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ABSTRACT
General purpose garbage collectors have yet to combine short pause
times with high throughput. For example, generational collectors
can achieve high throughput. They have modest average pause
times, but occasionally collect the whole heap and consequently
incur long pauses. At the other extreme, concurrent collectors, in-
cluding reference counting, attain short pause times but with sig-
nificant performance penalties. This paper introduces a new hy-
brid collector that combines copying generational collection for the
young objects and reference counting the old objects to achieve
both goals. It restricts copying and reference counting to the ob-
ject demographics for which they perform well. Key to our al-
gorithm is a generalization of deferred reference counting we call
Ulterior Reference Counting. Ulterior reference counting safely ig-
nores mutations to select heap objects. We compare a generational
reference counting hybrid with pure reference counting, pure mark-
sweep, and hybrid generational mark-sweep collectors. This new
collector combines excellent throughput, matching a high perfor-
mance generational mark-sweep hybrid, with low maximum pause
times.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms
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1. Introduction
A long-standing and unachieved goal for general purpose garbage
collectors is to combine short pause times with excellent through-
put. This goal is especially important for large server and inter-
active applications. Table 1 illustrates the state of this trade-off
with the throughput (running time), and responsiveness (maximum
pause) of a highly responsive reference counting (RC) collector
and a high throughput generational collector (BG-MS) on two Java
benchmarks. Generational (G) collectors separate new objects from
old ones since they tend to have different demographics. BG-MS
uses a bounded (B) copying nursery for newly allocated objects
whose size varies between an upper and lower bound. It uses a
mark-sweep (MS) free-list for the old objects. This type of col-
lector is a popular high performance choice in modern virtual ma-
chines. BG-MS significantly improves total throughput compared
with RC due to the pointer tracking costs in RC. BG-MS has much
higher maximum pause times than RC due to full heap collections.

Total Time (sec) Max Pause Time (ms)
benchmark BG-MS RC BG-MS RC

228 jack 7.2 12.7 185 72
209 db 19.2 21.3 238 43

Table 1: Throughput and Responsiveness of High Throughput
(BG-MS) versus Highly Responsive (RC) Collectors

To resolve this dichotomy, we introduce a new generational col-
lector with a copying nursery and reference counting mature space
that combines high throughput and low pause times. The key to our
algorithm is a generalization of deferred reference counting [19],
called Ulterior Reference Counting1 . A reference counting (RC)
collector computes the number of references to an object, and when
it falls to zero, RC reclaims the object. To improve performance,
deferred RC ignores frequent pointer mutations to the stacks and
registers which eliminates most of their reference counting load.
Deferred RC must thus postpone all reclamation until it periodi-
cally enumerates the stacks and registers.

Ulterior reference counting (URC) extends deferral to select heap
objects and object fields by periodically enumerating the pointers
within them. URC divides the heap into logical partitions of RC
and non-RC objects. It uses an RC collection policy on the RC ob-
jects, and selects other policies for the non-RC objects. URC can
either enumerate the deferred pointers by tracing them, or by using
a write barrier to remember deferred mutated pointers. To build an
efficient collector with this mechanism, we want to (1) defer the
fields of highly mutated objects and enumerate them quickly, and
(2) reference count only infrequently mutated fields.

1Dictionary definitions of ulterior include occurring later and lying
beyond what is evident.



Object lifetime and mutation demographics combine well to fit
these requirements. Young objects mutate frequently [3, 29] and
die at a high rate (the weak generational hypothesis [24, 30]). Old
objects mutate infrequently [29] and die at a slower rate. These
demographics favor generational collection, with a copying algo-
rithm for the young objects. Copying uses fast contiguous (bump
pointer) allocation, ignores pointers among young objects, and is
proportional only to the number of live objects. The less frequent
mutation and high survival rate of older objects favor (1) a space
efficient free-list allocator, and (2) a reference counting collection
algorithm which is proportional to the number of dead objects and
pointer mutations.

We implement BG-RC, a hybrid generational collector that par-
titions the objects into a bounded copying nursery (BG) for newly
allocated objects, and an RC mature space for objects that survive a
nursery collection. BG-RC is a hybrid because it combines differ-
ent garbage collection algorithms into one collector. It continually
reference counts the mature space. It ignores nursery pointer mu-
tations. BG-RC efficiently piggy backs reference counting on to
the enumeration of live pointers during the tracing and copying of
surviving nursery objects into the RC space. After every nursery
collection, it computes reference counts for the mature space and
reclaims objects with no references. It uses a variant of Bacon and
Rajan’s trial deletion to detect cyclic garbage in the RC space [9].

We compare BG-RC with pure deferred reference counting (RC),
pure mark-sweep (MS), and a high throughput generational mark-
sweep hybrid (BG-MS), implementing them all in Jikes RVM [1,
2] using JMTk [11], a new memory management toolkit for Java.
The hybrid collectors share implementations with their non-hybrid
counterparts. All collectors share common mechanisms and are
efficient [11]. Our experiments thus compare policies rather than
implementation subtleties. The results demonstrate that BG-RC
matches throughput with the high performance BG-MS (on aver-
age 2% better in moderate heap sizes) but has dramatically lower
maximum pause times (a factor of 4 lower on average) on the SPEC
JVM Benchmarks.

To our knowledge, Azatchi and Petrank implement the only other
generational reference counting algorithm [6]. (Our work is inde-
pendent and concurrent with theirs [13].) Their concurrent non-
moving collector uses free-lists in both generations. It thus must
store every nursery object on a list, and then enumerate them all,
rather than just the live ones. It achieves excellent pause times,
but consequently has high space and time overheads which signifi-
cantly degrade total performance [6, 23]. Our contributions are the
generalization of deferred reference counting (ulterior reference
counting), a generational copying reference counting hybrid that
combines high throughput and low pause times, and experimental
evaluation of the effectiveness of the collector and its components.

2. Background
This section presents the prior work on which this paper builds.
We first discuss generational collection and then reference counting
(RC). Section 6 discusses related work in concurrent, incremental,
and generational reference counting with a mark-sweep nursery.

2.1 Generational Collection
This section discusses the motivation for generational collection,
the copying and mark-sweep algorithms, and defines three types of
copying nursery organizations.

Generational algorithms exploit the low rate of object survival
for new nursery objects using tracing [21, 30]. Tracing identifies
dead objects indirectly—by tracing the live objects and excluding
those that it did not trace. The two broad approaches to tracing

are copying and mark-sweep. A copying collector copies all live
objects into another space. Its cost is thus proportional to the num-
ber of live objects and pointers to them, and works well when few
objects survive. A mark-sweep collector marks live objects, identi-
fies all unmarked objects, and frees them. Typically it will perform
the sweep lazily during allocation, so its cost is proportional to the
number of live objects and pointers to them, and the number of al-
locations. Copying collectors use monotonic (bump-pointer) allo-
cation, and mark-sweep collectors use free-list allocation. Bump-
pointer allocation is faster, but requires copying collection which
incurs a space penalty. It must hold space in reserve for copying.
Free-list allocation is slower, but needs no copy reserve. Free-list
allocation without compaction can lead to poor memory utilization
by scattering live objects sparsely through memory and increasing
page residency.

Because of the high mortality of nursery objects [30], genera-
tional copying collectors copy nursery survivors to an older gener-
ation [3, 5, 12, 21]. Generational organizations repeatedly collect
the nursery, and only collect the older generation when it is full.
A flexible-sized nursery consumes all the usable heap space, and
is reduced by the size of the survivors at each collection until the
heap is full [3]. Since the nursery can grow to the size of the heap,
nursery collection time is highly variable. A fixed-size nursery al-
ways fills the nursery, but never lets it grow bigger or smaller than
a set size. It thus reduces the variability of the time to collect the
nursery. A bounded nursery uses both an upper and lower bound.
When the heap is almost full, the collector reduces the nursery us-
ing the variable-nursery policy until the nursery size reaches the
lower bound. This strategy reduces the number of full heap col-
lections compared to a fixed-size nursery, but has the same upper-
bound on nursery collection time. Our experiments show that a
bounded nursery has higher throughput than a fixed-size nursery,
but not as good as a variable nursery. We use a bounded nursery
for all the generational collectors in this paper since we target both
throughput and pause times.

Generational collectors perform well because they are incremen-
tal and concentrate on the nursery which tends to have the highest
object mortality. A copying nursery exploits low survival rates and
ignores the frequent mutations of new objects. In current gener-
ational collectors, the old space is either a copied space (classic
generational), or a mark-sweep collected space.

2.2 Reference Counting
To lay out the RC design space, this section overviews the exist-
ing mechanisms and optimizations from the literature. We describe
methods for implementing deferral, buffering, and coalescing of
reference counts. Previous work does not identify these choices as
orthogonal. To clarify the subsequent ulterior reference counting
discussion and summarize previous work, we follow with formal
definitions of the reference counting actions.

Reference counting garbage collectors track the number of point-
ers to each object by continuously monitoring mutations [18, 19].
Each time a mutation overwrites a reference to pbe f ore with a ref-
erence to pa f ter, the collector increments the reference count for
pa f ter, and decrements pbe f ore. If an object’s reference count be-
comes zero, the collector reclaims it. The collection work is pro-
portional to the number of object mutations and dead objects. Ref-
erence counting is attractive because the work of garbage detection
is spread out over every mutation, and is thus very incremental.
However since one mutation can cause many objects to become un-
reachable, its incrementality suffers unless the collector bounds the
number of objects it collects by buffering some of the processing
for the next collection [9, 19], or performs collection concurrently.



Reference counting has two disadvantages. Since counts never
go to zero in a dead cycle, reference counting is not complete and an
additional algorithm must reclaim cycles. (Section 3.2.4 describes
the solution we use for this problem.) Furthermore, tracking ev-
ery pointer mutation is expensive and seriously degrades mutator
performance.

2.2.1 Mechanisms
Deferral. Deutsch and Bobrow introduce deferred reference
counting which only examines certain heavily mutated pointers pe-
riodically, such as register and stack variables [19]. All deferred
RC has a deferral phase in which reference counts are not correct,
and an RC phase in which they are. The deferral phase typically
corresponds to a mutation phase, i.e., program execution. Deferred
RC trades incrementality for efficiency; it finds garbage later by
ignoring intermediate updates.

Two approaches to deferring stacks and registers are: the zero
count table [19] and temporary increments [7, 9]. In the deferral
phase of a zero count table (ZCT), the collector applies reference
counts for undeferred pointers and records any whose count goes to
zero in the ZCT. In the RC phase, the collector scans the registers
and stack. It then frees any object recorded in the ZCT that is not
reachable from the registers and stack. In the temporary increment
approach, the collector applies increments at the beginning of the
RC phase for every stack and register before examining object ref-
erence counts. At the conclusion of the RC phase, it then inserts
a corresponding decrement for each of these increments which it
applies at the beginning of the next RC phase.

Buffering. RC algorithms need not perform RC increments and
decrements immediately, but can buffer and process them later.
Buffering only effects when an increment or decrement is applied,
not whether it is applied. Because deferral introduces periodicity,
the RC phase is a natural point to apply buffered counts. Deutsch
and Bobrow suggest placing all reference counts in a single buffer
and then processing the buffer in the RC phase [19]. Bacon et al.
place increments and decrements in separate buffers [7, 9]. Their
approach avoids race conditions in a concurrent setting. The RC
phase applies all increments (buffered and temporary) before any
decrements, thereby ensuring that no live object ever has a refer-
ence count of zero. This mechanism replaces the ZCT.

Coalescing. Levanoni and Petrank [23] observe that the period-
icity of deferred RC implies that only the initial oi and final o f
values of pointer fields of heap objects are relevant; the collector
can safely ignore intermediate mutations oi � . . . oi � � . We call this op-
timization coalescing. Levanoni and Petrank describe coalescing
with respect to remembering mutated pointer fields (slots) [23], but
the implementation remembers mutated objects [6, 25].

In their implementation, coalescing uses the differences between
before and after images of mutated objects and uses the differences
to generate increments and decrements. It records pointer fields
of each mutated object just prior to its first mutation, and then
at collection time, compares values with the current state, intro-
ducing a decrement and increment for each changed fields. For
large but sparsely mutated objects, this mechanism imposes a large
space overhead for which they propose a mechanism similar to card
marking to remember regions of memory rather than objects.

2.2.2 RC Formal Definitions
The following three definitions provide a concise formalism for RC
actions.

Mutation event. A mutation event RCM
�
p � generates an incre-

ment and decrement for the before and after values of a mu-

tated pointer, i.e., RC(pbefore)--, RC(pafter)++. An RCM
�
p �

may be buffered or performed immediately. An RCM
�
p � se-

ries to the same pointer p may be coalesced, yielding a single
RCM

�
p � for the initial pi and final p f values.

Retain event. A retain event RCR
�
p � for po temporarily retains

o regardless of its reference count. RCR
�
p � can be imple-

mented through a zero count table (ZCT), or by generating a
temporary increment for o.

Deferral. A pointer p is deferred if no mutation event to p gen-
erates an RCM

�
p � . The correctness of reference counting is

only guaranteed if for all deferred pointers po, the collector
issues a retain event RCR

�
p � preserving o.

Ulterior reference counting is independent of particulars of the ref-
erence counting mechanisms for deferral, buffering, and coalesc-
ing, and is compatible with both Bacon et al. and Levanoni and
Petrank’s implementations. For our stop-the-world garbage collec-
tor implementation, we use Bacon et al.’s increment and decrement
buffers, coalesce with a new object remembering mechanism that
performs decrements for original mutated field targets and incre-
ments for their final targets, and retain deferred stack and registers
using temporary increments and corresponding decrements.

3. Ulterior Reference Counting
This section describes the two primary contributions of the paper:
1) a generalization of deferred reference counting for heap objects,
which we call ulterior reference counting (URC), and 2) a concrete
instance of a generational URC collector that achieves both high
throughput and low pause times.

3.1 Generalizing Deferral
This section separates and defines deferral and collection policies
in a URC heap. It introduces three URC deferral mechanisms for
heap pointers. We define a new RC event, called an integrate event,
that transitions heap pointers from deferred to non-deferred. We
begin with an abstract example URC heap organization, illustrated
in Figure 1, to clarify the basic design choices.

Figure 1(a) shows an abstract view of deferred reference count-
ing in which all stacks and registers are deferred, and the heap ob-
jects are not. Figure 1(b) illustrates a simple URC configurations

RC
Registers

Stacks

defer

RC space

(a) Classic deferred reference counting

RC ignore

remember

Registers
Stacks

defer or RC

defer ignore

RC space non−RC space

(b) A simple instance of URC

Figure 1: Deferred and Ulterior Reference Counting



that generalizes over basic deferral by splitting the heap into RC
and non-RC spaces. In this example, the collection policy for the
non-RC space is unspecified. The collector can defer or not the
pointers from non-RC to RC space, and it must remember the point-
ers in the other direction (RC to non-RC space) for correctness.

As with many garbage collected systems, a URC collector has
mutator phase and a collection phase. The URC mutator phase in-
cludes a URC deferral phase in which mutations to non-deferred
pointers cause mutation events and mutations to deferred pointers
do not. The URC collection phase includes a URC phase and other
collection activities. These definitions mirror the ones for the defer-
ral and RC phases in Section 2 for a classic whole heap RC system.

The figure does not depict an important URC feature in which the
collector may transition an object from deferred to non-deferred.
For example, our generational URC collector moves surviving nurs-
ery objects into the RC space and triggers the appropriate future
mutation events. An integrate event performs this transition during
collection as follows.

Integrate event. An RC integrate event RCI
�
p � changes a deferred

pointer po to not-deferred by generating an increment for o,
and for all future mutation events to p, the collector generates
a mutation event RCM

�
p � .

There also may be circumstances in which the collector wants to
transition a highly mutated object in RC space to non-RC space. In
this case, the collector signals to the deferral phase to stop issuing
mutation events. In either case, the collector can move the object
or not. This choice dictates how to identify RC and non-RC ob-
jects and pointer fields. Physically partitioned spaces, as depicted
in Figure 1, can use addresses, whereas other organizations require
object tags.

3.1.1 Deferral Policies
A deferral policy determines for each pointer whether or not to
perform mutation events. The collection policy determines for each
object which collection algorithm is responsible for collecting it. In
practice only synergistic choices will attain good performance, but
in principle they are distinct.

The URC deferral phase ignores pointer updates to certain point-
er fields within heap objects. The design challenge is to enumerate
the deferral set efficiently during the collection phase. We present
three approaches to this enumeration (1) trace all deferred fields, (2)
maintain a list of deferred mutated pointer fields, and (3) maintain
a list of objects containing one or more deferred mutated pointer
fields.

Trace Deferred Fields. URC may piggy back retain or integrate
events onto the enumeration of live objects by a tracing col-
lector, essentially for free. Our URC generational implemen-
tation uses this mechanism for a copying nursery, promoting
survivors into the RC space, and issuing integrate events for
each promoted pointer. Alternate organizations could issue
retain events for survivors and continue to defer these point-
ers. These organizations require that the collector trace all
live deferred pointer fields just prior to every reference count-
ing phase.

Record Mutated Deferred Fields. The URC deferral phase can
record all deferred pointer fields that point to a reference
counted object. Similar to stacks and registers, the collector
then enumerates each field, issuing a retain event for each.

Record Mutated Deferred Objects. The URC deferral phase can
record the object containing a mutated field instead of the

field. The collector then enumerates each field in a remem-
bered object and issues retain events for pointers to reference
counted objects.

Field and object remembering make different trade-offs. If updates
to a given object’s fields are sparse and/or the object is large, field
remembering is more efficient. Both mechanisms can prevent du-
plicates, and thus absorb multiple updates to the same field. Keep-
ing track of remembered objects takes one bit per object, and is thus
more space efficient than tracking fields.

3.1.2 Collection Policies
The collection policy choses which algorithms to apply to which
collection set. Collection sets may be defined as spatial regions
of the heap (as illustrated in Figure 1) or as logical state associ-
ated with each object. Section 2 enumerates the policy choices
for the RC components. The key factor in the choice of non-RC
algorithm is the extent to which it will accommodate efficient de-
ferral. A copying nursery collector easily accommodates the enu-
meration of surviving objects and the piggy backing of integrate
events. With multi-generational collectors or Beltway [12], an ul-
terior reference counting algorithm on the oldest generation could
defer mutations within all lower generations with a mixture of trac-
ing and object/field recording.

3.2 A Generational RC Hybrid Collector
In this section, we describe a specific instance of an ulterior ref-
erence counting collector that achieves high throughput and low
pause times. We call this collector BG-RC because it is Genera-
tional with a Bounded copying nursery and uses Reference Count-
ing in the mature space. (Section 2.1 defines bounded.) The me-
chanics and implementation of this collector work for any copy-
ing nursery (fixed-size, variable, or bounded), but for simplicity we
limit the discussion to BG-RC.

BG-RC divides young and old objects and is thus generational.
It is a hybrid because it uses different policies for the generations.
In the nursery, it uses bump-pointer allocation and copying collec-
tion. Copying performs well on nursery objects, since most are
short-lived. A bounded nursery size controls the worst case nurs-
ery collection time and the copy reserve space overhead. In the old
generation, BG-RC uses a free-list allocator with a reference count-
ing collector that has collection costs proportional to the number of
dead objects and pointer updates. Since old objects have low object
mortality and few pointer updates, it performs well. BG-RC defers
mutations to the nursery, stacks and registers.

We now present our collector organization, mechanics, and write
barrier in more detail. To control worst case pause times, we present
a number of techniques based on work estimates to limit the time
for any particular collection.

3.2.1 Organization and Mechanics
BG-RC has two generations: the young nursery space and the ma-
ture RC space. During mutation, a write barrier a) generates RC
mutation events, and b) records pointers into the nursery from other
portions of the heap. For mutation events, a mutated object buffer
records each mutated non-nursery objects. The write barrier is
described in more detail below. The mutator allocates into the
bounded nursery using a bump pointer and copies nursery survivors
into the mature RC space. The mature space allocator uses a free
list segregated by size class [22, 31]. (See Section 4.3 for more
details.)

A collection is triggered whenever the nursery is full. The nurs-
ery phase includes scanning roots, processing the modified object
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Figure 2: The Organization of a Hybrid Generational URC
Collector

buffer, tracing the nursery, and copying and integrating nursery sur-
vivors into the RC space. For each object in the modified object
buffer, the nursery phase enumerates the objects to which it points.
It generates an increment for each referent object, and marks as
live referent nursery objects. The nursery scan traces from these
objects and the roots, finding and copying all live nursery objects
using breadth-first order [16].

When the collector encounters an un-forwarded (not yet copied)
nursery object, it copies the object to the mature space and en-
queues it for scanning. As it scans each surviving object o, it per-
forms an integrate event for each of its pointer fields o f , generating
an increment for the referent. Each time BG-RC encounters an old
or young live object directly from the root set, it retains the ob-
ject by generating an increment, which it offsets by a decrement
during the next collection, making the increment temporary. When
the nursery collection is complete, all objects reside in the mature
space. In the RC phase, BG-RC then applies all of the buffered
increments, followed by the decrements. It frees objects with ref-
erence count zero, and recursively decrements the counts of their
children. During the decrement phase, BG-RC identifies decre-
ments whose target did not go to zero as cyclic garbage candidates
and periodically collects them using a variant of Bacon et al.’s trial
deletion algorithm [7, 9], which we summarize in Section 3.2.4.

We arrange virtual memory such that the nursery is in high mem-
ory, the mature space in middle memory, and the Jikes RVM boot
image and immortal space in low memory. Figure 2(a) illustrates
our heap organization during mutator activity. Notice the counts in
the mature space which are buffered, and that there are no reference
counting operations on the stack or registers or the nursery during
mutation. The boot image and immortal space are not deferred, so
BG-RC logs mutated objects in these spaces. It could defer these
objects with the mechanisms described in Section 3.1.1. (See Sec-
tion 4.3 for more discussion of the boot image and immortal space.)

Figure 2(b) shows the heap just after a nursery collection when
all objects are in the mature space and all reference counts in or
into the old space are buffered. For example, Figure 2(a), shows a
pointer from the top right old space object to a young object. This
pointer causes the collector to promote and integrate the object into
the fourth slot in the right most mature space block, as shown in

Figure 2(b). The integrate event includes the RC increment. The
RC phase of the collector may now commence and correctly frees
any object in RC space with a zero reference count.

3.2.2 Write Barrier
The write-barrier remembers pointers into the nursery from the
non-nursery spaces (RC, immortal and boot image spaces) and gen-
erates mutation events (RCM(p)) for mutations to pointer fields
within the non-nursery spaces. Our barrier is an object remem-
bering coalescing barrier.

Each time the program mutates a pointer field within an object
that is not yet logged, the barrier logs it. Logging records the ad-
dress of the mutated object in a modified object buffer and buffers a
decrement for each field with a referent object in the RC space. At
collection time, the collector processes the modified object buffer
and for each object, generates an increment for each referent object
in the RC space.

Because the barrier generates a decrement for the initial values
and the collection phase generates an increment for the final values,
this mechanism achieves coalescing. If, while processing a modi-
fied object, the collector finds that a final value points into the nurs-
ery, it retains the referent object. This logging mechanism performs
a fixed amount work that is proportional the number of fields in the
mutated object. It performs unnecessary work for sparsely modi-
fied objects. In contrast, Levanoni and Petrank perform coalescing
by using a snapshot of the initial value of the object during mutation
and at GC time compare the initial and final values of each field,
only generating a mutation event if the values differ [23]. Their ap-
proach can generate fewer mutation events, but requires a copy of
the unmutated object.

Figure 3 shows the Java code for our barrier that is correct for
concurrent mutators. (The collector itself is not concurrent.) By
ensuring that nursery objects are initialized so they appear to have
been logged at birth, we avoid logging these heavily mutated ob-
jects. We use zero to denote the LOGGED state to avoid explicitly
initializing nursery objects.

In Figure 3, the fast path (lines 1–8) simply performs the store
(line 7) if the source object has already been logged. Since most

1 private void writeBarrier(VM_Address srcObj,
2 VM_Address srcSlot,
3 VM_Address tgtObj)
4 throws VM_PragmaInline {
5 if (getLogState(srcObj) != LOGGED)
6 writeBarrierSlow(srcObj);
7 VM_Magic.setMemoryAddress(srcSlot, tgtObj);
8 }
9

10 private void writeBarrierSlow(VM_Address srcObj)
11 throws VM_PragmaNoInline {
12 if (attemptToLog(srcObj)) {
13 modifiedBuffer.push(srcObj);
14 enumeratePointersToDecBuffer(srcObj);
15 setLogState(srcObj, LOGGED);
16 }
17 }
18

19 private boolean attemptToLog(VM_Address object)
20 throws VM_PragmaInline {
21 int oldState;
22 do {
23 oldState = prepare(object);
24 if (oldState == LOGGED) return false;
25 } while (oldState == BEING_LOGGED ||
26 !attempt(object, oldState, BEING_LOGGED));
27 return true;
28 }

Figure 3: BG-RC Write Barrier



mutated objects are mutated many times, the slow path is infre-
quently taken. For this reason, we inline the fast path and force the
slow path out of line [14].

The test on line 5 of the fast path performs an unsynchronized
check of two bits in the object header to see if the state is not
LOGGED. Line 12 of the slow path eliminates the potential race gen-
erated by the unsynchronized check. This approach avoids expen-
sive synchronization in the fast path while maintaining correctness.
The code in attemptToLog() (lines 19–28) returns true if it success-
fully changes the object’s state from UNLOGGED to BEING_LOGGED,
otherwise it returns false. It spins while the state is BEING_LOGGED,
and proceeds only once the object’s state is LOGGED. We use a con-
ditional store implemented with Jikes RVM’s prepare and attempt
idiom (lines 23 and 26). If the barrier is successful in attempting
to log, it performs the logging operations (lines 13 and 14) before
setting the log state to LOGGED.

3.2.3 Controlling Pause Times
Nursery collection and reference counting times combine to deter-
mine pause times. Nursery collection time is proportional to the
number of surviving nursery objects and pointers in to the nursery.
In the worst and pathological case, the pause could include all nurs-
ery objects surviving. A large nursery size can thus degrade pause
times. The nursery size should not be too small either since this
will lead to more frequent collections, which diminishes the effect
of coalescing in RC and gives nursery objects less time to die. If
too many objects survive, it will place unnecessary load on the old
generation. We measure these effects and see both in our programs
in Section 5.4.

A program may mutate heavily and thus generate large amounts
of RC work while performing little allocation. In order to bound the
accumulation of RC work between collections, we limit the growth
of meta data. The meta data includes the modified object buffer and
the decrement buffer, which grow each time an object is logged.
However, a write barrier is not typically a GC safe point, and thus
is not an opportunity to trigger collection. We extended Jikes RVM
with an asynchronous GC trigger and set it when a meta data allo-
cation at a non-GC-safe point fills the heap or exceeds the meta data
limit. The next scheduling time slice then triggers a collection. We
found that the collectors were very robust to this trigger although
the pure RC needs a much more generous allowance (4MB) than
BG-RC (512K) because it generates a lot more meta data since it
does not defer the nursery.

When a reference counted object is freed, the collector decre-
ments the counts of each of its descendants, and if their count drops
to zero it frees them. In the worst case, the whole heap could die at
once. The trial deletion cycle detection algorithm we use performs
a similar transitive closure which could be considerable in the worst
case even without a cycle. To limit the time spent performing this
work, a parameter specifies a time cap which curtails the recursive
decrement or trial deletion when the time cap is reached. We found
that if the time cap is too low, some programs may be unable to
reclaim cyclic garbage. We experiment with these triggers in Sec-
tion 5.4.

3.2.4 Cycle Detection
The current BG-RC implementation uses a variant of the synchr-
onous trial deletion algorithm from Bacon and Rajan [9]. On every
collection, their algorithm creates a candidate set of potential cycle
roots from all the decrements which do not go to zero. It colors
these objects purple and puts them on a list. At the end of a RC
phase, it examines elements of this list. If a purple object still has a
non-zero reference count, it computes a transitive closure coloring

the object and objects reachable from it gray and decrements their
reference counts. At the end, all of the gray roots with reference
count zero are cyclic garbage. It then recursively frees these objects
and their children with zero reference counts. For non-garbage ob-
jects, it restores the reference counts and color.

In our RC implementation, we do not perform cycle detection at
the end of every RC phase. We instead add a cycle detection trigger
to decide when to perform cycle detection. As the available heap
space falls toward a user-defined limit, we perform cycle detection
with increasing probability. We use a limit of 512KB, performing
cycle detection with probability 0.125 when available heap space
falls below 4MB, 0.25 at 2MB, 0.5 at 1MB, and 1.0 at 512KB.
Alternative implementations could express this limit as a fraction
of the heap size.

4. Methodology
This section first briefly describes Jikes RVM and JMTk which
are publicly available2 and include BG-RC and all other collectors
evaluated in this paper. We then overview the additional collectors,
how they work, and a few implementation details. A more thorough
explanation of the implementation is available elsewhere [11]. As
we point out in the previous section, all of these collectors share
a common infrastructure, and reuse shared components. We then
present the characteristics of the machine on which we do all ex-
periments, and some features of our benchmarks.

4.1 Jikes RVM and JMTk
We use Jikes RVM (formerly known as Jalapeño) for our experi-
ments with a new memory management tool kit JMTk. Jikes RVM
is a high performance VM written in Java with an aggressive opti-
mizing compiler [1, 2]. We use the Fast build-time configuration
which precompiles key libraries and the optimizing compiler, and
turn off assertion checking in the VM. We use the adaptive compiler
which uses a baseline compiler and based on samples, recompiles
hot methods with an aggressive optimizing compiler [4]. It places
the most realistic load on the system, but suffers from variability. A
consequence of Jikes RVM’s Java in Java design is that the VM’s
optimizing compiler uses the allocator and write-barrier specified
by the collector, and thus the collector changes the VM.

Together with Perry Cheng at IBM Watson, we recently devel-
oped a new composable memory management framework (JMTk)
for exploring efficient garbage collection and memory management
algorithms [11]. JMTk separates allocation and collection policies,
then mixes and matches them. It shares mechanisms such as write
barriers, pointer enumeration, sequential store buffers for remem-
bered sets, and RC increments between algorithms. The heap in-
cludes all dynamically allocated objects, inclusive of the program,
compiler, and itself (e.g., the collector meta data such as remem-
bered sets). It contains efficient implementations of all the collec-
tors we study [11], and hybrids share the non-hybrid components.
Because of the shared mechanisms and code base, our experiments
truly compare policies.

4.2 Collectors
We compare BG-RC to several other collectors. We first summarize
and categorize each collector, then justify our selection, and discuss
each in more detail.

RC: The coalescing, deferred reference-counting collector uses one
policy on the whole heap: a free-list allocator and a collec-
tor that periodically processes the modified object buffer and

2http://www.ibm.com/developerworks/oss/jikesrvm/.



coalesced increment and decrement buffers, deleting objects
with a reference count of zero.

BG-RC: The generational reference counting hybrid uses a bound-
ed copying nursery and promotion into a RC mature space,
as described in the previous section.

MS: The mark-sweep collector uses one policy on the whole heap:
a free-list allocator and a collector that traces and marks live
objects, and then lazily reclaims unmarked objects.

BG-MS: The generational mark-sweep hybrid has a bounded copy-
ing nursery, and promotes survivors to a MS mature space.

We categorize these collectors as follows. The generational col-
lectors divide the heap into a nursery and old generation and collect
each independently (BG-MS and BG-RC). The whole heap col-
lectors (MS and RC) scavenge the entire heap on every collection
with one policy. The hybrid collectors use multiple policies. BG-
RC and BG-MS use the same copying nursery. All the collectors
use the same free-list for either the mature space (BG-RC and BG-
MS) or the entire heap (MS and RC) with either reference-counting
or mark-sweep collection. Section 4.3 describes the segregated fit
free-list implementation in detail.

We choose BG-MS as our high performance comparison point
because in our experiments, it is comparable to pure copying gen-
erational and better than whole heap collectors [11]. This result is
consistent with use of similar collectors in a variety of high per-
formance JVMs. We include the full heap MS collector to reveal
the uniform benefits of generational collection. We fix the heap
size in our implementation to ensure fair comparisons. For each of
the comparison collectors, we now describe their collection mech-
anisms, collection trigger, write barrier, and space and time over-
heads.

4.2.1 RC: Reference Counting
The pure deferred reference-counting collector organizes the en-
tire heap with the free-list allocator. The RC algorithm uses all of
the same mechanisms as BG-RC. It however only defers counting
the registers, stacks, and class variables (statics). The write bar-
rier generates mutation events for mutations to heap objects using
the logging mechanism. Our experiments trigger a collection after
each 1MB of allocation, or due to a pause time trigger. Collection
time is proportional to the number of dead objects, but the mutator
load is significantly higher than the generational collectors since it
logs all mutated objects.

4.2.2 MS: Mark Sweep
The mark-sweep collector organizes the entire heap with a segre-
gated free list. MS triggers collection when the heap is full. For
each block, MS keeps a mark bit map. During a collection, it scans
the reachable objects, and marks them as reachable by setting a cor-
responding bit in its mark bit map. If any block contains no marked
objects, the collector frees the whole block. It sweeps lazily. The
first time the allocator uses a block after a collection, it uses the
mark bit map to construct a new free list for the block (unmarked
objects are free).

Tracing is proportional to the number of live objects, and since
it is performed lazily, reclamation is proportional to the number
of allocations. The space requirements include the live objects,
bit maps, and fragmentation due to both mismatches between ob-
ject sizes and size classes (internal fragmentation), and distribu-
tion of live objects among different size classes (external fragmen-
tation). Some MS implementations occasionally perform mark-
sweep-compaction to limit external fragmentation, but we do not

explore that option here. Since MS is a whole heap collector, its
maximum pause time is poor and its performance suffers from re-
peatedly tracing objects that survive many collections.

4.2.3 BG-MS: Generational Copying/Mark-Sweep
This hybrid generational collector uses a bounded copying nursery
and the above mark-sweep policy for the older generation. BG-MS
allocates using a bump pointer and when the nursery fills up, it trig-
gers a nursery collection. It scans and copies all of the reachable
nursery objects into the mature space. Classic copying semi-space
collectors divide the heap into two equal size parts: to-space and
from-space [16]. They allocate into to-space, and copy into from-
space. From and to-space are equal in size since all objects could
survive. For the same reason, BG-MS reserves a copy space of free
blocks at least equal to the nursery size in the MS space. When
this size drops below the nursery upper bound, the collector re-
duces the nursery size as does BG-RC. BG-MS triggers a full heap
collection when the bounded nursery drops below its lower bound
(256KB) or when the application explicitly requests a GC (through
System.gc()). The write barrier only remembers pointers from the
mature space to the nursery. By exploiting the generational hy-
pothesis, BG-MS mitigates the drawbacks of MS for throughput
and average pause times, but occasional full heap collections drive
up maximum pause times.

4.3 Implementation Details
This section includes a few key implementation details about the
free-list allocator, the large-object space, object headers, the bound-
ed nursery, inlining write barriers and allocation sequences, the
boot image, and immortal space.

All of the collectors use a segregated fit free-list allocator [22,
31] either on the whole heap or on the mature space. The heap
is divided in to blocks of contiguous memory. Each block has a
free list and contains only one size class. The allocator assigns a
new block to a size class when no block contains a free object of
the right size. It changes the size class of a block only when the
block is completely free. We use a range of size classes similar to
but smaller than the Lea allocator [22]. We select 40 size classes
with the goal of worst case internal fragmentation of 1/8. The size
classes are 4 bytes apart from 8 to 63, 8 bytes apart from 64 to 127,
16 bytes apart from 128 to 255, 32 bytes apart from 256 to 511,
256 bytes apart from 512 to 2047, and 1024 bytes apart from 2048
to 8192. A word is 4 bytes, so small, word-aligned objects get an
exact fit. Blocks contain a single size class and range in size from
512 bytes for the smallest size class to 32KB for the largest.

All objects 8KB or larger are separately allocated into a large
object space (LOS) using an integral number of pages. The gen-
erational collectors allocate large objects directly into this space.
During full heap collections, MS and BG-MS scan and collect the
large objects. RC and BG-RC reference count the large objects at
each collection.

The standard Jikes RVM object header size is 2 words, with an
additional word (4 bytes) for reference counting. Thus RC and BG-
RC need additional space in the RC free-list. As an optimization,
BG-RC eliminates the header in the nursery, and adds it only when
performing integration of nursery objects into the RC space.

As our default BG-RC and BG-MS configurations, we use a
nursery upper bound of 4MB, and a lower bound of 256KB. For
RC, we trigger a collection every 1MB, or when one of the collec-
tion triggers applies. For BG-RC, we use a time cap of 60ms, a
meta-data limit of 512KB, and a cycle detection limit of 512KB.
JMTk measures free space in completely free pages. In BG-MS
and BG-RC, the bounded nursery size starts at its upper bound. At



Allocation Write barrier Modified objects RC increments RC decrements
benchmark alloc MS min alloc:MS total rem set RC BG-RC % RC BG-RC % RC BG-RC %

202 jess 403MB 16MB 25:1 28.63 0.16% 8.58 0.01 0.09% 25.68 0.23 0.91% 25.07 0.40 1.59%
213 javac 593MB 26MB 23:1 20.78 2.41% 8.96 0.71 7.97% 13.52 2.26 16.74% 10.25 4.32 42.12%
228 jack 307MB 14MB 22:1 10.44 7.23% 8.75 0.01 0.13% 5.21 0.09 1.67% 4.84 0.29 6.01%

205 raytrace 215MB 18MB 12:1 7.35 0.98% 7.04 0.03 0.47% 3.10 0.11 3.61% 2.09 0.16 7.78%
227 mtrt 224MB 21MB 11:1 8.49 1.00% 7.32 0.04 0.59% 3.43 0.15 4.41% 2.22 0.22 9.78%

201 compress 138MB 17MB 8:1 1.53 0.71% 0.25 0.00 0.49% 0.41 0.01 2.67% 0.21 0.01 5.77%
pseudojbb 339MB 46MB 7:1 23.31 3.66% 8.45 0.24 2.80% 11.12 0.98 8.81% 9.40 3.36 35.72%

209 db 119MB 20MB 6:1 35.03 0.52% 3.85 0.00 0.06% 10.92 5.50 50.33% 10.11 5.52 54.58%
222 mpegaudio 51MB 12MB 4:1 9.79 0.23% 0.89 0.01 0.89% 1.56 0.03 2.00% 0.73 0.04 5.15%

mean 265MB 21MB 13:1 16.15 1.74% 6.01 0.12 1.96% 8.33 1.04 12.50% 7.21 1.59 22.05%
geometric mean 216MB 20MB 11:1 11.89 0.98% 3.98 0.02 0.50% 4.86 0.22 4.62% 3.53 0.38 10.66%

Table 2: Benchmark Allocation Characteristics and Write Barrier Events (in millions)

the end of each collection, it sets aside half of the free space as
copy reserve and the other half is available to the nursery. The col-
lectors set the nursery size to be the smaller of the nursery bound
(4MB) and the free mature space. At the start of each collection,
BG-MS estimates nursery survival using a conservative survival es-
timate (80%). If the collection may cause the next nursery size to
fall below the lower bound (256KB), BG-MS performs a full heap
collection.

For all of the generational collectors, we inline the write-barrier
fast path which filters out mutations to nursery objects and thus
does not record most pointer updates [14]. In the reference count-
ing collectors, the slow path generates decrements and modified
object buffer entries. In BG-MS, the slow path inserts remembered
set entries. The pure mark-sweep collector has no write barrier. We
inline the allocation fast path for all collectors.

The boot image contains various objects and precompiled classes
necessary for booting Jikes RVM, including the compiler, class-
loader and other essential elements of the virtual machine. Sim-
ilarly, JMTk has an immortal space that the VM uses to allocate
certain immortal objects and which must not be moved. None of
the JMTk collectors collect the boot image or immortal objects.
MS and BG-MS trace through the boot image and immortal ob-
jects during full heap collection. RC and BG-RC just assume the all
boot images are live which is essentially true. (The source code for
Bacon et al.’s RC implementations reveals the same limitation [7]).

4.4 Experimental Platform
We perform all of our experiments on 2 GHz Intel Xeon, with 16KB
L1 data cache, a 16K L1 instruction cache, a 512KB unified L2 on-
chip cache, and 1GB of memory running Linux 2.4.20. We run
each benchmark at a particular parameter setting six times and use
the second fastest of these. The variation between runs is low, and
we believe this number is the least likely disturbed by other system
factors and the natural variability of the adaptive compiler.

4.5 Benchmarks
Table 2 shows key characteristics of each of our benchmarks. We
use the eight SPEC JVM benchmarks, and pseudojbb, a slightly
modified variant of SPEC JBB2000 [27, 28]. Rather than running
for a fixed time and measuring transaction throughput, pseudojbb
executes a fixed number of transactions (70000) to generate a fixed
garbage collection load. The SPEC JVM benchmarks are run at the
default size of 100.

The alloc column in Table 2 indicates the total number of bytes
allocated by each benchmark. The next column indicates the min-
imum heaps in which the benchmarks can run using MS collector.
The heap size is inclusive of the memory requirements of the adap-
tive compiler compiling the benchmark. The fourth column indi-
cates the ratio between total allocation and MS minimum heap size,

giving an indication of the garbage collection load for each bench-
mark. This ratio shows these are reasonable, but not great bench-
marks for garbage collection experiments. We order the bench-
marks according to this ratio.

The write-barrier columns show for a 4MB nursery: total–the
number of times the write barrier is invoked, i.e., all instrumented
stores; and rem set–the fraction of those stores that point from ma-
ture space into the nursery. These counts are all expressed in mil-
lions.

The final nine columns indicate the number of entries made to
the modified object, increment, and decrement buffers by RC and
BG-RC for each of the benchmarks. Section 3.2.2 explains how
the collectors generate these entries. These results show that by
excluding nursery objects from the reference counter, we reduce
its load dramatically, a factor of 50 with respect to the modified
objects on average.

These measurements indicate part of both the time and memory
overheads of the different collectors for their meta data which in-
cludes the remembered sets and RC buffers. Most programs do
not mutate the old objects heavily, and thus reference count fewer
than 10% of writes. However, both 209 db and 213 javac write
many pointers in the mature space, and thus put a relatively high
load on the reference counter in BG-RC.

5. Results
This section compares mark-sweep (MS), reference counting (RC)
and their generational hybrids (BG-MS & BG-RC) with respect to
throughput and responsiveness. The results show BG-RC has much
better responsiveness, and matches and can sometimes beat BG-
MS on throughput in moderate heaps. We include a limit study in
which we measure the cost of reference counting over nursery col-
lection, and find it is very low. In addition to maximum pause time,
we present bounded mutator utilization [12, 17] to reveal whether
many short pauses group together to reduce mutator efficiency, and
find this problem does not occur for BG-RC. Section 5.3 explores
the effect of the heap size on throughput. In moderate and large
heaps, BG-RC matches BG-MS. In small heaps, BG-MS performs
better. Section 5.4 shows the sensitivity of BG-RC due to variations
in the nursery size, time cap, and cycle collection trigger.

Table 3 compares throughput and responsiveness of the four col-
lectors in a moderate heap. The default collection triggers for these
results are a nursery of 4MB for BG-RC and a time cap of 60ms
and cycle detection limit of 512KB for RC and BG-RC. We use a
more frequent trigger of 1MB of allocation for RC to make it more
responsive. We relax the time cap on a number of benchmarks for
RC so that it will complete some cycle detection and run to com-
pletion. These results are printed in italics in Table 3. Column
two states the heap size, which is 1.5 � minimum heap size for all
benchmarks except pseudojbb (1.6 � ) and 213 javac (2.6 � ).



heap BG-MS MS BG-MS BG-RC RC
used time norm max norm max norm max norm max

benchmark MB sec time pause time pause time pause time pause

202 jess 24 6.2 1.91 182 1.00 181 0.99 44 2.36 131
213 javac 68 13.4 1.01 268 1.00 285 1.00 68 1.78 580
228 jack 21 7.7 1.52 184 1.00 185 0.94 44 1.66 72

205 raytrace 27 7.5 1.31 203 1.00 184 1.03 49 1.71 133
227 mtrt 32 8.3 1.29 241 1.00 180 1.04 49 1.75 130

201 compress 25 11.6 0.98 160 1.00 175 0.88 68 0.93 72
pseudojbb 74 20.0 1.00 264 1.00 281 1.00 53 1.33 297

209 db 30 19.2 1.01 238 1.00 244 1.01 59 1.11 43
222 mpegaudio 18 10.3 1.05 185 1.00 178 0.96 43 1.14 121

mean 35 11.3 1.23 214 1.00 210 0.98 53 1.53 175
geometric mean 31 10.4 1.20 211 1.00 206 0.98 52 1.47 130

Table 3: Throughput and Responsiveness of MS, BG-MS, BG-RC, and RC at a Moderate Heap Size

These benchmarks contain very large cycles and require a larger
heap to prevent trial deletion in cycle detection from executing too
frequently in combination with cycle detection preemption due to
the time cap. This artifact is due to our synchronous cycle detection
algorithm. Bacon et al. point out the difficulty of collecting cycles
in 213 javac as well [7].

Column three in Table 3 contains the total execution time of BG-
MS, and columns four, six, eight, and ten normalize to this time.
Columns five, seven, nine, and eleven give the maximum pause
times. Some of the benchmarks can run to completion at these
heap sizes without requiring BG-MS to perform a mature space col-
lection, however the SPEC benchmarks use System.gc() to clear
the heap at the start and end of each benchmark, at which point
the collectors perform a whole heap collection. BG-MS therefore
performs at least one full heap collection in each of these bench-
marks. If, instead BG-MS performs only a nursery collection for
each System.gc(), it improves by 2.3% on average, with a peak
improvement of 7% ( 202 jess) and in the worst case a degreda-
tion of 7% ( 205 raytrace). The improvement is largely due to the
absense of full heap collections, which is unrealistic. BG-RC con-
tinuously collects the mature space, as do the full heap collectors,
RC and MS.

5.1 Throughput
Table 3 shows that BG-RC delivers excellent throughput in a mod-
erate heap, at best 12% faster ( 201 compress), at worst 4% slow-
er ( 227 mtrt), and on average around 2% faster than BG-MS. The
full heap collectors perform worse, and often much worse than their
hybrid generational counterparts. BG-MS improves over MS by
more than 50% on two of the benchmarks. The generational col-
lectors are designed to exploit the typical space and time behavior
of young and old objects. The space and allocation-time advan-
tages of a bump-pointer free-list hybrid benefit both BG-MS and
BG-RC. The collection-time advantage of a copying nursery also
benefits both hybrids. The fact that older objects are usually mu-
tated much less frequently benefits BG-RC.

A comparison of MS and RC in Table 3 confirms the conven-
tional wisdom that the trade-off between lower collection time and
higher mutator overhead inherent in reference counting leads on
average to a substantial reduction in throughput. However, RC per-
forms better than MS and BG-MS on 201 compress because it
couples a low allocation to live ratio with infrequent mutations to
its data as shown in Table 3. Mutator time measurements confirm
this explanation on a variety of heap sizes in Section 5.3. On av-
erage however, the absence of a concurrent cycle detector often
causes RC to be unresponsive. BG-RC dramatically limits its ex-
posure to this trade-off by using reference counting only with the

low-maintenance older objects (Table 2), even though it has an ad-
ditional space overhead of a word for each object.

Table 4 illustrates the throughput of the two generational col-
lectors in a large 512MB heap. At this heap size, BG-MS does not
scavenge the mature space in any of the benchmarks, and in this ex-
periment, BG-MS only collects the nursery on calls to System.gc().
The performance of BG-MS thus only includes the cost of nursery
collections. By contrast, BG-RC continuously collects the mature
space, regardless of heap size. The difference in performance be-
tween BG-MS and BG-RC in Table 4 therefore quantifies the addi-
tional cost of continuous RC collection over nursery only collection
as very modest. The overhead is at worst 8%, and on average only
3%.

5.2 Pause Times
BG-RC has low maximum pause times. In fact, Table 3 shows that
it has much better maximum pause times than pure RC because it is
exposed to less load. In particular, cycle detection causes problems
as evidenced by the 213 javac result. Without cycle detection,
RC pause times go down. However, since we trigger RC more fre-
quently than BG-RC (every 1MB of allocation rather than every
4MB), RC’s higher pause times also reveal that a copying nursery
is a good idea—much better than using RC or MS on the young
objects. Since BG-MS performs full heap collections for all of
the benchmarks, it attains the expected poor maximum pause time
behavior due to the mark-sweep of the full older generation. MS
achieves similarly poor max pause times. BG-RC always achieves
a much lower maximum pause time than BG-MS, a factor of 4 on
average, and at worst 8ms above its 60ms time cap.

best BG-MS BG-RC
time norm norm

benchmark sec time time

202 jess 5.7 1.00 1.07
213 javac 12.2 1.00 1.08
228 jack 7.1 1.00 1.02

205 raytrace 8.0 1.00 0.97
227 mtrt 8.1 1.00 1.05

201 compress 9.9 1.00 1.01
pseudojbb 19.1 1.00 1.05

209 db 18.6 1.00 1.04
222 mpegaudio 9.8 1.00 1.00

mean 10.9 1.00 1.03
geometric mean 10.1 1.00 1.03

Table 4: Limit Study of Throughput Using 512MB Heap for
BG-MS and BG-RC
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Figure 4: Bounded Mutator Utilization (BMU)

Although maximum pause time is an important measure of re-
sponsiveness, a tight cluster of short pauses may be just as damag-
ing to an application’s progress as a single longer pause. To mea-
sure this effect, we modify Cheng and Belloch’s minimum muta-
tor utilization (MMU) methodology which measures the fraction of
time in which the mutator does useful work in a given period, but
is not monotonic [17]. We use bounded mutator utilization (BMU)
which plots a point

�
w� m � on a BMU curve if, for all intervals (win-

dows) of length w or more that lie entirely within the program’s
execution, the mutator utilization is at least m. BMU curves are
monotonically increasing, where the x-intercept is the maximum
GC pause for the run, and the asymptotic y-value is the overall
throughput (fraction of time spent in the mutator). The BMU curve
then identifies the maximum period that the application’s mutator
fraction requirement will not be satisfied.

For example, in Figure 4(a), if 228 jack requires at least 20%
of the CPU at all times (BMU � 0.2), it will experience a pause
of around 50msec from BG-RC, around 190msec from BG-MS,
and about 75msec from RC. These BMU graphs illustrate that BG-
RC performs very well, both in terms of responsiveness, where
it exceeds RC and BG-MS, and in terms of throughput, where it
matches BG-MS at the y-intercept. The BMU graphs for the other
benchmarks are very similar. RC would undoubtedly be more re-
sponsive if it were a concurrent implementation, and its throughput
would improve with extra CPU resources dedicated to the task of
RC collection (which is common practice in RC implementations).

5.3 Sensitivity to Heap Sizes
Figures 5, 6, and 7 show the impact of heap size on GC time, muta-
tor time, and total time for all four collectors. As the total heap size
increases, BG-RC and BG-MS both increase their mature space
size. BG-RC triggers young and mature space collections due to
a full nursery, full heap, pause-time control, or user triggered GC.
Whereas BG-MS triggers a nursery collection when the nursery is
full, and a full-heap collection when the mature space is full or
when the user triggers a GC. Thus as the heap gets bigger, BG-MS
does fewer collections of the mature space.

These graphs indicate the trade-offs the respective collectors
make between GC and mutator efficiency. Unsurprisingly, the gen-
erational collectors spend less time in GC on average. Both also
have better average mutator times, which reflects the benefit of al-
locating with a bump pointer to the nursery which is usually about
70 bytes of IA32 instructions as opposed to allocating to a free
list which is 140 bytes of IA32 instructions in our implementation.
This difference is similar in other implementations [5, 10, 22]. In
addition, copying can have a positive impact on locality by com-
pacting survivors into the mature space. This effect is most dra-
matically evidenced in 227 mtrt in Figures 6(e) and 7(e), where
at about 1.2 � minimum heap size, BG-MS performs around 25%
better than any other collector. This result is repeatable and ex-
amination of the collection log shows a single full-heap collection
after the main data structure is built must lead to significant locality
improvements in the mutator.

As the heap shrinks, each of the collectors must do more work
and total throughput degrades until they are unable to satisfy the
application’s requests. BG-RC tends to degrade more rapidly than
BG-MS in very small heaps because the pause-time guidelines pre-
vent it from reclaiming cyclic garbage promptly. 213 javac is
most sensitive to this effect, and does not execute to completion
until the heap grows to almost 2.6 � the maximum live size, as
explained above.

With respect to mutator time, MS performs best and BG-MS
often performs somewhat better than BG-RC. Although BG-RC
does match BG-MS frequently, and they are usually within 5% of
each other. RC mutator time is often worse than the others, and
is much worse for benchmarks such as 205 raytrace, 228 jack,
and 213 javac. With respect to GC time, BG-RC performs signif-
icantly better than BG-MS on large and moderate heaps, except for
pseudojbb which performs a large number of mutations. In this
case, the low ratio of maximum live size to total allocation means
that MS or BG-MS perform few full heap collections.

5.4 Collection Triggers
Table 5 varies the collection triggers described in Sections 3.2.3
and 3.2.4 to explore their effects on total and maximum pause time.
Our base line configuration uses a nursery size of 4MB, a time cap
of 60ms, and a cycle detection trigger of 512KB. We execute the
benchmarks in the same heap sizes listed in Table 3.

Generally, smaller nursery sizes lead to lower throughput, which
is unsurprising. Reducing the nursery size to 2MB tends to degrade
responsiveness compared with a 4MB nursery. Because a smaller
nursery filters fewer mutations and less garbage, it increases the
pressure on the RC mature space. Two of the benchmarks were
unable to run to completion with this configuration ( 213 javac
and pseudojbb). Increasing the nursery size to 8MB also degrades
responsiveness compared to 4MB, due to the increase in nursery
collection time. For example, the poor maximum pause time for
209 db is due to a high nursery survival rate after 209 db con-

structs a large long-lived data structure.
The impact of the time cap is as expected. A small time cap
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Figure 5: GC Time as a Function of Heap Size

default Nursery Size Time Cap Cycle Detection Trigger
(4,60,512) 2MB 8MB 30ms 120ms 256KB 1MB

benchmark time max time max time max time max time max time max time max
202 jess 1.00 44 1.05 41 1.01 43 1.00 45 1.01 44 1.00 43 1.02 67

213 javac 1.03 69 1.00 79 1.03 46 1.05 130 1.02 44 1.04 63
228 jack 1.01 45 1.08 72 1.01 44 1.01 44 1.00 44 1.00 45 1.06 75

205 raytrace 1.02 69 1.09 71 1.00 62 1.02 48 1.05 120 1.00 50 1.07 67
227 mtrt 1.03 51 1.06 76 1.00 79 1.01 48 1.01 50 1.02 50 1.05 75

201 compress 1.01 61 1.02 67 1.01 59 1.02 44 1.00 80 1.00 59 1.01 62
pseudojbb 1.03 53 1.00 72 1.05 51 1.03 76 1.02 53 1.04 64

209 db 1.00 59 1.01 47 1.00 115 1.00 59 1.00 60 1.00 59 1.00 59
222 mpegaudio 1.01 65 1.01 68 1.01 63 1.00 44 1.01 114 1.00 44 1.01 70

mean 1.02 57 1.05 63 1.00 68 1.02 48 1.02 80 1.01 50 1.03 67
geometric mean 1.02 57 1.05 62 1.00 66 1.02 47 1.02 74 1.01 49 1.03 67

Table 5: BG-RC Sensitivity to Variations in Collection Triggers (defaults are 4MB nursery, 60ms time cap, and 512KB cycle trigger)

reduces the pause time, and does not degrade performance. How-
ever since some of the collection (such as the nursery collection) is
compulsory, the collector could not honor the 30ms time cap, but
lowering the cap did reduce pauses times on most benchmarks.

Lowering the cycle detection meta-data limit leads to better
throughput and responsiveness. However, since this experiment
was conducted at a moderate heap size, it does not expose the fact

that reducing opportunities for the cycle detector to function will
exhaust the heap faster. We chose our default setting (512KB) to
allow BG-RC to operate in a similar range of heap sizes as BG-MS.
Increasing opportunities for cycle detection increases the probabil-
ity that the trial deletion algorithm will try to reclaim large struc-
tures and produce long pauses, which is why we see maximum
pause time growing with the cycle detection limit.
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Figure 6: Mutator Time as a Function of Heap Size

6. Related Work
This section describes related work in concurrent and incremen-
tal collection. Concurrent collectors sacrifice throughput for low
pause times, where as ulterior reference counting can achieve both.
This section also compares our work with Azatchi and Petrank’s
concurrent generational reference counting collector.

6.1 Incremental and Concurrent Collection
Other incremental approaches include MOS, real-time, and concur-
rent collectors. The mature object space (MOS) collector traces
and copies objects, incrementally packing connected objects to-
gether [20]. It achieves completeness without full heap collections
and can be configured to be highly incremental, yielding low pause
times. However, completeness comes at a performance cost since it
potentially copies objects numerous times before it identifies them
as garbage.

Concurrent tracing collectors [15] use a special write barrier to
accommodate interference by the mutator in the tracing phase.

Bacon, Cheng, and Rajan claim the best utilization to date and very
short pause times for a concurrent real-time collector [8]. Their
collector is mostly non-moving and incremental. Dedicating a sep-
arate CPU to the task of collection can mitigate such significant
overheads but hurts total throughput [7, 9, 26]. In contrast, we
do not target real-time applications and do not collect concurrently
with the mutator, but achieve throughput matching a high perfor-
mance collector. We consider solutions that do not require addi-
tional CPUs.

6.2 Generational Reference Counting
In parallel with our work [14], Azatchi and Petrank add generations
to a sliding-view concurrent reference counting collector [6, 23].
Their generational collector uses a free list for all objects. They
snapshot all mutated objects between collections. Since nursery
objects are scattered throughput the heap, the algorithm must keep
a list of all of them to collect them separately. During a nursery
collection, the collector marks all live nursery objects, and sweeps
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Figure 7: Total Time as a Function of Heap Size

the remainder. Their reclamation is thus proportional to the entire
nursery size, rather than the survivors as in a copying nursery. A
copying nursery performs better. While processing the nursery log,
the collector reference counts survivors as it promotes them. The
basic concurrent design attains excellent pause times, better than
Bacon et al. [6, 7]. The sliding view reference counting collector
performs occasional concurrent mark-sweep collections to collect
cycles.

Our work introduces the tracing deferral mechanism for heap
objects. Both papers discuss slot and object logging deferral and
measure variants of object logging. The major quantitative advan-
tage of our approach is the combination of space and time effi-
ciency, yielding a much higher throughput collector coupled with
low pause times. For example, since we use a copying nursery,
we achieve the fastest possible allocation time, and combine scan-
ning and reclamation time proportional to survivors. We also have
significantly less space overhead.

In this paper, we compare performance with BG-MS which com-

bines the best of copying and mark sweep, using bump-pointer al-
location and a space efficient mark-sweep free list for long-lived
objects. Previous [5] and concurrent [11] work shows that BG-MS
performs better than a variety of other collection algorithms, in-
cluding other generational collectors. MS, which we also include,
is a widely used algorithm but it performs poorly on throughput
and pause time. Generational collection on average tracks the time
to collect the nursery, but it does not remove the need for full heap
collection. In the worst case, all these collectors must pause while
the collector traces the entire, full heap.

Beltway collectors [12] generalize over classic copying genera-
tional collectors by adding incremental collection on independent
belts which are analogous to generations. Beltway configurations
outperform generational copying collectors, but have not been di-
rectly compared to BG-MS [12]. We believe that a generalization
of ulterior reference counting as the last belt is a Beltway configu-
ration that could perform better than the results here.



7. Conclusion
The tension between responsiveness and throughput is a longstand-
ing problem in the garbage collection literature. Until now, collec-
tors either exhibited good throughput performance or good respon-
siveness, but not both. BG-RC carefully matches allocation and
collection policies to the behaviors of older and younger object de-
mographics, and thus delivers both excellent throughput and good
responsiveness. The key to this result is an algorithm that general-
izes deferred reference counting to safely ignore mutations to nurs-
ery objects and thus significantly reduces the reference counting
load. Future collectors could improve on these results with incre-
mental or concurrent dead cycle detection for large structures, and
an adaptive algorithm that selects a more appropriate collector for
highly-mutated but long-lived objects.
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