
Bypassing Portability Pitfalls of
High-level Low-level Programming

Yi Lin, Stephen M. Blackburn
Australian National University

Yi.Lin@anu.edu.au, Steve.Blackburn@anu.edu.au

Abstract
Program portability is an important software engineering consider-
ation. However, when high-level languages are extended to effec-
tively implement system projects for software engineering gain and
safety, portability is compromised—high-level code for low-level
programming cannot execute on a stock runtime, and, conversely,
a runtime with special support implemented will not be portable
across different platforms.

We explore the portability pitfall of high-level low-level pro-
gramming in the context of virtual machine implementation tasks.
Our approach is designing a restricted high-level language called
RJava, with a flexible restriction model and effective low-level ex-
tensions, which is suitable for different scopes of virtual machine
implementation, and also suitable for a low-level language bypass
for improved portability. Apart from designing such a language,
another major outcome from this work is clearing up and sharpen-
ing the philosophy around language restriction in virtual machine
design. In combination, our approach to solving portability pitfalls
with RJava favors virtual machine design and implementation in
terms of portability and robustness.

Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Run-time environments

General Terms Design, Languages

Keywords Virtual machine, Restricted language, Portability, High-level low-level
programming

1. Introduction
Current hardware trends are increasingly exposing software devel-
opers to hardware complexity. Novel techniques such as multicore
and heterogeneous architectures increase hardware capacity, but
also leave programmers a list of challenges if they wish to fulfill
the hardware’s potential. Dealing with complex hardware increases
the difficulty of systems programming. In the meantime, the com-
plexity of system software grows in pace with hardware evolution.
With the increasing software complexity, it is even harder to retain
correctness, security and productivity.

Modern high-level languages are widely used for application
programming for the assurance of correctness and security as well
as boosting productivity. High-level languages provide type-safety,
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memory-safety, encapsulation, and strong abstraction over hard-
ware [12], which are desirable goals for system programming as
well. Thus, high-level languages are potential candidates for sys-
tem programming.

Prior research has focused on the feasibility and performance of
applying high-level languages to system programming [1, 7, 10,
15, 16, 21, 22, 26–28]. The results showed that, with proper ex-
tension and restriction, high-level languages are able to undertake
the task of low-level programming, while preserving type-safety,
memory-safety, encapsulation and abstraction. Notwithstanding the
cost for dynamic compilation and garbage collection, the perfor-
mance of high-level languages when used to implement a virtual
machine is still competitive with using a low-level language [2].

Using high-level languages to architect large systems is bene-
ficial because of their merits in software engineering and safety.
However, high-level languages are not a perfect fit for system pro-
gramming. In order to effectively undertake system programming
tasks, extensions and restrictions are two essentials of high-level
low-level programming — both leave unsolved challenges.

Extensions cause portability pitfalls. Portability pitfalls of high-
level low-level programming include poor portability of low-level
code across platforms and poor portability of high-level extensions
across runtimes. High-level languages (HLLs) are designed to ab-
stract over low-level details, and most of them do not provide nec-
essary semantics for low-level operations, which is a key require-
ment in system programming projects. In order to undertake a low-
level programming task, high-level languages need to be extended
and require special support from the runtime for those extensions.
This leads to the fact that VM components written in the extended
HLL cannot execute on a stock runtime, and, conversely, a runtime
with special support implemented will not be portable across dif-
ferent platforms. Both break portability.

These portability pitfalls limit code reusability of high-level
low-level programming. Efficient implementation of modern lan-
guage runtimes requires experts from different areas, such as mem-
ory management, concurrency, scheduling, JIT compilation. This
leads to a trade-off between the high cost of hiring a group of spe-
cialists and the risk of failure for lacking expertise. One possible
solution to this tension is to encourage reusability. However, when
the implementing language cannot execute with a proper hosting
runtime on the target platform, reusability is difficult to achieve
— any given runtime that wishes to host high-level code for low-
level programming needs to be modified to support the new seman-
tics, otherwise the newly introduced low-level semantics need to be
carefully dealt with in other ways [13, 14]. Both involve non-trivial
work for each porting.

Low-level languages (LL languages) do not have such issues.
Low-level languages such as C/C++ usually have available compil-
ers across most target platforms. Thus, a bypass approach of trans-
lating a HLL into a LL language could be one possible way to solve
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this pitfall. However, generally a LL language bypass is not easy to
achieve — a HLL’s precise exceptions, reflection and dependence
on its standard libraries are hard to map into a LL language, and ef-
ficient dynamic dispatch requires non-trivial work when targeting
a non-OO LL language such as C.

Restrictions lack of definitions. System programming with a
HLL also relies on restrictions for performance-critical operations
or avoidance of possible program failure. We observed that some
VM components are written by following strict restrictions. Re-
strictions include omitting high-level language features that are un-
necessary or problematic for certain contexts of low-level program-
ming. These restrictions bring the HLL closer to a LL language.
This justifies the possibility of translating from the restricted HLL
to a lower-level language to solve portability pitfalls. Currently
such restrictions do not have clear definitions in the program, and
are achieved by careful ad hoc hand coding. Explicit definitions
of the restrictions and automatic checking are more principled and
more robust.

Thus, this paper focuses on two topics: a) high-level language
restriction in system programming, and b) translation from re-
stricted high-level language to LL language. These two topics are
independent but quite coherent in our context: the natural existence
of language restriction leads to the possibility of our HLL-to-LLL
bypassing, which further provides a solution to portability pitfalls
of high-level low-level programming.

In this paper, we first discuss the important concerns in our
design of RJava and the proper position of restriction within a
whole system programming project, based on some observations
we made on an existing high-level low-level programming project,
Jikes RVM [1]. Then we propose an explicitly-restricted language
called RJava with proper low-level extensions, and use MMTk [5]
as an example to show how the elements of RJava are used in prac-
tice. We finish by discussing key elements of a low-level language
bypass for RJava which is currently under development.

The contributions in this paper are three-fold: 1) identifying the
motivation and requirement for a well-defined restricted high-level
language for virtual machine implementation use, 2) sharpening
the philosophy around language restriction in virtual machine im-
plementation, and 3) designing a restricted language which inher-
its benefits from high-level languages, but supports flexible restric-
tion model and also allows low-level language bypass for improved
portability.

2. Design Concerns of RJava
In this section, we tidy up our approach to language restriction and
the proper position of restriction within a whole system program-
ming project, which needs to be thoroughly thought through.

2.1 HLL Restriction in System Programming
Examining the rationale for HLL restrictions in system program-
ming helps proper definition of such languages. Our approach is
based on some important observations. We made those observa-
tions on Jikes RVM as an example of system programming with
a HLL. These observations further justify that language restriction
naturally exists in high-level low-level programming and our ap-
proach of formalizing and exploiting existing restrictions to favor
a low-level bypass for improved portability is reasonable and will
not be a regression in the term of language benefits.

Restrictions exist for performance and correctness. A general
understanding of programming language restriction is that lan-
guages are restricted because they are too complex or because
some programmers have used them to write bad code [8]. How-
ever, in system programming with high-level languages, re-

strictions exist for more principled reasons: correctness and
performance.
Correctness is one challenge for engineering complex system
projects. The use of a HLL introduces much better software
engineering, such as abstraction, a strong type system and au-
tomatic memory management, which promotes correctness to
a more manageable level. However, the correctness of a VM
implemented using a HLL still needs careful consideration, es-
pecially in metacircular cases when using a HLL. When imple-
menting a language in the same language, one pitfall threaten-
ing correctness is infinite regress. The code to support language
feature X needs to avoid using the feature X itself, otherwise
that code would recursively invoke itself and be unable to fin-
ish. For example, the scheduler code needs to generally avoid
any language feature regarding threading and scheduling, but
instead use more basic primitives such as locking to fulfill its
function. Another example is the memory manager, which pro-
vided the impetus for RJava. The memory manager has to avoid
triggering object allocation during allocation code, or triggering
another garbage collection during garbage collection, so prim-
itives to operate on raw memory have to be added to the HLL
and used to implement the memory manager. The lessons here
are that a HLL for VM implementation has different restrictions
when applied to different scopes. Our initial focus for RJava
was the scope of implementing a portable memory manager,
however, we generalize our approach to be as flexible as possi-
ble so that RJava can be adapted and used in other scopes with
trivial effort.
Performance is critical in systems programming. This is prob-
ably the most powerful argument as to why people stick with
lower-level languages for such tasks. However, using a HLL to
implement a VM needs proper restrictions so as to achieve a
very compatible performance. For example, dynamic dispatch
is one important feature of object-oriented languages that incurs
considerable overhead, and its cost is measured to be as high
as 13% of instructions in extreme circumstances [9]. Thus, dy-
namic dispatch is carefully avoided by restricting the syntax in
the fast path of MMTk, the most frequently executed code and
the most performance-critical region.
Understanding the reasons why restrictions exist helps correctly
define the restrictions. Besides, both reasons suggest that in VM
implementation, language restrictions depend on the context
and scope where the restricted variant is applied. Clear language
restriction relies on clear scope definition, as will be discussed
later in this section.

Restrictions reduce benefits from HLLs. Generally, high-level
languages provide type-safety, memory-safety, encapsulation,
and abstraction. However, some of the benefits disappear when
the level of restriction increases. For example, in the most re-
stricted part of Jikes RVM, which is MMTk, garbage collection
is forbidden. In this situation, the runtime is no longer able to
ensure the memory safety of MMTk, but leaves it to the pro-
grammer and static analysis. Similarly, in MMTk, type safety is
limited to static checks – dynamic loading is forbidden, virtual
dispatch and type casting are carefully avoided in the fast path
and its correctness can only be statically checked. This sug-
gests that, under performance-critical and correctness-critical
circumstances where very strict restrictions have to be applied,
the benefits of a HLL are reduced, and the benefits are prin-
cipally static, i.e. type-safety and memory-safety at the source
code level, and encapsulation and abstraction as software engi-
neering tools. A restricted HLL still has clear advantages over
low-level languages.
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Figure 1: An illustration showing our bypass approach for portability issues.

Occurrences of MMTk Baseline Compiler Rest of Jikes RVM Eclipse (comparison)
‘new’ statements 0.59% 0.86% 2.40% 4.47%
‘throws’ declarations 0 0 0.21% 1.33%
Library imports 0 0.03% 0.40% 0.82%
Lines of Code 29933 17762 113359 -
Level of Restriction From most restricted to not restricted.

Table 1: Language restrictions in different scope of Jikes RVM (occurrences per LOC).

Restrictions are only applied to a limited scope. Restriction is
essential for correctness and performance in system program-
ming with HLLs, but different levels of restriction degrade
high-level languages to different extents. Thus, one principle
for system programming with HLLs is to minimize the scope
where very strict restrictions are needed so to maximize the
benefits from HLLs [11]. Table 1 reflects good design within
Jikes RVM: the most restricted Java variant is used in a rela-
tively small scope while the majority of the project is loosely
restricted. Thus, heavier restrictions affect a small part of the
system and do not detract the benefits of a HLL in other parts
of the system. However, the strictly restricted scope (including
MMTk and the baseline compiler) still has 47K LOC, which is
important and large enough that is worth careful consideration.

2.2 Expressiveness vs. Restrictions
Higher-level languages are more expressive than low-level lan-
guages. Java, for example, is considered to have a 2.5× ‘statement
ratio’ compared to the C language (i.e., on average, one Java state-
ment needs 2.5 C statements to achieve the same function [17]).
Restrictions to HLL syntax reduce expressiveness. In the limit, a
restricted form of a HLL that discards all features that C does not
support will have a trivial mapping to C syntax. Such extreme re-
striction would favor our LL language bypass, but this is definitely
not desirable. In contrast, if the language is minimally restricted,
the expressiveness is maximally conserved, but the LL language
bypass would be more difficult to achieve. Thus, there is always a
trade-off between expressiveness and how restricted the language
is.

We resolve the trade-off with a simple principle: we do not
introduce more restrictions than necessary. In addition to the two
necessary reasons that restrict languages in VM implementation —
correctness and performance — we have to put mappability to LL
languages into consideration in our bypass approach. The language
has to be restricted due to existing requirements on correctness and
performance, and it also needs to be further restricted to adapt to

LL language translation. We confine this set of restrictions to the
minimum.

2.3 RJava in Different Scope
Ideally we want RJava to be a fixed language with constant re-
strictions so that we can use RJava to implement VM components
where restrictions and portability are desired while we are able to
use normal Java to implement the rest of a VM. However, this is not
the case. 1) Restrictions are different among different VM compo-
nents. This is mainly for a metacircular VM implementation. For
example, a metacircular implementation of memory manager dis-
allows object allocation during allocation and reclamation so that
any language syntax that would introduce an object allocation is
forbidden, including the use of libraries and the creation of excep-
tions. A scheduler, on the other hand, does not necessarily have any
restriction regarding object allocation, but needs careful restriction
around threading and synchronization. Thus, different components
require different restrictions, and attempts to generalize restrictions
among components would suppress expressiveness. 2) Restrictions
are still different within one VM component. As explained before, a
performance-critical scope needs more strict restrictions to remove
any possible performance degradation.

As a result, instead of trying to define a universal set of restric-
tions that would be adaptable for general VM components, we de-
fine RJava with a set of fixed restrictions that favors easy mapping
to a LL language which our frontend is able to translate to allow
bypass. Also, RJava is designed to include a set of optional restric-
tion rules that programmers can choose from to shape their own
restriction ruleset for certain components.

3. Concrete RJava Language
The previous section discussed important concerns that affect our
design of RJava. In this section, we present this restricted language
with its key elements and a concrete example of how RJava, the
restricted language motivated by MMTk code, is re-adapted to
MMTk and helps its robustness and portability.
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3.1 Key Language Elements
RJava is a restricted subset from the Java language. It inherits the
Java language syntax except that which is restricted. Extensions
and restrictions are two major parts of high-level low-level pro-
gramming, thus they are naturally two key elements in the RJava
language.

The org.vmmagic Extension

The org.vmmagic extension is described in the paper “Demystify-
ing Magic: High-level Low-level Programming” [12]. RJava takes
the advantages of the existing org.vmmagic package for low-level
semantics.

Most elements and ideas in org.vmmagic remain untainted
when adopted by RJava. These include unboxed types and related
intrinsic operations. However, some compiler ‘pragmas’ that are re-
ferred to as ‘semantic regimes’ are reconsidered and reconciled into
RJava’s restriction model. One example is @Uninterruptible.
All the MMTk classes used to be described as @Uninterruptible
to disallow garbage collection and thread switching. In RJava,
@Uninterruptible is considered as a restriction rule, and can
be integrated with other restriction rules to form a ruleset for
MMTk. Another example is that some compiler intrinsics such
as @NoBoundsCheck are categorized as restriction rules to coor-
dinate with the content of this paper, since they restrict language
run-time features. We now introduce the idea of restriction rules
and rulesets.

Restriction Rule and Ruleset

Restriction rules and rulesets are fundamentals for RJava. We de-
fine restriction using Java’s annotation syntax. Each restriction be-
comes a restriction rule, and is marked with the @RestrictionRule
annotation for documentation. Each restriction rule may come with
a compiler intrinsic implementation on the runtime side if special
code generation is needed when the code executes as the HLL, and
a checking rule in the RJava constraint checking tool to verify code
compliance. Restriction rules can be aggregated into a restriction
ruleset. A restriction ruleset consists of different restriction rules
or rulesets. This model brings some rigor to the definition to the
restrictions and allows automatic checking. Figure 2 shows those
elements with code examples.

@RJavaCore is a predefined ruleset that all RJava code should
obey. The core ruleset contains restrictions to some language fea-
tures that are infrequently used in VM implementation and also
cannot be easily mapped to low-level languages. The ruleset sug-
gests a minimum restriction to enable a feasible low-level language
bypass while preserving expressiveness of the HLL. @RJavaCore
also indicates language features that our frontend translator does
not support, thus it must be contained by any user-defined ruleset
for RJava.

We also provide different restriction rules with RJava. They are
not included in @RJavaCore and their semantics are acceptable
by the RJava frontend. Those restrictions can be used to aggregate
user-defined rulesets and are essential to ensure correctness and
performance for specific scopes. They can also be used solely to
mark any code to indicate restrictions and also indicate a require-
ment for static constraint checks. However, defining a restriction
ruleset specific to a certain scope is preferred than using scattered
restrictions. It is best to have a 1-to-1 mapping between ruleset and
scope wherever restrictions are needed. This design favors flexi-
bility and allows clear definition of restricted scopes with certain
rules.

In the next subsection, we give an example of how RJava re-
strictions are adapted in MMTk.

1 @RestrictionRule
2 public @interface NoDynamicLoading {
3 }

(a) An example of restriction rule.

1 @RestrictionRuleset
2

3 @NoDynamicLoading
4 @NoReflection
5 @NoException
6 @NoCastOnMagicType
7 ...
8 public @interface RJavaCore {
9 }

(b) RJava core restriction ruleset.

1 @RJavaCore
2 public class AnRJavaProgram {
3 ..
4 }

(c) RJavaCore clearly defines restric-
tions in a scope.

Figure 2: RJava restriction rules and rulesets.

3.2 A Concrete Example: MMTk in RJava
Though restrictions in RJava are inspired and motivated by the
restricted coding patterns in MMTk, we design RJava to be a
more flexible and general restricted language for implementing VM
components. In this subsection, we show how RJava is applied to a
specific scope (MMTk) to restrict its syntax and help with software
engineering.

One important principle when coding with RJava is to map re-
striction rulesets to scopes. MMTk itself is a well-contained scope,
thus we need a corresponding ruleset @MMTk to clarify the restric-
tions. Besides @RJavaCore, other restriction rules have to be care-
fully identified.

The memory manager fulfills two main tasks: object allocation
and object reclamation. One obvious restriction for a metacircular
implementation of a memory manager is to disallow object alloca-
tion in its own code during execution—otherwise, triggering object
allocation in an allocating procedure would invoke another allo-
cating procedure and triggering object allocation in a garbage col-
lection would fail and invoke another garbage collection. We use
the rule @NoRunTimeAllocation to describe this restriction. Ob-
ject allocation in class static initializers and constructors (including
methods used only by them) is allowed, since they can only be exe-
cuted during the VM build process where object allocation is safe.
The @NoRunTimeAllocation rule ensures that no new statements
appear in places outside static initializers and constructors. This
rule also implies two other restriction rules, @NoException (which
is already included in @RJavaCore) and @NoClassLibrary. Us-
ing class libraries may introduce unexpected object allocation at
run-time, since their implementation varies. It was possible to im-
plement MMTk without using any class library classes1, so we re-
tain this restriction in the @MMTk ruleset.

Another restriction is @Uninterruptible. This annotation is
inherited from the org.vmmagic package and we consider it to be
a restriction rule. It informs the runtime to avoid triggering thread
switching and garbage collection in certain scopes, and also to omit

1 Use of Java’s built in String and Array types is not restricted. How-
ever, the @NoRunTimeAllocation rule prohibits dynamic allocation of
Arrays and Strings. This also implies a prohibition of String con-
catenation.
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1 @RestrictionRuleset
2

3 @RJavaCore
4 @NoClassLibrary
5 @NoRunTimeAllocation
6 @Uninterruptible
7 public @interface MMTk {
8 }

(a) @MMTk restriction ruleset
to map MMTk scope.

1 @RestrictionRuleset
2

3 @MMTk
4 @NoVirtualMethods
5 public @interface MMTkFastpath {
6 }

(b) @MMTkFastpath restriction ruleset to
map fast path subscope of MMTk.

1 @RestrictionRuleset
2

3 @MMTkFastpath
4 @NoPutfield
5 @NoPutstatic
6 public @interface WriteBarrier {
7 }

(c) @WriteBarrier restriction ruleset to
map write barrier code in the fast path.

1 @MMTkFastpath
2 public class GenMutator {
3 ...
4

5 public Address alloc() { ... }
6 // no runtime alloc
7 // virtual methods, has to be overridden
8

9 @WriteBarrier
10 public final void objectReferenceWriteBarrier() { ... }
11 // no putfield, no putstatic on its own fields
12 // non-virtual methods, thus no dynamic dispatching
13 }

(d) Restrictions ensure correctness and performance of the fast path.

Figure 3: MMTk with RJava.

emitting any code during code generation that would trigger thread
switching or garbage collection.

The restriction ruleset for MMTk is showed in Figure 3a.

Subscope: MMTk Fast Path

The design of MMTk makes heavy use of the fast/slow path id-
iom. A fast/slow path idiom is a diamond-shaped control flow graph
where the expected case is to do quick checks or operations to con-
firm a result. When some portion of the fast path fails, control trans-
fers to the slow path that covers all remaining cases [19]. Take al-
location in MMTk for example: The allocator’s fast path tries to
allocate space from its thread-local buffer. When the thread-local
buffer is consumed, control is handed to the slow path where the
allocator will acquire space from global memory and synchroniza-
tion is needed. If the slow path still fails, a garbage collection will
be triggered. The ratio that control falls into the slow path is typi-
cally 0.1% in MMTk allocation [6]. Thus, the fast path is the most
performance-critical subscope in MMTk. MMTk forces all the fast
path code to be inlined into its context to eliminate method invo-

cation overhead, but also restricts syntax for performance improve-
ment.

In the coding of the MMTk fast path, another restriction rule
is carefully applied to minimize the performance overhead. The
code avoids the possibility of dynamic dispatch by declaring all of
its methods as non-virtual methods. In the fast path, all non-static
non-private methods are either overridden or declared as ‘final’,
thus there are no virtual methods and no dynamic dispatch in the
fast path. We use @NoVirtualMethods to describe this restriction.
We build the @MMTkFastpath ruleset based on @MMTk. Figure 3b
shows the @MMTkFastpath ruleset.

Besides performance, correctness restrictions need to be recon-
sidered for the fast path. MMTk’s fast paths include write/read
barrier code. Barriers are a powerful tool to monitor mutator ac-
tions by tracking operations on objects. Take the write barrier for
example: Because of metacircularity, the write barrier itself needs
to avoid using putfield or putstatic on its own object fields,
otherwise it leads to an infinite regress. We use @NoPutfield
and @NoPutstatic to describe these restrictions. To avoid being
overly restrictive, we form the @WriteBarrier ruleset that will be
used only on write barrier code in the fast path. @WriteBarrier
contains the @MMTkFastpath ruleset, and the two specific restric-
tion rules stated above. Figure 3c shows this restriction ruleset.

Figure 3d gives an outline of GenMutator as parent of all
mutators for generational garbage collection algorithms to show
how these rulesets are used to properly restrict language semantics
in MMTk, and help ensure its correctness and performance.

4. Current Work: An RJava to LL Language
Bypass

Formalizing the restriction rules is one significant aspect for de-
signing the RJava language. In this section, we introduce our cur-
rent work, the RJava to LL language translation toolchain that ma-
terializes the bypass approach (see Figure 1).

The toolchain to enable RJava to LL language bypass includes
a static constraint checking tool that ensures compliance to the
declared restriction rules, a frontend that takes RJava as source and
produces code in LL language, such as C/C++, and a backend that
compiles LL language to native code.

4.1 Static Constraint Checking Tool
The static constraint checking tool examines the compliance of
code with restriction rules declared on them. It can be used as one
part of our LL language bypass toolchain, and can also be used
as an independent tool to check original RJava code to detect any
violation of restrictions.

There are existing tools for Java syntax checking, such as
PMD [20]. These tools parse Java syntax and perform rule-based
style checking. But they do not fit our requirements. To be able
to precisely examine restrictions defined in RJava, our static con-
straint checking tool needs to be able to process not only at the
syntactic level but also at the more complex semantic level. For
example, @NoRunTimeAllocation requires that no object alloca-
tion appear outside static initializers, constructors or any methods
only called by them. Thus, this implies requirements at a semantic
level, such as the relationship between methods (call graph) that
existing syntax checking tools are not able to deal with.

We are building our static constraint checking tool based on the
Soot framework [24]. Soot is a Java optimization and static analysis
framework, and provides various forms of analyses. We have built
a prototype that is able to validate the @NoRunTimeAllocation
restriction. What remains to be done is expanding the rule/ruleset
checking to cover all of the other RJava restrictions.
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4.2 Frontend: RJava to LL Language
The frontend is the most critical part in our toolchain to translate
RJava into a low-level language. There are several important tasks
that the frontend has to complete, besides simple syntax mapping:

Implementing compiler intrinsics. Intrinsic methods such as
Address.loadByte() and compiler pragmas such as the
@Inline annotation do not have concrete implementations in
RJava, but rely on support from the managed runtime. Since our
bypass approach removes the existence of the runtime, compiler
intrinsics need to be implemented in the frontend. We expect
that the generated code is plain low-level language. For ex-
ample, loadByte() would become a pointer dereference and
@Inline would become an inline keyword in the target lan-
guage.

Unboxing magic types. The org.vmmagic package we use in
RJava introduces unboxed types, such as Address and Offset.
Java types are by default ‘boxed’ with additional information
such as header, virtual method table, etc. However, this pack-
age makes the assumption that those magic types are specially
treated as unboxed types by the runtime, thus they are not real
objects at the run-time. This assumption prevents a memory
manager creating objects when it operates on addresses and ob-
ject references during object allocation requests. It also makes
retrieving actual values of such types significantly more ef-
ficient. This assumption is equally important when RJava is
translated into a LL language for the same reasons. Unboxing
is needed during translation to convert such magic types into
pointers that the target language supports.

Removing dependencies on the Java runtime. Java syntax is re-
lated to its class library, and part of the class library require the
existence of a Java runtime. This includes explicit requests to
the runtime such as System.gc(), as well as implicit support
of String, Array and the common superclass Object. We re-
quire that the generated LL language has no dependency on the
Java runtime. Thus, our frontend needs to replace these depen-
dencies with syntax and features of the target language.

Converting object-oriented syntax (optional). This task is only
essential when our frontend targets a non-object-oriented LL
language. In such cases, the OO syntax needs to be removed
during the translation. Generally this is possible since RJava is
restricted to forbid some dynamic features of object-oriented
languages. But this still needs careful consideration regarding
performance.

Those tasks are sensitive and specific to the source language,
i.e. RJava, and the target LL language. Thus, we do not aim for
our frontend to be a flexible framework that could produce code for
different targets. The C language is a suitable LL language to target.
It is the dominant language in system programming, and it is also
portable. However, our first implementation (under development)
does not target C. This is for two main reasons. First, we are not
aware of any existing Java-to-C translator for general use that we
can base our implementation on. Existing translators are too fragile
and too specific to their own projects. If C were our target, we
would have to build such a translator from scratch. Second, C is not
object-oriented: translation from RJava to C would require more
development effort, and naive object-oriented syntax conversion
may result in inefficiency in the target performance.

We choose C++ as our target. C++ is portable and has a similar
syntax to Java, thus mapping from Java into C++ is easier. We
implement our frontend by modifying J2C [25]. J2C is a translator
that converts Java code into C++. The tasks listed above need to be

implemented in J2C, so it can properly handle semantics specific to
RJava. This part of the work is our focus, and is under development.

4.3 Backend: LL Language to Executable
Our frontend translates RJava into plain C++ syntax. RJava’s by-
pass approach does not make any particular assumption about the
backend. A general compiler that takes our frontend target (i.e.,
C++) as the source language can fit well in our bypass toolchain.

5. Future Work: Bootstrapping Java VM with
RJava

The flexible design of RJava encourages its use for different com-
ponents in VM design. Besides the memory manager, our first cho-
sen component, the interpreter could be another candidate for im-
plementation in RJava. Table 1 showed that the interpreter/baseline
compiler has a similar restriction pattern in Jikes RVM. This sug-
gests that it should be straightforward to adapt the baseline com-
piler into RJava, and is therefore suitable for LL language bypass.

Being able to implement a Java compiler/interpreter in RJava
could introduce a full bootstrapping model to metacircular Java
VMs. Most current metacircular VMs use a half bootstrapping
model, i.e. the metacircular VM A requires another available Java
VM B on the target machine so A’s compiler can be executed on B
and the executable will further execute its own code and the whole
VM code. Half bootstrapping is blamed for bad portability, since it
relies on the availability of another Java VM/compiler B. However,
a Java compiler/interpreter written in RJava can execute as native
code without the need of another available Java VM/compiler on
the target platform. This would greatly enhance the portability of a
metacircular VM.

There are difficulties lying in this direction that we will have
to resolve in the future. One obvious point is whether we can
implement an interpreter with RJava’s restricted syntax. Though
results showed that the baseline compiler in Jikes RVM uses a very
similar pattern, more investigation is needed to ensure that, with
acceptable refactoring/rework, an interpreter can strictly follow
RJava restrictions. Furthermore, Java interpreter/baseline compiler
is not an isolated component that can easily be decoupled from the
rest of the VM. It requires support from other parts of the VM. This
suggests code from other parts of the VM may be involved and
have to be restricted with RJava syntax. The amount of code that
has to be restricted is another concern. However, we believe that
these difficulties can be overcome (the interpreter in the PyPy VM
is written in RPython, which proves this is a feasible bootstrapping
option for high-level language metacircular VMs) and RJava can
be also used to benefit bootstrapping of metacircular Java VMs.

6. Related Work
Our design of the restricted language RJava is related to prior
work in two main aspects: extending high-level languages for low-
level programming, and the need for language restrictions in VM
implementation.

Extending High-level Languages for Low-level Programming

The work [2009] by Frampton et al. (referred as the vmmagic work
in the following discussion) described general concepts around
extending high-level languages for low-level programming and
the org.vmmagic framework. The org.vmmagic framework is
solidly grounded in real world experience, including three Java-in-
Java virtual machines [1, 7, 18], a Java operating system [21], and a
C/C++ JVM [4]. This concrete framework introduced type-system
extensions (raw storage and unboxed types) and semantic exten-
sions (intrinsic functions and semantic regimes), and it was well
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designed to resolve the tension between efficient low-level access
and the encapsulation of low-level semantics. Our RJava also takes
advantages of org.vmmagic. However, our work differs. The vm-
magic work aimed at an efficient high-level low-level approach,
and focused on extensions that would enable such an approach. As
we explained earlier, extensions cause portability issues. Our work
aims for a bypassing approach to solve portability issues of high-
level low-level programming and along its way, we also examine,
clarify and enforce language restrictions in VM implementation.
There are three principal advances we make on the vmmagic work:
1) formalizing the restricted language RJava with clear extensions
and scope-specific restrictions, 2) introducing a flexible design of
restriction rules/rulesets and their compliance checking tool, and 3)
implementing a translation toolchain that produces portable low-
level language code from RJava and enables our bypass approach.

Language Restriction in VM Implementation

Our work is highly inspired by the work of RPython [3]. RPython
is a restricted subset of Python and is used to write an interpreter
in the PyPy virtual machine [22]. However, it is also an indepen-
dent language that can be used for general use. RPython inher-
its most features from Python. It is restricted: for example, it is
statically typed and does not allow dynamic modification of class
or method definitions. The RPython backend supports code gen-
eration for different languages, such as LLVM code, C code, and
even JVM and CLI code (work in progress). We have learned from
RPython, from its success and also its imperfections. The design of
RPython does not support flexible restrictions for different scopes
(in Section 2.3, we explained its necessity in VM implementation).
Besides, its restrictions are not clearly defined [23], so the restric-
tion compliance cannot be automatically checked and program-
mers may not be able to realize restriction rule violations unless
their code meets a translation error or a run-time error. We took
those considerations into RJava’s design, and addressed them with
a flexible restriction rule/ruleset model that can be automatically
checked. Currently RPython has a more reliable supporting frame-
work than what RJava has, such as support for accurate garbage col-
lection and precise exceptions, and RPython’s backend can target
several different languages. But we believe that with future devel-
opment, RJava could be equally reliable, while being more flexible
for different scopes of VM implementation.

7. Conclusion
We see a trend of applying high-level languages to systems pro-
gramming to cope with the growing complexity of hardware and
software. The security, productivity boost and software engineering
advantages introduced by using a high-level language has benefited
virtual machine’s design and implementation. However, portability
pitfalls of high-level low-level programming limit the reusability of
VM components and the portability of VMs written in a high-level
language.

Our approach is to formalize language restriction to define
RJava, a restricted high-level language, for the implementation
of virtual machine components. The design of RJava allows a low-
level language bypass for improved portability, which promotes
the reusability of VM components written in a high-level language,
and provides better integration with legacy code.

We argue that restrictions are prevalent in virtual machine im-
plementations for performance and correctness reasons, however,
they are typically implicit, unprincipled, and ad hoc. The flexible
and explicit restriction model of RJava requires virtual machine de-
signers to consider scopes in a virtual machine along with restric-
tions to different scopes at an early stage. This explicit declaration
not only benefits the design of virtual machines, but also favors au-

tomatic restriction compliance checks to enhance the robustness of
the virtual machine and ease the implementors’ work.

We hope that our insights and ideas will draw attention to the
principled use of language restriction, and further encourage the
implementation of virtual machines in high-level languages.
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