier overhead as a fraction of total execution
time. We note that this measure is not necessarily accurate, since
it does not consider the in-place effects of the barriers. On modern
processors, these are magnified by secondary compiler/hardware
effects such as register pressure, branch prediction, cache local-
ity, etc. We do measure these effects. Zorn’s measured overheads
range from 2-6% for inlined fast-path write barriers and < 20%
for read barriers. Since Lisp is untyped, his barriers must also fil-
ter for non-pointer stores. Our results for Java reveal the impact
of static disambiguation of non-pointer stores from pointer stores,
showing that a reasonable generational barrier can have average
mutator overhead under 2%. Interestingly, our worst case overhead
is just under 6%, so the maximum bound is consistent with Zorn’s.
However, we are operating in a fully compiled setting (Jikes RVM),
whereas Zorn’s work was based on Franz Lisp which features in-
terpretation. Moreover, our average overhead is 2%, while some
benchmarks experience almost no overhead.

Bacon et al. [5] report the overhead of their Brooks-style [11]
indirection-based read barrier as 4% on average and 10% maxi-
mum for SPECjvm98. Note that to achieve this result Bacon et
al. apply a number of optimizations including those naturally per-
formed by the Jikes RVM compiler (e.g., common subexpression
elimination), as well as special-purpose optimizations like barrier-
sinking, in which the barrier is moved to its point of use, which
allows the null-check required by the read access to be combined
with the null-check required by the barrier. Our results do not in-
clude any special-purpose optimizations other than those the Jikes
RVM compiler already applies.

A broader area of related work includes studies of the primary
effects of different barriers: that is, on the collector, or on over-
all performance itself [30, 12, 26, 31, 2, 16, 15, 14, 4, 29, 9].

Several of these consider use of hardware-supported barriers (e.g.,
using virtual memory protection primitives supported by the oper-
ating system), but find such approaches generally too expensive,
both because of the coarse granularity of virtual memory pages and
the high cost of fielding the protection traps using user-level signal
handlers. Here, we focus solely on software barriers, which none
of these prior studies have accurately measured as a fraction of mu-
tator time. Other work looks at the impact of barriers on compile
times and code quality [6].

Finally, we also mention that the specter of high barrier costs has
driven diverse work on elimination of barriers through compiler op-
timization [10, 17, 33, 5] or synthesis of new collector algorithms
that forgo reliance on barriers [13]. Our results question the moti-
vation for such efforts (if their point is only to avoid barrier costs),
since we show such costs to be surprisingly low.

3. Methodology
Perhaps the reason why write barrier performance has been the sub-
ject of so much speculation rather than evaluation is the lack of a
suitable methodology. The only prior attempt to measure barrier
performance we are aware of [34] used a combination of simula-
tion and measurement of barriers in tight loops. By contrast, our
methodology allows in vivo measurement of the barrier. This is
significant, because as we shall show, the interplay between barrier
code, its surrounding context, and the compiler can be subtle and
unexpected.

Note that we do not measure the impact of different barriers on
the compiler (see Blackburn and McKinley [6]), nor do we measure
the indirect impact a choice of barrier may have on collection time
(some barriers trade barrier simplicity for extra work at collection
time). Our focus is solely on the mutator performance of the bar-
riers themselves. We now describe garbage collector and compiler
configurations that allow us to measure this.

3.1 Ignoring Remembered Sets
To achieve in vivo measurement, we want to be able to remove a
barrier from its natural environment and then compare the mutator
performance with and without the barrier in place. Our focus is
on generational collectors, where write barriers are used to identify
and remember pointers into the nursery so that the nursery collec-
tion can be performed in isolation. Pointer sources can be remem-
bered with a variety of different mechanisms, with varying degrees
of precision, including remembering cards (regions of memory that
may contain pointers into the nursery), objects (objects that may
contain pointers into the nursery), and slots (addresses that may
contain a pointer into the nursery).

Our approach is simple. We augment nursery collection with a
trace of the entire heap so that we can identify those objects in the
nursery that are live (via reachability rather than via remembered
sets). This allows us to dispense with the remembered data or not
use a barrier at all, and still correctly collect the nursery.

We only trace for liveness at nursery collections, we do not ac-
tually collect the entire heap. We perform full heap collections
according to the usual regime (e.g., when the heap is full), so the
space utilization and movement of objects is as faithful as possible
to the original generational collector. The only point of difference
is that in the original generational collector mature space objects
are conservatively assumed to be live, so excess retention occurs
when a nursery object is pointed to by a dead (but uncollected) ma-
ture space object. There is no excess retention in our collector.1

1Incidentally, our collector could therefore be used to quantify the
extent of excess retention.

Of course this collector has a substantial overhead at collection
time, undermining the very purpose of a generational collector.
However, our goal here is not to produce an efficient collector but
to develop a methodology for measuring mutator performance, so
this overhead of no consequence. A potential source of concern is
the effect major collections might impart on the mutator through
their impact on the memory hierarchy through purging of caches.
However, consistent with previous results [8] we did not see any
such effect.2

Because we are only concerned with mutator performance, we
perform all of our experiments at a single large heap size (700MB).
We use a bounded nursery of 4MB. The survival rates of our bench-
marks are not sufficient to trigger a full heap collection under these
circumstance. Since there is never pressure on the heap size, the
nursery always remains at its upper bound of 4MB.

This mechanism is publicly available as part of MMTk, allowing
the research community to easily apply our methodology to evalu-
ate other barriers.

3.2 Pseudo-Adaptive Compilation
The compiler is a key factor in barrier performance, although mea-
suring the impact of different compilers on barrier performance is
beyond the scope of this work. Instead our goal is to measure the
impact of barriers in a realistic setting within one high performance
virtual machine.3 We use Jikes RVM and a deterministic variant of
its adaptive optimizing compiler [1]. As with most modern virtual
machines, the Jikes RVM compiler focuses its effort, applying the
heaviest optimizations to the most frequently executed code [3].
While it is possible to fully optimize all code in Jikes RVM, we
focus on an adaptive compilation mix on the grounds that it is more
realistic. We measured both and found that while full optimization
lead to measurable overall improvements in code performance, the
relative impact of the various barriers was not significantly different
to that in the adaptive compilation setting.

Unfortunately Jikes RVM’s adaptive compilation uses timer-based
sampling to identify hot methods and therefore is non-deterministic.
We circumvent this with the pseudo adaptive driver for the Jikes
RVM compiler, which applies the optimizing compiler to code ac-
cording to an advice file generated ahead of time.4 The pseudo
adaptive compiler thus mimics the adaptive compiler in a deter-
ministic manner. We generate advice by running each benchmark
five times while logging compiler decisions. We then use the log
from the fastest of the five runs as advice during timing runs of the
benchmarks.

Because we are only interested in the impact of the barriers on
the mutator performance, not their impact on the compiler, we want
to exclude compilation costs from our measurements. We there-
fore perform two iterations of each benchmark, only measuring the
second iteration (both timers and performance counters are only
started at the beginning of the second iteration).

4. Barrier Implementations
We have implemented a range of popular write barriers that vary
in what information they record, and in what in-line filtering they
apply to each store to decide whether it generates new informa-
tion of interest to the collector. We also consider representative (if
not comprehensive) read barrier variants: one that unconditionally

2We determined this by comparing mutator performance with and
without full heap traces at nursery collection time.
3Jikes RVM has, at various times, been shown to be competitive
with the IBM product JVM for the x86 architecture.
4Xianglong Huang and Narendran Sachindran jointly implemented
the pseudo adaptive compilation mechanism.

masks out low-order tag bits from references as they are accessed,
and the other that conditionally tests whether any tag bit is set. All
of the write barriers except for the card marking approach, record
their pertinent information into a sequential store buffer (SSB) [2].
The SSB is updated out-of-line in a sub-routine when a given store
passes its in-line filter. We use the term fast-path to refer to the
the in-line portion of the barrier, including the filter but excluding
the code to dispatch the call. The term slow-path refers to both the
in-line dispatch code, and the called method. The fast-path repre-
sents the primary mutator overhead of any barrier. The frequency
of slow-path execution directly impacts secondary overhead.

MMTk has recently implemented an optimized array copy bar-
rier that significantly improves performance in benchmarks such as
202 jess which perform a substantial number of array copies. All

of our write barriers exploit that optimization.
We now detail the various barriers and their relative advantages

and disadvantages. Figure 1 shows the code skeleton for the MMTk
write barrier, while Figure 4 shows the code skeleton for the read
barrier. Note that this code is the barrier fast-path, generated in-line
by the Jikes RVM optimizing compiler (which the Jikes RVM id-
iom VM PragmaInline enforces). The parameters to the write
barrier include the source object being modified (src), the loca-
tion within that object to which the store occurs (slot), the target
reference being stored (tgt), and an integer parameter mode in-
dicating what kind of store is being performed. Note also that the
write barrier is what we call a substituting barrier: the barrier itself
is responsible for effecting the store to the appropriate location. The
read barrier is also a substituting barrier with a similar interface.

4.1 Write Barriers
The various write barrier implementations evaluated here are given
in Figure 2, showing the Java code that implements each particular
barrier (i.e., to be inserted at line 3 in the skeleton), along with
the assembly code generated by the optimizing compiler for the
PowerPC and Intel x86 platforms.

Boundary. The boundary barrier is the current default barrier
for MMTk generational collectors. It tests whether the source and
target lie on different sides of a static boundary address, and records
the source location (or object slot) to which the target reference is
stored. Such a barrier is useful for copying generational collectors
to record references from older objects to younger objects, using
a bounded nursery at a fixed virtual memory location. Recording
the slot holding the reference is most precise for GC, since only
pointers of definite interest need to be processed at GC time.

Object. The object barrier was used in the original Jikes RVM
collectors prior to adoption of MMTk. When a target reference is
stored into any field of a source object, the source object’s refer-
ence is recorded in the SSB. To avoid multiple entries of the same
source object, the object barrier filters duplicates by setting a flag
in the object’s header when it is first entered in the SSB, and check-
ing this flag in the fast-path. The object barrier has the advantage
of concisely recording pointer updates to multiple fields of hot ob-
jects, at the expense of interpreting object pointer maps at GC time
to find the pointers of interest to GC.

Hybrid. The hybrid barrier uses the boundary barrier for arrays
and the object barrier otherwise; the distinction is made statically at
each store site based on the type of the source object. This avoids
object barrier GC overhead incurred to scan large arrays looking
for interesting pointers. The Java code fragment for the hybrid bar-
rier is given in Figure 3. The choice of barrier is statically chosen
at compile time by passing a literal constant as the mode parameter
and relying on constant folding to eliminate the unreached branch

1 public final void writeBarrier(VM_Address src, VM_Address slot,
2 VM_Address tgt, int mode) throws VM_PragmaInline {
3 // insert write barrier code here
4 VM_Magic.setMemoryAddress(slot, tgt);
5 }

Figure 1: Write barrier skeleton code

Java PowerPC x86
boundary

3 if (slot.LT(NURSERY_START)
4 && tgt.GE(NURSERY_START))
5 remSlots.insert(slot);

1 liu R3,0x6e10
2 cmplW cr1,R30,R3
3 bge 1 54
4 liu R3,0x6e10
5 cmplW cr1,R31,R3
6 bge 1 7c

1 cmp edi 0xa0200000
2 jlge 0
3 cmp ebx 0xa0200000
4 jlge 0

object

3 if (getHeader(src)
4 .and(LOGGING_MASK)
5 .EQ(UNLOGGED))
6 rememberObject(src);

1 lwz R4,-8(R5)
2 rlinm R4,R4,0x0,0x1d,0x1d
3 cmpiW cr1,R4,0x4
4 beq 1 78

1 mov ecx -8[edx]
2 and ecx 4
3 cmp ecx 4
4 jeq 0

zone

3 if (slot.xor(tgt)
4 .GE(ZONE_SIZE))
5 remSlots.insert(slot);

1 xor R3,R30,R31
2 liu R5,0x40
3 cmplW cr1,R3,R5
4 bge 1 74

1 mov edi eax
2 mov eax edi
3 xor eax ebx
4 cmp eax 0x400000
5 jlge 0

card

3 int card = src.rshl(LOG_CARD_SIZE);
4 VM_Magic.setByteAtOffset
5 (cardTable, card, (byte) 1);

1 lwz R5,0x1664(JT)
2 rlinm R6,R3,0x16,0xa,0x1f
3 lil R7,0x1
4 stbx R7,R5,R6

1 mov ebx [0x290279a]
2 shr eax 10
3 mov [0+ebx+eax<<0] 1

Figure 2: Write barrier code

3 if (mode == AASTORE_WRITE_BARRIER) {
4 if (slot.LT(NURSERY_START) && tgt.GE(NURSERY_START))
5 remSlots.insert(slot);
6 } else {
7 if (getHeader(src).and(LOGGING_MASK).EQ(UNLOGGED))
8 rememberObject(src);
9 }

Figure 3: Hybrid write barrier code

of the conditional. The fast-path result is compiled code that looks
exactly like that of the object or boundary barrier.

Zone. The zone barrier assumes the heap is divided into fixed-
size 2k-byte logical zones, aligned on 2k-byte address boundaries,
and captures pointers that cross from one region to another by record-
ing the source slot into which such target references are stored.
Such a barrier is useful for collectors that partition the heap into
more than two regions. Examples of such collectors include MOS [18,
25], generalized age-based collectors [29], and Beltway [9], among
others. The zone barrier has the same precision as the bound-
ary barrier, remembering precisely which locations hold interesting
pointers. We use a zone size of 4MB, matching the nursery size,
and thus avoiding the slow path for any intra-nursery pointers.

Card. The card barrier has long been promoted for the fact that
it is entirely in-line and unconditional. Like the zone barrier, the
card barrier assumes a heap divided into fixed-size 2k-byte logical
cards [26, 32], where typically 7 ≤ k ≤ 10. Each card maps to an
entry in an array or card table that records whether the card has
been dirtied by stores of target references into any of the source

locations in the card. The index in the card table for a given location
is obtained by a simple shift operation. At GC time the dirty cards
must be scanned to discover pointers of interest. The precision
of the card barrier varies with the size of the cards: smaller cards
give more precision at the cost of maintaining and processing the
correspondingly larger card table [16].

4.2 Read Barriers
Figure 5 shows the code for the read barriers.

Read unconditional. The unconditional read barrier simply masks
out low-order address bits of references as they are loaded from a
source object field. Such a barrier is useful in situations that need to
tag object references transparently to the mutator, such as memory
managers that rely on marking unique references [24].

Read conditional. The conditional read barrier includes a test
whether the tag bits are set. Such a barrier is needed any time a
mutator must perform some action conditionally on reading a tar-
get reference from a source object field. Note that this is an ‘eager’
read barrier, using the terminology of Bacon et al. [5]. While Bacon

1 public final VM_Address readBarrier(VM_Address obj, VM_Address slot,
2 int mode) throws VM_PragmaInline {
3 VM_Address value = VM_Magic.getMemoryAddress(slot);
4 return value; // replace with barrier code
5 }

Figure 4: Read barrier skeleton code

Java PowerPC x86
unconditional

4 return value.and(˜3); 1 rlinm R3,R3,0x0,0x0,0x1d 1 and eax -4

conditional

4 if (value.and(1).NE(1))
5 return value;
6 else
7 return 0;

1 rlinm R4,R3,0x0,0x1f,0x1f
2 cmpiW cr1,R4,0x1
3 bne 1 3c

1 mov edx eax
2 and edx 1
3 cmp edx 1
4 mov edx 0
5 cmovne edx eax
6 mov eax edx

Figure 5: Read barrier code

et al. used a Brooks-style unconditional read barrier, our goal is to
expose the cost of any conditional associated with the read barrier,
and so implement a more general barrier here.

4.3 Discussion
There are aspects of our barrier implementations that could be im-
proved, depending on hardware platform. Given sufficient regis-
ters, the card barrier could devote a register to hold the base ad-
dress of the card table, so avoiding the need to load it from a global
variable. Moreover, on certain RISC platforms the literal constant
0 is available in a ‘zero’ register hard-wired the value 0. If clean
cards are represented by setting their card table entry then dirty-
ing a card can be achieved by clearing it: a store of 0 to the entry.
This eliminates the need to load the immediate value 1. Together,
these changes can eliminate 2 instructions from the sequence. Un-
fortunately, on the PowerPC the ‘zero’ register is only available
to arithmetic instructions, not to stores, so without a devoted card
table base register our instruction sequence is optimal.

We also plan to compare other specialized barriers to the more
general ones we consider here. In particular, there is a directional
alternative to the zone barrier that records references that point
from one zone to another zone at a higher (or lower) address in
the heap [29]. Other barriers of interest include the various flavors
used by reference counting collectors [7].

5. Experimental Methodology
We now describe the experimental context in MMTk and Jikes
RVM, the machines we use, the benchmarks measured, and the
significance and accuracy of our measurements.

5.1 MMTk and Jikes RVM
We use MMTk in Jikes RVM version 2.3.2+CVS [1], with patches
to support performance counters, pseudo-adaptive compilation, our
ignore remsets GC configuration, and read barriers.5 MMTk is
a flexible high performance memory management toolkit used by
Jikes RVM [8]. Jikes RVM is a high-performance VM written in
Java with an aggressive optimizing compiler. We use configura-
tions that precompile as much as possible, including key libraries

5The ignore remsets functionality is now integrated into MMTk.
All of our other patches are publicly available from the authors’
web pages.

and the optimizing compiler and turn off assertion checking (the
Fast build-time configuration).

5.2 Experimental Platform
We perform our experiments on three architectures: Athlon, Pen-
tium 4, and Power PC.

We use a 1.9GHz AMD Athlon XP 2600+. It has a 64 byte L1
and L2 cache line size. The data and instruction L1 caches are
64KB 2-way set associative. It has a unified, exclusive 512KB 16-
way set associative L2 cache. The Athlon has 1GB of dual channel
333MHz DDR RAM configured as 2 × 512MB DIMMs with an
nForce2 K7N2G motherboard and 333MHz front side bus.

The 2.6GHz Pentium 4 has hyperthreading disabled. It has a 64
byte L1 and L2 cache line size, an 8KB 4-way set associative L1
data cache, a 12Kµops L1 instruction trace cache, and a 512KB uni-
fied 8-way set associative L2 on-chip cache. The machine has 1GB
of dual channel 400MHz DDR RAM configured as 2 × 512MB
DIMMs with an Intel i865 motherboard and 800MHz front side
bus.

We also use a Apple Power Mac G5 with a 1.6HGz IBM Pow-
erPC 970. It has a 128 byte L1 and L2 cache line size, a 64KB
direct mapped L1 instruction cache and a 32KB 2-way set associa-
tive L1 data cache, and a 512KB unified 8-way set associative L2
on-chip cache. The machine has 768MB of 333MHz DDR RAM
with an Apple motherboard and 800MHz front side bus.

All three platforms run the same configuration of Debian Linux
with a 2.6.0 kernel. We run all experiments in a standalone mode
with all non essential daemons and services (including the network
interface) shut down. We instrument MMTk and Jikes RVM to
use the AMD and Intel performance counters to measure cycles,
retired instructions, L1 cache misses, L2 cache misses, and TLB
misses of both the mutator and collector, separately. Because of
hardware limitations, each performance counter requires a separate
execution. We use version 2.6.5 of the perfctr Intel/x86 hardware
performance counters for Linux with the associated kernel patch
and libraries [23]. At the time of writing, perfctr was unavailable
for the PowerPC 970.

5.3 Benchmarks
Table 1 shows key characteristics of each of our benchmarks. We
use the eight SPECjvm98 benchmarks, and pseudojbb, a variant of
SPECjbb2000 [27, 28] that executes a fixed number of transactions

to perform comparisons under a fixed garbage collection load. The
alloc column in Table 1 indicates the total number of megabytes
allocated. The min column shows the minimum heap size in which
the benchmark can run to completion with a generational copy-
ing mark-sweep hybrid (GenMS). The alloc:min column quantifies
the garbage collection load with the ratio of total allocation to the
minimum heap size in which GenMS executes. The total column
indicates the dynamic count of write barrier invocations (fast path).
The rem set column indicates the frequency with which the write
barrier lead to a remembered set entry for the boundary barrier.

5.4 Significance and Accuracy
To assess their significance of our results we: 1) measured the vari-
ation in timing data, and 2) compared instruction counts on the P4
and AMD. Since only one performance metric could be gathered
at a time, it was necessary to run each experiment four times on
the AMD and P4 (recall that each ‘experiment’ takes the fastest of
five invocations of the second iteration of the benchmark). We then
compared the variation across each set of four results, measured as
the standard deviation divided by the mean for that set. We found
that the variation ranged from 0.04% to 0.8%, with a geometric
mean across all benchmarks of 0.1%. When we compared instruc-
tion counts between P4 and AMD, we found that they were almost
identical, despite wide variation in running time and miss rates.
This gives us a high degree of confidence in the measurements.

6. Results
In this section we examine the mutator performance of the read and
write barriers. It is important to remember that our methodology
measures mutator overhead only. The choice of barrier can have a
significant impact on garbage collection overheads, but we do not
measure that here. Furthermore, the contribution of mutator-time
overheads reported here to total time will be diluted by garbage
collection.

6.1 Write Barrier Performance
Figure 6 shows the performance overhead of each of the write bar-
riers on the three platforms. The overhead is generally quite low,
on average 2% or less for most of the barriers. Surprisingly, in
some cases the addition of barriers improved performance. Hard-
ware performance counters reveal that these improvements are due
to improved locality. (As we would hope, the performance coun-
ters also show that the addition of the barrier does not reduce the
instruction count!). At this stage we can only speculate on why the
addition of the barrier would improve locality.

We now examine the results for each barrier in more detail.

Boundary. The boundary barrier costs on average 2.15%, 1.31%,
and 2.49% for the AMD, P4 and PPC architectures respectively.
This barrier shows the biggest variation in results, with a best case
improvement of 2.58% on 201 compress on the P4 and a worst
case degradation of 10.30% on the PPC. The actual increase in
retired instructions is 2.33% on average, with increases of 4.68%
and 4.43% on 202 jess and 213 javac, and an increase of only
0.0007% on 201 compress. The miss rates explain the perfor-
mance win on 201 compress, decreasing consistently with the
running time. Somehow the boundary barrier leads to improved
locality on that benchmark, with very little increase in retired in-
structions (Table 1 shows that 201 compress executes very few
write barriers). Improvements in 222 mpegaudio (AMD) and
209 db (P4) are also due to lower miss rates. Without access to

performance counters, we can only speculate on the reasons behind
the substantial slowdown on 202 jess (10.30%) and speedups on
205 raytrace (0.23%) and 209 db (0.82%) on the PPC.

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

-2

0

2

4

6

8

10

12

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(a) Boundary

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

-2

0

2

4

6

8

10

12

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(b) Object

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

-2

0

2

4

6

8

10

12
ov

er
he

ad
 (

%
)

PPC
P4
AMD

(c) Hybrid

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

-2

0

2

4

6

8

10

12

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(d) Zone

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

-2

0

2

4

6

8

10

12

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(e) Card

Figure 6: Write barrier running time overheads

Allocation Write barrier
benchmark alloc MS min alloc:MS total rem set

202 jess 403MB 16MB 25:1 28.63 0.16%
213 javac 593MB 26MB 23:1 20.78 2.41%
228 jack 307MB 14MB 22:1 10.44 7.23%

205 raytrace 215MB 18MB 12:1 7.35 0.98%
227 mtrt 224MB 21MB 11:1 8.49 1.00%

201 compress 138MB 17MB 8:1 1.53 0.71%
pseudojbb 339MB 46MB 7:1 23.31 3.66%

209 db 119MB 20MB 6:1 35.03 0.52%
222 mpegaudio 51MB 12MB 4:1 9.79 0.23%

mean 265MB 21MB 13:1 16.15 1.74%
geometric mean 216MB 20MB 11:1 11.89 0.98%

Table 1: Benchmark Allocation Characteristics and Write Barrier Events (in millions)

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

0

5

10

15

20

25

30

35

40

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(a) Read unconditional

_201_compress

_202_jess

_205_raytra
ce

_209_db

_213_javac

_222_mpegaudio

_227_mtrt

_228_jack

pseudojbb

mean (a
rith

metic)

0

5

10

15

20

25

30

35

40

ov
er

he
ad

 (
%

)

PPC
P4
AMD

(b) Read conditional

Figure 7: Read barrier running time overheads

Object. The object barrier costs on average 1.76%, 1.23%, and
1.56% for the AMD, P4 and PPC architectures respectively. These
numbers are all slightly better than those for the boundary bar-
rier. The worst case is substantially better (5.45% on 202 jess for
the AMD), and minor improvements are seen on 201 compress
(2.85 % AMD, 2.65% P4), 205 raytrace (0.09% AMD, 1.06%
PPC), and 209 db (0.28% PPC). Although this barrier shows lower
mutator overheads than the boundary barrier, it is less precise, and
must therefore perform more work at collection time. In the case
of large, sparsely updated objects (e.g., arrays), this overhead could
be substantial.

Hybrid. The hybrid barrier uses an object barrier for scalar ob-
jects (which are typically small and dense), and the boundary bar-
rier for arrays (which may be large and sparse). The average mu-
tator costs for this barrier are roughly between those for the two
barriers from which it is composed: 1.82%, 1.33%, and 1.97% for
AMD, P4 and PPC architectures respectively. The worst case is rel-
atively low (5.57% on 202 jess for PPC), and similar minor im-
provements are seen on 201 compress, 222 mpegaudio, and
209 db. This barrier is designed to balance the trade-off between

mutator and collection costs in the boundary and object barriers.

Zone. The zone barrier is the first where we see a marked ar-
chitectural dependency. The average costs are 5.10%, 4.81%, and
1.77% for the AMD, P4 and PPC respectively. The x86 architec-
tures thus find this barrier significantly more expensive than the
other barriers, while on the PPC this barrier is among the cheapest.
The dynamic instruction count on the x86 architectures is increased
by 4.65%. Unfortunately we don’t know how the PPC instruction
count is impacted. However, Figure 2 shows that statically, the PPC
uses about the same number of instructions for the zone and object
boundaries and sees similar run-time performance. By contrast, the
x86 needs a quite long instruction sequence for the zone barrier. We
are unsure to what extent this is an artifact of the x86 backend of
the Jikes RVM optimizing compiler, however we note that the zone
barrier uses an arithmetic instruction (xor), which must use the eax

register, further increasing pressure on the few available x86 regis-
ters.

Card. The card barrier also shows a strong architectural differ-
ence, this time the PPC is substantially slower. The average costs
are 1.01%, 0.80%, and 4.59% for the AMD, P4 and PPC respec-
tively. The x86 results are somewhat consistent with conventional
wisdom, however, it is debatable as to whether they are sufficiently
lower than the other barriers to warrant the extra GC time effort
of scanning the cards, and the space overhead of the card tables.
Also, we do not include here the allocation time work that must be
performed to ensure that the card offset table is kept consistent. In
short, it is not an unambiguously better choice. We are unsure why
the PPC results are so slow, however we are investigating the possi-
bility that the PPC does not perform stores of bytes very efficiently.

It may be necessary to use a word store on the PPC, trading off time
for space a little further.

These results indicate a number of conclusions. First, barrier costs
have often been overstated. We show that a reasonable genera-
tional barrier (the hybrid) has an average mutator overhead un-
der 2%, with a worst case of less than 6%. Sometimes the bar-
rier overhead is less important than noise due to second order ef-
fects on locality. This is encouraging for those designing GC algo-
rithms, and should give pause to those who dismiss write barriers
as unreasonably expensive. Second, barrier costs are very architec-
turally dependent. We have seen that both the ISA (PPC v x86) and
the implementation (AMD v P4) can have a significant impact on
barrier performance. Implementers should consider this carefully
when choosing their collector and associated barriers. Third, the
often stated view that card marking is the cheapest form of barrier
is questionable. Our card marking implementation is appreciably
slower on the PPC, and the performance difference on x86 may be
overwhelmed by the secondary costs associated with card marking,
such as maintaining the card offset table and scanning the cards at
GC time.

6.2 Read Barrier Performance
Figure 7 shows the performance overhead of each of the read bar-
riers on the three platforms. The overhead varies substantially and
is extremely architecturally sensitive. On the PPC the uncondi-
tional barrier actually showed performance improvements on some
benchmarks, which we ascribe to locality affects, though without
hardware performance counters, we cannot be sure. Unfortunately
our read barriers are not as robust as the write barriers, and in a
number of cases we were unable to produce results.

We now examine the results for each barrier in more detail.

Unconditional. The average costs for the unconditional barrier
are 8.05%, 5.04%, and 0.85% for the AMD, P4 and PPC respec-
tively. The results tend to be somewhat more consistent than the
write barrier results with the worst case of 13.03% on the AMD
(less than 2× the average on the AMD). Most strikingly, the barrier
is extremely cheap on the PPC, about half the price of the cheapest
write barrier on that architecture, and nearly an order of magnitude
cheaper than on the AMD. There are a number of speedups on the
PPC, which we guess are due to locality effects (in the absence of
hardware performance counters this is hard to show).

Conditional. Unsurprisingly, the conditional barrier is substan-
tially more expensive than the unconditional barrier, with average
overheads of 21.24%, 15.91%, and 6.49% for the AMD, P4 and
PPC respectively. Once again, we see a striking architectural de-
pendency, with the PPC much better able to absorb the overhead.
Interestingly, the read-intensive 209 db benchmark is barely slowed
down by this barrier on the PPC (0.67%). It is possible that branch
prediction is playing a significant role in these results, as the con-
ditional we have used will always evaluate to true (although this is
not something the compiler can determine statically).

We draw two strong conclusions from these results. First, read bar-
rier costs are very architecturally dependent. If read barriers are
known to be cheap, then this opens a number of algorithmic pos-
sibilities that may otherwise have been ruled out as too expensive.
This invites consideration by architects. It also suggests that great
care should be taken in a) interpreting published results which are
architecture-specific, and b) in collector design for portable run-
times. Second, the nature of the read barrier substantially impacts
on its overhead. An unconditional read barrier can be extremely

cheap and should be considered as a viable approach in cases where
it might be useful. A conditional barrier will be moderately expen-
sive, although the predictability of the branch may greatly influence
just how expensive it is.

7. Conclusions
Read and write barriers are algorithmically powerful mechanisms
with significant application to garbage collection and other appli-
cations. In this paper we evaluate the untested assumption that
barriers impose a significant overhead. We present a methodology
for measuring barrier costs in vivo, and evaluate a range of com-
mon write barriers and two read barriers on three platforms, using
9 standard Java benchmarks.

We show that the overhead of a reasonable write barrier for a
generational collector is low on average (less than 2%), and less
than 6% in the worst case. We also show that this is architecturally
sensitive. We also show that read barriers can be very low cost
(0.85% on average on the PPC), and that this is extremely sensitive
to the style of barrier and the underlying architecture.

Our methodology is publicly available as part of MMTk. We
hope that this will encourage systematic empirical study of barrier
performance within the community, rather than allowing key algo-
rithmic decisions to be determined by untested assumptions about
the cost of the underlying mechanisms. We also hope that this will
invite further creativity and more aggressive exploitation of the al-
gorithmic power of barriers by the memory management commu-
nity. This work should encourage implementors to carefully con-
sider the choice of barrier in light of the workload, their compiler,
and the underlying architecture. Finally the enormous architectural
sensitivity to this key mechanism for garbage collected languages
might invite some interest from the architecture research commu-
nity.

8. Acknowledgments
We are grateful to Kathryn S McKinley for her encouragement and
numerous helpful suggestions which improved this paper.

9. REFERENCES
[1] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., COCCHI, A.,

HUMMEL, S. F., LIEBER, D., NGO, T., MERGEN, M., SHEPHERD,
J. C., AND SMITH, S. Implementing Jalapeño in Java. In
OOPSLA’99 [22], pp. 314–324.

[2] APPEL, A. W. Simple generational garbage collection and fast
allocation. Software—Practice and Experience 19, 2 (Feb. 1989),
171–183.

[3] ARNOLD, M., FINK, S. J., GROVE, D., HIND, M., AND SWEENEY,
P. F. Adaptive optimization in the Jalapeño JVM. In Proceedings of
the ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications (Minneapolis, Minnesota, Oct.). ACM
SIGPLAN Notices 35, 10 (Oct. 2000), pp. 47–65.

[4] AZAGURY, A., KOLODNER, E. K., PETRANK, E., AND YEHUDAI,
Z. Combining card marking with remembered sets: How to save
scanning time. In ISMM’98 [19], pp. 10–19.

[5] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. In Conference
Record of the ACM Symposium on Principles of Programming
Languages (New Orleans, Lousiana, Jan.). ACM SIGPLAN Notices
38, 1 (Jan. 2003), pp. 285–298.

[6] BLACKBURN, S., AND MCKINLEY, K. S. In or out?: Putting write
barriers in their place. In Proceedings of the ACM International
Symposium on Memory Management (Berlin, Germany, Jun., 2002).
ACM SIGPLAN Notices 38, 2 (Feb. 2003), pp. 281–290.

[7] BLACKBURN, S., AND MCKINLEY, K. S. Ulterior reference
counting: fast garbage collection without a long wait. In OOPSLA’03
[21], pp. 344–358.

[8] BLACKBURN, S. M., CHENG, P., AND MCKINLEY, K. S. Myths
and reality: The performance impact of garbage collection. In ACM
International Conference on Measurement and Modeling of
Computer Systems (New York, New York, June). 2004, p. To appear.

[9] BLACKBURN, S. M., JONES, R. E., MCKINLEY, K. S., AND
MOSS, J. E. B. Beltway: Getting around garbage collection
gridlock. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (Berlin, Germany, June). ACM
SIGPLAN Notices 37, 5 (May 2002), pp. 153–164.

[10] BRAHNMATH, K., NYSTROM, N., HOSKING, A. L., AND CUTTS,
Q. Swizzle barrier optimizations for orthogonal persistence in Java.
In Proceedings of the Third International Workshop on Persistence
and Java (Tiburon, California, August 1998), R. Morrison,
M. Jordan, and M. Atkinson, Eds. Advances in Persistent Object
Systems. Morgan Kaufmann, 1999, pp. 268–278.

[11] BROOKS, R. A. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In Proceedings of
the ACM Conference on Lisp and Functional Programming (Austin,
Texas, Aug.). 1984, pp. 256–262.

[12] CAUDILL, P. J., AND WIRFS-BROCK, A. A third generation
Smalltalk-80 implementation. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages,
and Applications (Portland, Oregon, Sept.). ACM SIGPLAN Notices
21, 11 (Nov. 1986), pp. 119–130.

[13] HIRZEL, M., DIWAN, A., AND HERTZ, M. Connectivity-based
garbage collection. In OOPSLA’03 [21], pp. 359–373.

[14] HOSKING, A. L., AND HUDSON, R. L. Remembered sets can also
play cards. In Proceedings of the OOPSLA Workshop on Memory
Management and Garbage Collection (Washington, DC, Sept.).
1993.

[15] HOSKING, A. L., AND MOSS, J. E. B. Protection traps and
alternatives for memory management of an object-oriented language.
In Proceedings of the ACM Symposium on Operating Systems
Principles (Asheville, North Carolina, Dec.). ACM Operating
Systems Review 27, 5 (Dec. 1993), pp. 106–119.

[16] HOSKING, A. L., MOSS, J. E. B., AND STEFANOVIĆ, D. A
comparative performance evaluation of write barrier
implementations. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications (Vancouver, Canada, Oct.). ACM SIGPLAN Notices 27,
10 (Oct. 1992), pp. 92–109.

[17] HOSKING, A. L., NYSTROM, N., CUTTS, Q., AND BRAHNMATH,
K. Optimizing the read and write barriers for orthogonal persistence.
In Proceedings of the Eighth International Workshop on Persistent
Object Systems (Tiburon, California, August 1998), R. Morrison,
M. Jordan, and M. Atkinson, Eds. Advances in Persistent Object
Systems. Morgan Kaufmann, 1999, pp. 149–159.

[18] HUDSON, R. L., AND MOSS, J. E. B. Incremental collection of
mature objects. In Proceedings of the International Workshop on
Memory Management (St. Malo, France, Sept.), Y. Bekkers and
J. Cohen, Eds. vol. 637 of Lecture Notes in Computer Science.
Springer-Verlag, 1992, pp. 388–403.

[19] Proceedings of the ACM International Symposium on Memory
Management (Vancouver, Canada, Oct., 1998). ACM SIGPLAN
Notices 34, 3 (Mar. 1999).

[20] JONES, R., AND LINS, R. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, May 1996.
Chapter on distributed collection by Lins.

[21] Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Anaheim,
California, Nov.). ACM SIGPLAN Notices 38, 11 (Nov. 2003).

[22] Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Denver,
Colorado, Nov.). ACM SIGPLAN Notices 34, 10 (Oct. 1999).

[23] PETTERSSON, M. Linux Intel/x86 performance counters, 2003.
http://user.it.uu.se/ mikpe/linux/perfctr/.

[24] ROTH, D. J., AND WISE, D. S. One-bit counts between unique and
sticky. In ISMM’98 [19], pp. 49–56.

[25] SELIGMANN, J., AND 235-252, S. G. . E. . Incremental mature
garbage collection using the Train algorithm. In Proceedings of the
European Conference on Object-Oriented Programming (Åarhus,
Denmark, Aug.). vol. 952 of Lecture Notes in Computer Science.
Springer-Verlag, 1995, pp. 235–252.

[26] SOBALVARRO, P. G. A lifetime-based garbage collector for LISP
systems on general-purpose computers, 1988. B.S. Thesis, Dept. of
EECS, Massachusetts Institute of Technology, Cambridge.

[27] SPEC. SPECjvm98 benchmarks, 1998.
http://www.spec.org/osg/jvm98.

[28] SPEC. SPECjbb2000 benchmarks, 2000.
http://www.spec.org/jbb2000.

[29] STEFANOVIĆ, D., MCKINLEY, K. S., AND MOSS, J. E. B.
Age-based garbage collection. In OOPSLA’99 [22], pp. 370–381.

[30] UNGAR, D. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In Proceedings of the
ACM Symposium on Practical Software Development Environments
(Pittsburgh, Pennsylvania, Apr.). 1984, pp. 157–167.

[31] WILSON, P. R., AND MOHER, T. G. A “card-marking” scheme for
controlling intergenerational references in generation-based garbage
collection on stock hardware. ACM SIGPLAN Notices 24, 5 (May
1989), 87–92.

[32] WILSON, P. R., AND MOHER, T. G. Design of the opportunistic
garbage collector. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications (New Orleans, Louisiana, Oct.). ACM SIGPLAN
Notices 24, 10 (Oct. 1989), pp. 23–35.

[33] ZEE, K., AND RINARD, M. C. Write barrier removal by static
analysis. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (Seattle,
Washington, Nov.). ACM SIGPLAN Notices 37, 11 (Nov. 2002),
pp. 191–210.

[34] ZORN, B. Barrier methods for garbage collection. Tech. Rep.
CU-CS-494-90, University of Colorado at Boulder, Nov. 1990.

