
Designing a Low-Level Virtual Machine for
Implementing Real-Time Managed Languages

Javad Ebrahimian Amiri
Australian National University

Australia
Data61, CSIRO

Australia
javad.amiri@anu.edu.au

Stephen M. Blackburn
Australian National University

Australia
steve.blackburn@anu.edu.au

Antony L. Hosking
Australian National University

Australia
Data61, CSIRO

Australia
tony.hosking@anu.edu.au

Michael Norrish
Data61, CSIRO

Australia
Australian National University

Australia
michael.norrish@data61.csiro.au

Abstract

Applications of real-time systems have grown significantly
in both diversity and popularity, and the appetite for real-
time software has never been higher. In contrast, the choice
of programming languages used to develop such systems has
stagnated, mostly limited to decades-old languages, specifi-
cally Ada and C/C++, and more recently real-time Java. We
posit that the high cost and difficulty of developing new
programming languages for real-time systems is the main
reason for this mono-culture.
To tackle the lack of diversity, we propose the design of

a micro virtual machine on which managed programming
languages for real-time systems can be developed. Our de-
sign facilitates bringing the advantages of correct managed
languages to the real-time domain. We build on a previously
published micro virtual machine specification, named Mu,
and propose a set of modifications to its abstractions over
concurrency and memory management to make it suitable
for real-time systems.
The resulting design is a basis for a new micro virtual

machine specification we call RTMu, designed as a reliable
and efficient foundation for the development of managed
languages for real-time systems.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

VMIL ’19, October 22, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6987-9/19/10. . . $15.00

https://doi.org/10.1145/3358504.3361226

CCS Concepts · Computer systems organization →
Real-time languages; Embedded software; Real-time oper-
ating systems; Reliability; · Software and its engineering

→ Runtime environments.

Keywords managed programming language, micro virtual
machine, real-time systems

ACM Reference Format:

Javad Ebrahimian Amiri, StephenM. Blackburn, Antony L. Hosking,

and Michael Norrish. 2019. Designing a Low-Level Virtual Machine

for Implementing Real-Time Managed Languages. In Proceedings of

the 11th ACM SIGPLAN International Workshop on Virtual Machines

and Intermediate Languages (VMIL ’19), October 22, 2019, Athens,

Greece. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3358504.3361226

1 Introduction

A real-time system is a computer system in which the log-
ically correct output must obey a timing constraint, often
called a deadline. In addition to timeliness, real-time applica-
tions have other requirements including high performance
and reliability, at various levels of intensity. A soft real-time
application like a video player demands high performance,
and missing deadlines only leads to reduced quality. In such
systems, validation can often be done by running them a cer-
tain number of times with representative inputs and monitor-
ing their performance and output. On the other hand, in hard
real-time applications such as a flight control system, which
is safety-critical, timing is paramount and performance is
secondary. The software subsystems in such applications are
typically required to undergo rigorous testing and a level of
formal verification.
Programming languages and their compilers play a vital

role in the compliance of real-time systems to their require-
ments, and have been the subject of research since the 1960s.
Many programming languages were developed or adapted

VMIL ’19, October 22, 2019, Athens, Greece J. E. Amiri, S. M. Blackburn, A. L. Hosking, and M. Norrish

for real-time systems. For instance, Stoyenko [14] surveys
around seventy such languages and goes so far as to estimate
that ‘the number of languages designed for or used in real-time
programming is in the high hundreds or low thousands’ as of
1992, and goes on to state that Ada was created by the U.S.
Department of Defense due to concerns with maintaining
‘over 1,000 languages’. Clearly, only a few of those languages
have survived. Currently, the choice of language for real-
time systems is predominantly limited to Ada and C/C++,
and more recently real-time Java [3]. This seems surprising
given the diversity and popularity of real-time systems.

Part of the problemmay be related to the level of reliability
demanded of real-time language implementations. For exam-
ple, it may be tolerable for a widely-used scripting language
to crash or misbehave occasionally, but car brakes must al-
ways work. We believe that this explains why there is such a
paucity of real-time languages, even while general-purpose
languages have flourished.
Wang et al. [16] argued that implementing even general-

purpose languages is not easy. They claim that difficulty of
implementation is the source of many problems (broken se-
mantics, poor performance) in today’s languages. Attacking
this source problem, they propose the concept of the Micro
Virtual Machine (µVM) as a thin abstraction layer over the
three most challenging parts of implementing a managed lan-
guage, namely: concurrency, compiler backend, and garbage
collector. They propose a particular µVM design instance
called Mu, having a concrete specification [15], and establish
its practicability through the implementation of real-world
managed languages [9].
We argue that using a µVM instance, such as a real-time

version of Mu (RTMu), to develop managed languages for
real-time systems will help tackle the current mono-culture
for two reasons. First, it will relieve the difficulty and reduce
the cost of developing new real-time languages. Second, it
will bring the benefits of managed languages to the real-time
domain. To ameliorate design complexity we build on the
Mu µVM specification.
The determinative design property of RTMu, borrowed

from Mu, compared to alternative VMs, is its minimality.
This makes RTMu suitable for a wide range of languages,
which can cover diverse real-time systems. In addition, the
minimality of RTMu eases its implementation and will aid
the task of formal verification. RTMu’s amenity to formal
verification helps in building a reliable platform, particularly
for real-time systems which need rigorous testing and more
formal validation such as safety-critical systems.
The contributions of this paper are:

(1) design of a µVM for real-time language implementa-
tion,

(2) identification of core language features that distin-
guish real-time languages,

(3) specification of IR extensions to support real-time lan-
guages,

(4) specification of other runtime changes to support real-
time languages, and

(5) description of how to use the new primitives to con-
form to the requirements of a variety of real-time ap-
plications.

The new RTMu design, which includes the IR and API,
is the basis for a concrete instance of a real-time µVM. The
ultimate goal of RTMu is to introduce a reliable platform
that is flexible enough to serve as target for a broad range of
real-time systems.

2 Background

RTMu is the first µVM designed for real-time systems. It is
based-on the Mu specification [10], and inspired by real-time
programming languages (RTPL) and real-time operating sys-
tems (RTOS). In this section, we first summarize some of the
most influential RTPLs. Then we introduce Mu and briefly
explain the key aspects which require special attention from
the viewpoint of a RTPL developer.

2.1 Programming Languages for Real-Time Systems

As mentioned earlier, numerous programming languages
have been built or adapted for real-time systems. However,
only Ada, real-time Java, and C are widely used today. In
this section, we review SPARK, the Real Time Specification
for Java (RTSJ), Safety Critical Java (SCJ), and C with Real
Time POSIX (RT-POSIX), as a representative set of RTPLs
that cover a diverse range of real-time systems. The differ-
ences between these languages and their general-purpose
counterparts inspire the design of RTMu based-on Mu.

SPARK SPARK is a subset of Ada for development of high-
integrity software [2]. To satisfy the stringent reliability
demands of such applications, it provides development tools
to perform various validation and verification tasks, from
unit testing, to formal proof of an application’s implementa-
tion with respect to its specification. To enable this, SPARK
restricts the hard-to-analyze features of Ada, including con-
currency, memory management and synchronization. For
instance, multi-tasking in SPARK is only possible through
the Ravenscar profile for high-integrity real-time programs,
introduced by Dobbing and Burns [4].

RTSJ RTSJ [6] is a specification for a type-safe Java-based
managed programming language for large-scale real-time
embedded systems. Such systems may collocate hard real-
time, soft real-time and non-real-time code on the same plat-
form. To support this, RTSJ introduces several enhancements
and restrictions over Java, mostly in the area of concurrency
and memory management. RTSJ has been used in and proven
adequate for many serious real-world applications including
avionics [1, 13].

A Micro Virtual Machine for Real-Time Systems VMIL ’19, October 22, 2019, Athens, Greece

SCJ SCJ is a RTSJ-based language for safety-critical real-
time systems. It is designed to be capable of certification [7]
(viz. DO-178B), and comprises the minimal set of features
for safety-critical systems [8]. This minimality, especially
in memory and concurrency managers, makes the SCJ pro-
gramming model considerably different from standard Java.

Compared to other real-time programming languages, SCJ
is fairly new and still under active research and development.
Schoeberl et al. [12] summarize recent work on its implemen-
tations, analysis tools and sample real-world applications.
They state that it is difficult to learn programming in SCJ,
due to its new programming model. In addition, its object-
oriented nature imposes performance overheads which can
make handlers with small periods infeasible.

RT POSIX Programming real-time systems in C is often
done through RTOS interfaces. Many common RTOS imple-
mentations, such as RT-Linux, conform to the POSIX stan-
dard and its real-time extensions.

Key RTPL Features Considering the above RTPLs and
many more, RTPLs can be divided into three main categories,
based on the range of real-time systems they target: (1) high-
-integrity systems, (2) resource-constrained systems, and
(3) other systems, often as part of a large-scale real-time
system.
In high-integrity systems, verifiability is the most impor-

tant requirement. From a language design perspective, verifi-
ability should be investigated at two levels. First, it should be
possible to verify various aspects of an application written
in the language. To achieve this, languages such as SPARK
relinquish hard-to-analyze language features such as pointer
types and dynamic object allocation. Second, it should be
possible to verify the language and its toolchain, which again
means that simplicity is essential for the language design.
Languages for high-integrity systems may trade ease of pro-
gramming and performance for higher levels of verifiability.
In real-time systems with resource constraintsÐsuch as

limited processing power, small memory, or limited energy
sourceÐthe language footprint is the most critical issue. So,
languages may overlook ease of use and verifiability to con-
sume fewer resources. In such systems, the C programming
language is often used, as it has a minimal runtime process-
ing and memory footprint. In less severe cases, managed
languages such as SCJ may also be used.
Large-scale systems often consist of a number of real-

time tasks with various requirements. Languages such as
RTSJ, which target these systems, should supply a wealth of
features including:

a. static- and dynamic- priority-based scheduling,
b. synchronization primitives supporting Priority Inher-

itance Protocol (PIP) and Priority Ceiling Protocol
(PCP),

c. real-time GC accompanied by other memory manage-
ment techniques which are easier-to-analyse and have
more predictable timing behaviour,

d. physical memory access, and
e. time management tools.

These features reduce the cost and difficulty of implement-
ing and maintaining large-scale real-time applications, but
they increase the language size and hamper verification. As
a result, such languages are not often used in high-integrity
or resource constrained systems, despite being easier to pro-
gram and less error-prone.

2.2 Mu

Mu is a µVM specification that facilitates development of
high-performance managed programming languages for a
wide range of applications. It was first introduced by Wang
et al. [16], and the concrete specification is available online
[10]. Mu abstracts over three basic language implementation
challenges, namely concurrency, the compiler backend and
memory management, and lets language implementers focus
on higher level issues. Mu has a number of design principles:

ś Mu observes minimalism, meaning that many features
and optimizations are deferred to higher layers, so long
as doing so does not jeopardize viability or efficiency of
the three main functionalities.

ś Mu assumes language implementations (µVM clients)
are trusted. Hence, unnecessary overhead is avoided by
excluding extra protection layers.

ś Mu IR is modeled on LLVM IR, treating it as a baseline
from which Mu diverges only when essential.

ś Mu is a specification with clearly defined behavior, ad-
mitting multiple compliant implementations.

Architecture The high-level architecture of a managed
language based on Mu is depicted in Figure 1. Although not
evident in the figure, Mu is only a thin abstraction layer,
and the client does the bulk of the job by implementing a
managed language on top of Mu’s abstractions.
A Mu client translates the source code or bytecode of

an application to Mu IR, and uses the Mu client interface
(API) to build and load IR bundles into a Mu instance. These
bundles are then compiled to machine code. Mu instances are
expected to support Just-In-Time (JIT) compilation, which
allows efficient IR submission and compilation at run time,
but ahead-of-time (AOT) compilation and interpretation are
also possible. Mu clients can also use the Mu API to inspect
and modify the state of the Mu instance, including contents
of memory and threads/stacks, at run time. In addition, a Mu
instance may trap to the client for handling of events that it
cannot directly manage.

VMIL ’19, October 22, 2019, Athens, Greece J. E. Amiri, S. M. Blackburn, A. L. Hosking, and M. Norrish

Source-/Byte- Code

Client AOT

Mu Libs

Client Runtime

API

Client Context(s)

IR Bundles

Load/Build IR Bundle

Client

States

Mu Runtime

Unhandled Event

OS

Mu Libs

Read/Modify States

Trap

Client

Mu

Figure 1. A Mu client, e.g. a managed language, builds Mu
IR bundles and loads them to Mu to be executed. This can
either happen ahead-of-time or at run time. It can also read
and modify the internal state of the VM. In case of any non-
trivial events, the Mu runtime traps to the client to handle
it. All of the communication between Mu and the client is
done through the Mu API.

Type System Mu provides a simple low-level type sys-
tem with reference types to support precise garbage col-
lection. The types supported by Mu appear in Table 1, cate-
gorized into four groups: (1) Numerical types including int,
float, double, uptr and ufuncptr, which are not traced by
the GC, (2) Composite types including struct, hybrid, array
and vector, which consist of smaller components, and are
used to define new data types, (3) Reference types including
ref, iref, weakref, threadref, stackref, framecursorref and
irbuilderref, which are traced by the GC and can only be
created as a result of specific Mu instructions, and (4) Mis-
cellaneous types including tagref64 and void.

Although the current Mu type system is capable of imple-
menting a real-world managed language type system, it still
lacks some of the basic data types required by the additional
features of RTPLs. These data types are explained in Section
3.3.

Concurrency A thread is the unit of concurrency in Mu.
To run, each thread must be bound to a stack as its execu-
tion context. It is also possible to unbind a thread from its
stack and rebind it to another stack. This is the SWAPSTACK op-
eration [5]. SWAPSTACK enables implementation of language

Table 1. The Mu type system is simple and low-level, and
consists of primitive-numerical, aggregate, reference and
miscellaneous data types.

Type Description

int<n> n-bit fixed-size integer
float IEEE754 32-bit floating point
double IEEE754 64-bit floating point
uptr<T> Untraced pointer to a memory location
ufuncptr<sig> Untraced pointer to a native function

struct<T1 T2 ...> Structure with fields T1 T2 ...

hybrid<F1 F2 ... V> A hybrid with fixed and variable parts
array< T n> Fixed-size array of same type elements
vector<T n> Vector of same type elements

ref<T> Reference to a heap object
iref<T> Internal reference to a memory location
weakref<T> Weak reference to a heap object
funcref<sig> Reference to a Mu function
stackref Opaque reference to a Mu stack
threadref Opaque reference to a Mu thread
framecursorref Opaque reference to a Mu frame cursor
irbuilderref Opaque reference to a Mu IR builder

tagref64 64-bit tagged reference
void Void type

features such as co-routines and language-defined user-level
thread scheduling. Mu threads are typically implemented as
native threads scheduled by the operating system, and run
concurrently.

To implement diverse synchronization primitives, Mu pro-
vides a basic tool that is similar to Linux futex and can easily
be mapped to it. The client uses the Mu futex and Mu atomic
operations to implement higher-level primitives such as mu-
texes, conditon variables, and semaphores. In addition, Mu
has a well-defined C11-like memory model. It is the client’s
responsibility to use the provided memory orderings to syn-
chronize multi-threaded programs.

Most real-time systems require more control over the be-
havior of multithreaded programs, compared to what Mu
provides. We discuss the necessary concurrency abstractions
in Section 3.6.

MemoryManagement Mu’smemory consists of a garbage-
collected heap, a global memory area, and the stack area. The
garbage collector automatically handles allocation and recla-
mation of fixed or variable sized objects on the heap. Global
memory is allocated statically, and lives throughout the pro-
gram’s lifetime. The stack area accommodates stacks which
may be created or deleted manually.
Garbage collection is an integral part of the current Mu

memory management. However, it is too complex for some
real-time systems, and imposes intolerable pauses or over-
head for many of them. In Section 3.5, we discuss an alterna-
tive approach that is suitable for a wide range of real-time
applications.

A Micro Virtual Machine for Real-Time Systems VMIL ’19, October 22, 2019, Athens, Greece

Compiler Backend The compiler backend of Mu trans-
lates Mu IR to machine code. Following the minimality prin-
ciple, Mu expects most optimizations to be performed by
the client. While some optimizations (e.g., register alloca-
tion) must be done close to the machine, language-neutral
optimizations are often much less effective than language-
specific ones, and those must be performed within the higher
layers of the client, where enough knowledge about client
language semantics is available.
For a real-time system, a compiler backend aiming at

optimizing worst-case execution time (WCET) rather than
average-case performance may seem desirable. However, not
all real-time systems can afford the level of complexity in
such a backend. Also, µVM design principles argue against
adding new features, in favor of preserving minimality. We
discuss our recap of these challenges and the current RTMu
backend design in Section 3.4.

Unsafe Native Interface The Mu Unsafe Native Interface
(UNI) provides support for direct interaction between Mu IR
and native programs such as OS system calls. This is usually
necessary for managed languages. For instance, C# provides
support for directly calling C functions. The JVM on the other
hand, prohibits direct interaction. Thus, Java applications
have to use JNI and endure a heavyweight C-Java boundary
overhead.
Real-time systems often require a high level of control

over their outside world, including the other pieces of soft-
ware on the system and the physical environment. Hence,
the UNI is necessary in developing RTPLs, mainly because
it helps to implement a means of interaction with system
software, such as the RTOS kernel and device drivers. Using
this interface, the RTPL primitives are able to control other
software elements and I/O devices.

Implementation andEvaluation Currently, there are two
open-source implementations of the Mu specification. A ref-
erence implementation acts as a proof of implementation
[15], and a high-performance implementation [9], which is
still under development. To demonstrate the capability of
Mu in supporting a real-world language as a client, some ex-
periments are reported in Wang [15]. A portion of the PyPy
project’s RPython framework has been retargeted from C to
Mu, which was able to execute the RPySOM interpreter and
the core of the PyPy interpreter on a Mu implementation.
Some early work on supporting GHC has also been done.

3 RTMu Design

Like Mu, RTMu provides low-level abstractions over concur-
rency, compiler backend and memory management, and is
designed to be minimal and verifiable. RTMu aims to support
a wide range of real-time systems, including high-integrity
systems.

3.1 Scope

RTMu is a concrete µVM specification designed to facilitate
development of correct programming languages for real-time
systems. This paper restricts itself to an RTMu design, not an
implementation or related tools. In this section, we specify
the range of real-time systems covered by this design.

Requirements and Constraints To satisfy the require-
ments of real-time systems, RTPLs provide various features
which are often not available in general-purpose languages.
RTMu should supply the necessary low-level abstractions to
implement these features.

In summary, RTMu must provide the following additional
features:

ś Threads whose attributes indicate their timing and re-
source access constraints.

ś Control by the client over thread execution contexts and
their mutual effects by setting thread attributes.

ś A scheduler that accommodates the client in building
static and dynamic priority schedulers common in real
time programming languages, including SCJ, RTSJ, RT
POSIX and SPARK Ada.

ś Inter-thread communication primitives that support pre-
vention of unlimited priority inversion and deadlock.

ś A choice of automatically managed (garbage-collected),
semi-automatic, and manual memory management on
the same real-time system.

ś A garbage collector that does not affect threads that do
not access the heap.

ś Control over allocation and access for specific physical
memory addresses.

ś Basic tools for time measurement and time-triggered
events.

Considering the already-demonstrated capability of Mu
in implementing real-world languages, we argue that the
above features make RTMu capable of supporting the im-
plementation of real-world RTPLs such as RTSJ. However,
some of these features, such as dynamic memory allocation
and dynamic-priority scheduling, are not necessary in imple-
menting languages such as SCJ and SPARK. Thus, RTMu is
designed so that unused features will not burden such RTPLs.
For instance, it is possible for a client language to completely
ignore GC, or even to only use static memory allocation.

Assumptions FollowingMu,we assume the client is trusted,
and will emit well-defined code for the RTMu runtime to
execute. RTMu implementations are then permitted to omit
dynamic safety checks, such as those for array bounds vi-
olations or null pointer dereferences, to avoid the related
overheads.

VMIL ’19, October 22, 2019, Athens, Greece J. E. Amiri, S. M. Blackburn, A. L. Hosking, and M. Norrish

Non-Goals To narrow the scope of this project, we declare
some non-goals. First, we do not aim to produce an imple-
mentation to compete with or improve on mature, heavily
invested programming languages used in real-time systems
such as real-time Java. Instead, we are designing a reliable
foundation to facilitate the emergence of new high-quality
real-time managed languages to increase the breadth of the
RTPL ecosystem. Second, preserving minimality, this de-
sign drops support for popular general-purpose language
features like JIT compilation, interpretation and dynamic
class loading, which introduce huge delays or make timing
and correctness analysis of real-time applications very hard.
Third, we do not address WCET analysis in this work: we do
not require or prescribe a timing model for the underlying
hardware, nor the IR instructions themselves.

3.2 Architecture

RTMu-based managed language implementations roughly
follow the same high-level architecture as Mu, as depicted in
Figure 1. The major difference is that RTMu only supports
AOT compilation which means there will be no IR load/build
through the API at run-time. Also, the RTMu runtime man-
ages a new explicitly-managed memory area in addition to
the heap, immortal memory, and stacks.

3.3 Type System

For the RTMu type-system, we reuse the whole Mu type
system and add five types to support newly added features
for real-time systems. The added types are shown in Table 2.
For the basic time management primitives of RTMu, we

add the timeval type to store time values, and the timerref

type to identify timers. These two types and their usage are
explained in Section 3.7.

RTMu provides memory regions which can be created and
destroyed dynamically. The client may build an arbitrary
number of memory regions. To identify these regions, we
add the regionref type.
To create a RTMu thread, the client needs to initialize its

attributes. Inspired by the struct pthread_attr_t type from
POSIX threads, and to simplify the relevant instructions’
arguments, we encapsulate all these attributes in a new type
named rtattr. An object of this type can only be interpreted
and modified using the provided RTMu instructions.
RTMu adds a new futexref type, instead of reusing the

32-bit futex word from Mu, which was designed to be easily
mapped to the Linux futex. The new type makes it easier
to implement the RTMu futex on top of the wide range of
platforms used in real-time systems.

3.4 Compiler Backend and IR

The RTMu system is responsible for executing the IR code
given to it by the client. As we do not support the Mu sys-
tem’s API for dynamic addition of code to an already running
system, an RTMu implementation is permitted to support

Table 2. RTMu adds new data types, required for its new
real-time features.

Type Description

timeval Time values
timerref References to timers
regionref References to explicitly managed memory

regions
rtattr Thread attributes
futexref References to futexes

only ahead-of-time compilation of such IR to machine code.
(Indeed, our RTMu design does not in principle prevent an
implementation from interpreting IR directly.)

As mentioned earlier, supporting or performing any form
ofWCET-analysis is an explicit non-goal of this design, so we
expect the execution engines of existingMu implementations
could be used in RTMu implementations. As the following
sections explain, our changes to the RTMu IR are at the
level of adding new entry-points for controlling the run-
time system, rather than changing łcomputationalž facilities.

3.5 Memory Management

The memory management in RTMu provides the following
basic types of memory areas which can be used by the client
to construct more sophisticated memory managers:

ś Stack area,
ś Garbage collected heap,
ś Explicitly managed memory area,
ś Region area,
ś Immortal memory area.

A summary of these memory areas and the operations a
client can perform on them is shown in Figure 2. Each of
these areas are explained separately in the following para-
graphs. Among these memory areas, the explicitly managed
memory (EMM) and regions are not already available in Mu.
We borrow the other areas from Mu and modify them to suit
the requirements of RTMu.
A detailed list of new memory operations of RTMu is

depicted in Table 3. There is one new instruction for stacks,
and the rest act on the new EMM and region areas.

Garbage-Collected Heap The RTMu’s garbage collected
heap is an automatically managed memory area like the
garbage collected heap in RTSJ. The RTMu specification does
not stipulate any specific GC algorithms. Instead, the client
should choose the right GC for their purpose and account for
its effects on tasks that do not use the heap. Although this is
not straightforward to achieve, it has already been shown
to be possible in a wide range of real-time systems [13].
Additionally, RTMu enables the client to build a language
with no GC support. In this case, the language is not affected
by any of the GC complexities.

A Micro Virtual Machine for Real-Time Systems VMIL ’19, October 22, 2019, Athens, Greece

Stacks Heap ImmortalEMM

RTMu Memory

stack

NEWSTACK

object

ALLOCA* /
ALLOCAU*

object object

NEW*
. gl obalregion

DELETEREGI ON

NEWREGI ON/
NEWREGI ONPA

object object

RDELETE
RALLOC*

EDELETE

Regions

EALLOC* /
EALLOCPA*

KI LLSTACK

Figure 2. The RTMu memory is divided into five areas, each serving a range of higher level memory managers. Among them,
stacks, garbage collected heap and immortal (static or global) areas are common in non-real-time managed languages. For
real-time languages, we add EMM and regions which are highly flexible and may be used to implement a range of manual and
semi-automatic memory managers. In the figure, an object is a typed fixed-size entity, while a region is a fixed-size container
for objects. (Instructions marked by a star have hybrid versions.)

Table 3. RTMu adds several instructions to support implementation of the common memory managers in RTPLs and more.
The first instruction in the list is essential for providing stacks for tasks not using the heap. The next seven instructions serve
region-based memory, like the RTSJ scoped memory. The last five instructions mainly aim manual dynamic memory, like
malloc and free in C.

Operation Description

uptr<T> ALLOCAU/ALLOCAUHYBRID (T) Allocate an untraced fixed/variable-size object of type T on stack.
regionref NEWREGION (int<64> size) Allocate a new region with size number of bytes.
regionref NEWREGIONPA (int<64> size, uptr<void> addr) Allocate a new region with size number of bytes at the specified physical memory address.
void DELETEREGION (regionref regref) Delete the region pointed by regref and all objects it contains.
void BINDREGION (regionref regref) Disable swap-out to disk for the region pointed by regref.
void UNBINDREGION (regionref regref) Re-enable swap-out to disk for the region pointed by regref.
uptr<T> RALLOC/RALLOCHYBRID (regionref regref, T) Allocate a fixed/variable-size object of type T on the region regref.
uptr<T> EALLOC/EALLOCHYBRID (T) Allocate a fixed/variable-size object of type T on the EMM space.
uptr<T> EALLOCPA/EALLOCHYBRIDPA (T, uptr<void> addr) Allocate a fixed/variable-size object of type T at the specified physical memory address.
void EDELETE (uptr<T> ptr) Delete the object pointed by ptr from the EMM space.
void BINDOBJECT (uptr<T> ptr) Disable swap-out to disk for the EMM object pointed by ptr.
void UNBINDOBJECT (uptr<T> ptr) Re-enable swap-out to disk for the EMM object pointed by ptr.

Stacks In Mu, on-stack allocation is done using ALLOCA T

or ALLOCAHYBRID T instructions, which return a reference of
type iref<T>. The returned reference is traced by the GC as
the object it points to may contain direct or indirect refer-
ences to heap objects. In RTMu, the client may create tasks
which do not use the heap to avoid the complexities or de-
lays. Such tasks should not experience any interference from
the GC. Consequently, we add ALLOCAU and ALLOCAUHYBRID

instructions for untraced allocation on stack, which return
an untraced pointer to the allocated object. By restricting
the client to only use these operations, the GC will not need
to scan the stack for references.

Explicitly Managed Memory The EMM area of RTMu
provides low-level primitives to implement memory man-
agers, which support both allocation and delete, at the gran-
ularity of an object. For instance, the malloc and free func-
tions in C can be built in this memory area.
The EMM area allows allocation of typed fixed-sized ob-

jects. The client may use the two variants of the EALLOC

instruction to directly allocate objects on the EMM. These
objects may be deleted using the EDELETE instruction.
By default, the EALLOC instruction allocates in RTMu’s

virtual address space, and the underlying OS handles the
virtual to physical address mapping. In this case, the OS
memory manager may swap the memory page(s) holding the
object out to a secondary storage such as the hard-disk. Some
real-time applications need to avoid the unpredictability and
overhead of the page swapping in RTOSs like RT-Linux. So,

VMIL ’19, October 22, 2019, Athens, Greece J. E. Amiri, S. M. Blackburn, A. L. Hosking, and M. Norrish

RTMu adds the BINDOBJECT instruction to bind an object to
the main memory. The client may then use the UNBINDOBJECT
instruction to allow the swapping to happen again.
Real-time applications may also require direct access to

specific addresses in physical memory, for instance to do
memory-mapped I/O, or to handle platforms with more than
one type of memory. To enable this, RTMu adds the EALLOCPA
instruction to allocate an object at the client-specified ad-
dress.

Availability and behavior of memory management instruc-
tions such as BINDOBJECT is tightly dependent on the under-
lying RTOS memory manager. If an RTOS does not provide
virtual memory management or memory page swapping,
the BINDOBJECT instruction will not do anything. Also, if an
RTOS restricts the access to physical memory or specific
physical addresses, the relevant RTMu instruction will not
be available.

Regions The region area is a part of the RTMu memory
space in which the client may allocate and delete fixed-size
contiguous pieces of memory, each called a region. Creating
a new region in the region area is done by calling one of the
two variants of the NEWREGION instruction. The created re-
gion may be deleted by calling the DELETEREGION instruction.
To allocate an object inside a region, RTMu provides the
two variants of the RALLOC instruction. The allocated objects
are deleted only when the client deletes the related region.
The RTMu region area can be used to implement memory
managers such as the variants of scoped memory in RTSJ,
mission and private memories in SCJ and the unbounded
containers in SPARK.
Deleting a region may lead to dangling references to ob-

jects inside the region. RTMu provides the UPTRTOREG in-
trinsic, which gets a reference to an object and returns a
reference to its containing region, or NULL if the conversion
is not valid (e.g. the input is a heap object). The client can
use this instrinsic to check for dangling references. Listing 1
shows a scenario in RTSJ, where an exception is thrown to
indicate a potential dangling reference. A translation of the
this scenario to RTMu IR is depicted in Listing 2.

As explained for EMM objects, the client may need to bind
and unbind regions to the main memory. For this, RTMu
adds the BINDREGION and UNBINDREGION instructions. It is also
possible to allocate a region at a specific physical memory
address through the new NEWREGIONPA instruction.
Similar to the stack, the client may allocate objects, with

or without references to heap, on a region. A RTMu imple-
mentation is responsible for guaranteeing that a region with
no references to the heap is not affected (e.g. accessed or
traced) by the GC. Additionally, the GC must have access to
all the required data to collect heap garbage correctly and
leave no dangling references.

Immortal Memory The immortal memory area is the pre-
ferred tool to implement memory managers which do not

class SomeList {

SomeList next;

}

outer_scope.enter();

SomeList head = new SomeList ();

...

ScopedMemory inner_scope = new

ScopedMemory(const_size);

inner_scope.enter();

SomeList tail = new SomeList ();

head.next = tail; / / e x c e p t i o n

Listing 1. Simplified RTSJ code that tries to create a
reference from an object (head) allocated in an outer (older)
scope to an object (tail) allocated in an inner (younger)
scope. RTSJ disallows such references, which the RTSJ VM
must detect and trigger an exception at the point of the
assignment.

regionref _inner_scope = NEWREGION (

const_size)

/ / c l i e n t − w r i t t e n f u n c t i o n t o k e e p s c o p e s

and u p d a t e c u r r e n t _ s c o p e

CALL push_scope (_inner_scope)

uptr <uptr <SomeList_t >> _head_next =

GETFIELDIREF PTR <_headptr , 0>

uptr <SomeList_t > _tail = RALLOC (

current_scope , SomeList_t)

/ / c h e c k l i f e t i m e s

regionref _dest = UPTRTOREG (_head_next)

regionref _src = UPTRTOREG (_tail)

/ / c l i e n t − w r i t t e n f u n c t i o n t o q u a n t i t a t e

s c o p e l i f e t i m e s

age_t _dest_age = CALL scope_age (_dest)

age_t _src_age = CALL scope_age (_src)

/ / a l l o w e d i f s r c w i l l l i v e e q u a l o r

l o n g e r

int <1> is_allowed = cmpOp ::UGE _src_age

_dest_age

BRANCH2 is_allowed store_block exc_block

exc_block:

THROW some_exception

store_block:

STORE <<uptr <SomeList >> _head_next ,

_tail

Listing 2. A translation of the last four lines of the
RTSJ code in Listing 1 into to (compact) RTMu IR code.
This shows how a client can use the low-level memory
management instructions of RTMu to provide a higher-level
memory management feature, namely preventing dangling
references.

A Micro Virtual Machine for Real-Time Systems VMIL ’19, October 22, 2019, Athens, Greece

Fn parent ()

BEGIN

/ / t h e p e r i o d i s 1 m i l l i − s e c o n d s

timeval _period = 1_000_000ns;

stackref _stack = NEWSTACK (entry);

CALL init_thread (_stack , _period);

END

Fn entry(uptr <void > arg)

BEGIN

CALL wait (self.cond);

/ / THREAD BODY GOES HERE

BRANCH BEGIN

END

/ / i n i t i a l i z e t h e p e r i o d i c t h r e a d

Fn init_thread(stackref _stack , timeval

_period)

BEGIN

uptr <rtattr > _attr = NEW rtattr;

threadref _thread = NEWRTTHREAD (_stack ,

_attr);

timerref _timer = NEWTIMER (); / / n o t

s t a r t e d y e t

/ / c a l l w a k e _ t h r e a d p e r i o d i c a l l y

SETTIMER (_timer , _period , wake_thread ,

_thread);

END

Fn wake_thread(threadref _thread)

BEGIN

CALL wake(_thread.cond);

END

Listing 3. Simplified RTMu IR code that creates a periodic
thread. A parent function creates a new stack for the periodic
thread’s entry function. Then, the init_thread function
initializes the thread and binds it to the stack. Next, the
parent thread creates a timer to periodically call wake_thread
. At each period, this function sends a signal to wake the
periodic thread, which will run the thread body.

need to delete objects. It is more efficient than other mem-
ory areas, as it keeps less information and is simpler. The
immortal memory area can be used to implement the global
memory in C, the immortal memory in RTSJ and SCJ, and
the bounded containers in SPARK.

3.6 Concurrency

RTMu improves the concurrency primitives of Mu for real-
time systems in several ways. It grants more control over
thread attributes and scheduling parameters, so that the
client can implement various scheduling algorithms. Also,

some new features, essential in real-time applications, are
added to Mu’s basic synchronization primitives.
RTMu provides the client with a basic two-step sched-

uler which enables the implementation of a wide range
of static and dynamic-priority scheduling algorithms. The
RTMu scheduler consists of a certain number of priority
levels. Each priority level may accommodate zero or more
tasks. Both the maximum number of priority levels and the
number of tasks at each level depend on the limitations of the
underlying RTOS scheduler. In the first step, the scheduler
finds the highest priority level with at least one ready-to-run
task. If there is more than one thread at that priority level,
the second scheduler step selects a thread to run based on
the chosen scheduling policy. The choice of scheduling poli-
cies includes Round Robbin (RR), First In First Out (FIFO)
and Earliest Deadline First (EDF). The first two policies can
be used to implement fixed priority scheduling as the most
popular scheduling approach in real-time systems [3]. The
last one is a foundation for development of dynamic priority
scheduling algorithms, including EDF itself. The schematic
structure of the scheduler and how it imposes scheduling
policies is depicted in Figure 3.
To enable the scheduler, three attributes are added to

RTMu threads. (1) The priority attribute is a number be-
tween zero (the highest priority) and the number of sched-
uler’s priority levels minus one (the lowest priority). Tasks at
higher priority levels are dispatched earlier. (2) The affinity
attribute is an opaque data type indicating the processing
nodes on which the current threads may run. The structure
of the data is platform-dependant and can only be modified
using the relevant RTMu instructions. (3) The deadline is a
value of type timeval, used to decide the dispatch sequence
of threads at a priority level with EDF scheduling policy. The
thread with the smallest deadline is dispatched first.
RTMu thread attributes are encapsulated in a new type

named rtattr. When a client creates a new real-time thread,
they should pass the initial attributes of the thread as an
object of this type. The internal structure of the rtattr type
is platform-dependent, and modifying objects of this type is
only possible through the provided RTMu instructions.

To implement synchronization primitives, RTMu provides
a basic tool similar to RT-Linux PI-Futex, which supplies both
PIP and PCP to prevent the Priority Inversion and Deadlock
problems. As with Mu, RTMu clients are responsible for im-
plementing higher-level language-specific synchronization
mechanisms, like Mutex and Semaphore, using futex and
atomic operations.

RTMu is designed to conform to RTOSs’ concurrency prim-
itives, to allow light-weight implementation of the above-
mentioned properties. If the RTOS does not supply the needed
foundation, RTMu may not be able to provide some of its
features. For instance, RT-Linux and RTEMS support EDF
only for threads at the highest level of priority. Thus, an

VMIL ’19, October 22, 2019, Athens, Greece J. E. Amiri, S. M. Blackburn, A. L. Hosking, and M. Norrish

Priority 0

(Highest)

Priority 1

Priority 2

Priority Pmax - 3

Priority Pmax - 2

Priority Pmax – 1

(Lowest)

…
.

S
ta

ti
c

P
ri

o
ri

ty

DPTearliest_deadline DPTlatest_deadline….

SPTentered_first SPTentered_last…. SPTNEW

DPTNEW

?

Option 1: Dynamic Priority Scheduling

(EDF)

Option 2: RR or FIFO

Secondary Priority

Figure 3. The RTMu Scheduler consists of a number of (static) priority levels. For each level, the scheduler keeps a queue of
ready tasks. The position of a new ready task in the queue depends on the scheduling policy at that priority level. For RR and
FIFO, the new task is always the last in the queue, and for EDF, tasks with smaller deadlines are inserted closer to the queue
head.

RTMu implementation on RT-Linux may choose not to pro-
vide EDF at all priority levels if the complexity or overhead
is too high.

3.7 Clock and Timer

Timeliness is a vital part of a real-time application’s mis-
sion. Thus, any language for such systems should provide
a toolset for managing time. RTMu adds two new types for
this purpose. The first one is the timeval type, an integer
number used to keep all RTMu time values in nanoseconds.
The second is the timerref type that saves timer IDs.

All time-related RTMu instructions are mentioned in Ta-
ble 4. They can be categorized to: (a) read or modify the
current system clock value, and (b) create, monitor, modify
and delete Time-Triggered (TT) events. TT events are one
of the basic elements of many real-time applications. As an
example, the pseudo-code for creating a periodic task using
a timer is shown in Listing 3.

3.8 RTMu API

Compared to the client interface in a non-real-time µVM such
as Mu, the RTMu API is more restricted. It mainly allows the
client to build and load IR code bundles. However, this cannot
happen at run-time as RTMu only supports AOT compilation.
The API may also provide tools such as KEEPALIVE clauses
for debugging purposes, provided that it does not affect the
run-time behavior when not debugging.

Due to the removed support for JIT compilation, the RTMu
API does not provide features such as accessing and manip-
ulation of the states of µVM memory, threads and stacks. It
also does not support run-time optimizations.

4 Conclusion and Future Work

Currently, the choice of programming languages for real-
time systems is mostly limited to Ada, C/C++ and real-time
Java. To relieve this lack of diversity, this paper presents our
design of RTMu, a µVM specification of a runtime system to
execute managed languages for real-time systems.

We analyze an indicative range of real-time languages to
extract their key features. Then, building on the Mu µVM
specification, we introduce a minimal set of modifications
to its IR, API and runtime sufficient to support the required
features. The modifications include (a) giving the client more
control over concurrency, (b) a new memory manager that
supports colocation of various strategies on the same system,
and (c) removal of the features that are either too complex
for the level of validation needed in most real-time systems,
or introduce large delays. We also argue that the compiler
backend of Mu can be reused in RTMu.
RTMu is designed to be minimal and language-neutral.

Thus, it can be used for a large range of real-time systems
with various requirements. It is also designed to be formally
verifiable, enabling its use in applications requiring the high-
est levels of validation.
The concrete specification of RTMu is available online

[11]. We are also developing an open-source, performant
implementation of the RTMu specification. As a long-term
goal, we plan to provide a formally verified RTMu implemen-
tation. Another goal to investigate in the long-term would
be to integrate WCET analysis in RTMu. We are optimistic
that RTMu will provide a suitable platform for development
of managed programming languages for real-time systems.

A Micro Virtual Machine for Real-Time Systems VMIL ’19, October 22, 2019, Athens, Greece

Table 4. The new clock and timer methods in RTMu include two basic operations to read and modify the clock, and four basic
operations to manage timers.

Method Description

timeval GETTIME () Returns the current system time
void SETTIME (timeval tm) Resets the current system time to tm

timerref NEWTIMER () Creates a new timer and returns a handle
void SETTIMER (timerref tmr, timeval tm, ufuncptr fn, uptr<void> arg) Activates the timer tmr to call fn(arg) after an interval tm
void CANCELTIMER (timerref tmr) Deactivates the timer "tmr"
void DELETETIMER (timerref tmr) Deletes the timer "tmr"

References
[1] Austin Armbruster, Jason Baker, Antonio Cunei, Chapman Flack,

David Holmes, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan

Vitek. 2007. A real-time Java virtual machine with applications in

avionics. ACM Transactions on Embedded Computing Systems 7, 1 (dec

2007), 1ś49. https://doi.org/10.1145/1324969.1324974

[2] John Barnes. 1997. High integrity Ada: the SPARK approach. Addison-

Wesley Professional.

[3] Alan Burns and Andy Wellings. 2009. Real-Time Systems and Program-

ming Languages: Ada, Real-Time Java and C/Real-Time POSIX (4th ed.).

Addison-Wesley Educational Publishers Inc, USA.

[4] Brian Dobbing and Alan Burns. 1998. The Ravenscar tasking profile

for high integrity real-time programs. ACM SIGAda Ada Letters XVIII,

6 (nov 1998), 1ś6. https://doi.org/10.1145/301687.289525

[5] Stephen Dolan, Servesh Muralidharan, and David Gregg. 2013. Com-

piler support for lightweight context switching. ACM Transactions

on Architecture and Code Optimization 9, 4 (jan 2013), 1ś25. https:

//doi.org/10.1145/2400682.2400695

[6] JSR-282 Expert Group. 2018. Realtime and Embedded Specification for

Java. http://aicas.com/cms/sites/default/files/rtsj{_}65.pdf

[7] The Open Group. [n.d.]. The Java Community Process(SM) Program

Ð JSRs: Java Specification Requests Ð detail JSR #302. https://jcp.org/

en/jsr/detail?id=302

[8] The Open Group. 2017. Safety-Critical Java Technology

Specification. http://download.oracle.com/otn-pub/jcp/

safety{_}critical-0{_}109-edr3-spec/scj-EDR3.pdf?AuthParam=

1528777257{_}a53849c4e96ca1c7bfc7be12c23019e8

[9] Yi Lin. 2019. An efficient implementation of a micro virtual machine.

Ph.D. Dissertation. The Australian National University. https://doi.

org/1885/158122

[10] Mu 2018. The specification of Mu. https://gitlab.anu.edu.au/mu/mu-

spec

[11] RTMu 2019. The specification of RTMu. https://gitlab.anu.edu.au/

mu/rtmu-spec

[12] Martin Schoeberl, Andreas Engelbredt Dalsgaard, René Rydhof

Hansen, Stephan E. Korsholm, Anders P. Ravn, Juan Ricardo Rios

Rivas, Tórur Biskopstù Strùm, Hans Sùndergaard, Andy Wellings, and

Shuai Zhao. 2017. Safety-Critical Java for embedded systems. Con-

currency and Computation: Practice and Experience 29, 22 (nov 2017),

e3963. https://doi.org/10.1002/cpe.3963

[13] D.C. Sharp, Edward Pla, and K.R. Luecke. 2003. Evaluating mission

critical large-scale embedded system performance in real-time Java.

In Proceedings. 2003 International Symposium on System-on-Chip (IEEE

Cat. No.03EX748). IEEE Comput. Soc, 362ś365. https://doi.org/10.1109/

REAL.2003.1253283

[14] Alexander D Stoyenko. 1992. The evolution and state-of-the-art of

real-time languages. Journal of Systems and Software 18, 1 (apr 1992),

61ś83. https://doi.org/10.1016/0164-1212(92)90046-M

[15] Kunshan Wang. 2018. Micro Virtual Machines: A Solid Foundation for

Managed Language Implementation. Ph.D. Dissertation. Australian

National University. https://doi.org/1885/147871
[16] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish,

Antony L. Hosking, Thomas Ball, Rastislav Bodik, Shriram Krishna-

murthi, Benjamin S. Lerner, and Greg Morrisett. 2015. Draining the

Swamp: Micro Virtual Machines as Solid Foundation for Language De-

velopment. 1st Summit on Advances in Programming Languages (SNAPL

2015) 32 (2015), 321ś336. https://doi.org/10.4230/LIPIcs.SNAPL.2015.

321

	Abstract
	1 Introduction
	2 Background
	2.1 Programming Languages for Real-Time Systems
	2.2 Mu

	3 RTMu Design
	3.1 Scope
	3.2 Architecture
	3.3 Type System
	3.4 Compiler Backend and IR
	3.5 Memory Management
	3.6 Concurrency
	3.7 Clock and Timer
	3.8 RTMu API

	4 Conclusion and Future Work
	References

