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An elusive facet of high-impact research is translation to production. Production deployments are intrinsically
complex and specialized, whereas research exploration requires stripping away incidental complexity and

extraneous requirements to create clarity and generality. Conventional wisdom suggests that promising

research rarely holds up once simplifying assumptions and missing features are addressed. This paper describes

a productization methodology that led to a striking result: outperforming the mature and highly optimized

state of the art by more than 10%.

Concretely, this experience paper captures lessons from translating a high-performance research garbage

collector published at PLDI’22, called LXR, to a hyperscale revenue-critical application. Key to our success was

a new process that dovetails best practice research methodology with industrial processes, at each step assuring

that neither research metrics nor production measures regressed. This paper makes three contributions. i) We

advance the state of the art, nearly halving the cost of garbage collection. ii) We advance research translation

by sharing our approach and five actionable lessons. iii) We pose questions about how the community should

evaluate innovative ideas in mature and heavily productized fields.

We deliver an optimized version of LXR. This collector, as far as we are aware, is the fastest general-

purpose garbage collector for Java to date. On standard workloads, it substantially outperforms OpenJDK’s

default G1 collector and the prior version of LXR, while also meeting Google internal correctness and uptime

requirements. We address all of the limitations identified in the PLDI’22 paper. We use this experience to

illustrate the following key lessons that are concrete, actionable, and transferable. L1) A systematic combination

of research and production methodologies can meet production objectives while simultaneously advancing

the research state-of-the-art. L2) A benchmark suite cannot and need not contain facsimiles of production

workloads. It is sufficient to replicate individual pathologies that manifest in production (e.g., allocation

rates, trace rates, heap constraints, etc.) or configure the JVM to force a workload to manifest the pathology.

L3) Productization experiences can strengthen research workloads; we upstreamed one such workload.

L4) Production environment requirements are myriad and sometimes prosaic, extending well beyond those

that can reasonably be addressed in a research paper. L5) This collector is not yet in production, reminding us

that replacing core technology in industry is a challenging sociotechnical problem.

The artifact we deliver gives practitioners and researchers a new benchmark for high performance garbage

collection. The lessons we enumerate should help academic and industrial researchers with actionable steps

to close the gap between research paper results and industrial impact. The 10% ‘productization dividend’ the

process delivered should spark discussion about how our field evaluates innovative ideas in mature areas.
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1 Introduction
Translating research ideas to production can be slow, even for the most promising work. It took

five years from when LLVM was published [12] until its C front-end, Clang, was first considered

‘production quality’ per the LLVM version 2.6 release notes [22]. It took five years for the G1 garbage

collector to go from publication to shipping [8, 17], and another six years before it was considered

‘a fully-featured garbage collector, ready to be the default’ [10, 11], and further two years before it

was released as OpenJDK’s default garbage collector — a thirteen year process. Slow translation

reduces research impact and holds back industrial innovation.

Despite its importance, the literature rarely discusses research translation, in terms of the

process, or the likely impact. For example, neither LLVM nor G1 have publications capturing their

productization journey despite their industrial importance and the substantial innovations and

performance improvements that took place along the way [11, 22]. Nor are we aware of any work

that quantifies the impact of productization on performance. This experience paper addresses both.

It records the productization journey, that is still ongoing, of a recently published research garbage

collector in a challenging industrial setting.

The difficulty of research translation is rooted in differing priorities and objectives. Good research

will clearly demonstrate the value of an idea while minimizing unnecessary engineering effort

in doing so. On the other hand in industry, failure to a deliver secure, robust, and performant

system means failure of the project. The former requires pruning out extraneous complexity to

focus on clarity and generality while the latter must rigorously consider every corner case in all its

complexity, sacrificing extraneous generality in often highly specialized, opaque, proprietary, and

inherently non-reproducible settings.

In this paper, we take LXR through a productization process. LXR is a research garbage collector

published at PLDI’22 [29]. Our target application is a large performance and revenue-critical Google

service, which we will call LSJ (a Latency-Sensitive Java application). LSJ’s requirements include

supporting a very high allocation rate, very heavy use of class loading and unloading, and high

occupancy of 32GBs of available virtual memory in a compressed pointer Java heap. The default

production OpenJDK collectors often struggle with such demanding workloads. For example, Uber

noted high allocation rates induced large pauses on their data query engine using G1 [25]. They

configured G1 with a large to-space reservation and forced concurrent marking more often to

reduce, but not eliminate completely, substantial mature-space GC pause times and frequent full

GCs. Similarly, LSJ configures a specialized version of G1. Because of the high cost of concurrent

full (major) mature space collections, they are disabled for LSJ. Instead, user requests are regularly

diverted away from LSJ instances and LSJ explicitly triggers a G1 major collection only when it

is not receiving traffic. This workaround avoids impacting user latency at the cost of replicating

services. Although LXR appeared to be a promising alternative to this ad hoc workaround, LXR

was a research artifact, untested in a production setting.

Advancing the State of the Art. The result of our work is an optimized LXR collector in OpenJDK

that improves total execution time by 11% compared to the default state of the art G1 production

collector, at a moderately sized heap, across a wide range of workloads. We are not aware of any

prior work that has made an improvement of this magnitude to the widely-used, highly-optimized
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OpenJDK runtime. Notably, this improvement did not come from a particular major innovation.

Instead it came from many minor innovations and a systematic productization methodology.

ProductizationMethodology. Wedevelop a two-part methodology that combines standard research

methodology with the practices of a mature production software engineering team. The first

element is incremental refinement, initially applied to correctness and missing features and later to

performance. At each step, we implement a fix then evaluate it, iterating until the desired change is

achieved without regressing research or production metrics. The second element is to systematically

map pathologies observed in production to standard workloads where they can be far more easily

debugged. We first identify a symptomatic metric, such as high allocation rate, slow trace rate,

limited heap headroom, etc., and then use it to find a workload that manifests the pathology, if

necessary reconfiguring the JVM to expose the problem.

Productization Dividend. The shift from the 1% advantage reported by Zhao et al. to the 11%

advantage we show here amounts to a productization dividend of 10%. We found this both surprising

and disconcerting. Had the original LXR been just 2% slower and lagged G1 by 1% (instead of

leading it), the work likely would not have been published at PLDI nor attracted the resources

required for productization. In this hypothetical, an idea with the potential to improve over the

state-of-the-art by 9% never sees the light of day. Work that incrementally advances an established

production system will tend to profit from a built-in productization dividend, while entirely new

work will not. This suggests that the peer review process and its natural desire to see improvements

over the state-of-the-art will implicitly favor incremental work over completely fresh work.

The current status of our project is that LXR passes all internal JDK tests, and can run in the data

center receiving bifurcated live traffic while meeting uptime and throughput objectives. The process

is ongoing and LXR is not yet serving live traffic. We are working through an unrelated rebase to

JDK 21 and have yet to meet all our latency objectives. Nonetheless, the process of translating LXR

to production highlights the many challenges due to differing priorities and objectives in research

and industry. We identify and discuss five lessons that we have drawn from our experience in

Section 7. This productization effort has already led to a significant advance in the state of the art

for garbage collection performance, new methodologies for systematically translating research to

production, and new lessons for research translation.

2 Background and Related Work
2.1 OpenJDK’s Production Collectors
OpenJDK is the most widely used Java virtual machine today. It is actively maintained with contribu-

tions from major vendors and the open source community. The Garbage-First (G1) collector [8] has

been the default in OpenJDK since 2017. It manages the heap in fixed-sized regions, is generational

and uses concurrent marking to minimize GC pauses. OpenJDK ships with four other standard GCs.

Our focus is on the new research collector, LXR, and OpenJDK’s default collector, G1, a modified

form of which is used by LSJ today. Our production environment notably configures G1 with a

lower overhead write barrier and a system for dynamically shifting load away from LSJ servers

before they trigger major garbage collections. LSJ’s requests are thus not exposed to G1’s costly

major collections.

Garbage collectors, like many system research artifacts, require massive effort to become produc-

tion ready. For example, G1 underwent thirteen years of optimization before becoming the default

in OpenJDK. G1 and ZGC did not introduce full class unloading support until after their initial

release [10, 18]. Although class unloading is a fundamental JVM feature, a lack of support for it
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176 178 180 182 184 186
Elapsed Time (Seconds)

25 25 26 52 43 39 42 36 35 36 35 36 358 24 36RC Pause
Initial SATB Pause
Final SATB Pause

(a) LXR GC pauses without our optimizations.

210 212 214 216 218 220
Elapsed Time (Seconds)

32 32 32 52 34 35 31 30 138

(b) LXR𝑂 GC pauses with new optimizations.

Fig. 1. Our optimizations reduce LXR’s pauses. Traces of LXR’s GC pauses on a 10-second execution
window for h2-large on a 2× minimum heap (20.3 GB). We label each GC pause interval with its duration in
milliseconds. Timeline (a) lacks optimizations (Section 3 and 4) and timeline (b) includes them.

does not compromise garbage collection correctness, just efficiency. For complex workloads such as

LSJ, efficient class unloading is vital. Consequently, adding support for class unloading to LXR was

part of our productization process. Sections 3 and 4 discuss this and other improvements.

2.2 LXR and MMTk
LXR differs substantially from the other OpenJDK production collectors. i) Rather than only rely

on tracing, LXR uses high performance reference counting (RC) [21, 29] to reclaim both young and

old garbage at every RC pause. ii) It uses an inexpensive write barrier [29] that combines reference

counting [14], remembered set maintenance, and concurrent tracing with Snapshot-At-The-Begin-

ning (SATB) [26]. iii) It avoids most copying by using the Immix heap structure (a hierarchy of

fixed-sized blocks divided up into fixed-sized lines) and opportunistic copying versus more costly

region evacuation. iv) It is built on top of the MMTk garbage collection framework [15] in OpenJDK.

Figure 1(a) illustrates LXR’s behavior using a trace of the h2-large benchmark running in 20.3 GB

heap. In the common case, it performs regular very short RC pauses to efficiently reclaim both young

and acyclic mature garbage, as shown by the black intervals. It relies on occasional concurrent

marking to reclaim cyclic garbage. The gold and red intervals represent the pauses for the start and

the end of the SATB marking cycles, respectively.

LXR uses final SATB pauses as an opportunity to perform defragmentation. (1) It evacuates

(i.e. copies) live objects out of fragmented memory blocks (from-space blocks), compacting them

in other memory blocks, and then (2) releases the now defragmented memory. LXR constructs a

remembered set during concurrent marking which remembers all references into blocks targeted

for defragmentation. The remembered set allows defragmentation to be tightly focussed, avoiding

costly traversal of the whole heap.

Zhao et al. demonstrated that on DaCapo benchmarks, with 2× the minimum heap, LXR achieved

4% higher throughput and 8% lower 99.99% tail latency than the default G1 GC.
1
These results

motivated our effort to productize LXR.We refer to the resulting optimized LXR as LXR𝑂 . Figure 1(b)

illustrates how LXR𝑂 exhibits significantly shorter marking cycles and reduces final SATB pause

times. Section 6.2 shows that LXR𝑂 substantially improves overall performance over LXR.

1
We performed the same comparison in a slightly different environment and saw 1% and 12% respectively (Section 6.2).
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2.3 Research and Industrial Development Methodologies
Development methodologies vary greatly, and wewill not attempt to categorize them fully. However,

the approach that we found so successful in translating a research artefact to production borrows

on elements of these, so we’ll briefly outline them here.

Performance-oriented research tends to be driven by the goal of making a clear demonstration

of the efficacy of a novel idea. Evaluation is often framed with respect to the prior state-of-the-art

over a set of established workloads. A common pattern is to develop a prototype that is (only)

sufficiently robust to run the workloads without failure. The next step is to engage in a process we

call performance optimization whack-a-mole: i) Evaluate the prototype with respect to the prior

work. ii) If overall performance delivers a publishable result, write it up and you are finished!

iii) Otherwise, identify the simplest workload(s) on which the prototype most egregiously under

performs, investigate, and fix. iv) Return to step i). Sometimes the performance goal may never

be met, leading to abandonment and perhaps a negative results paper. Note that the performance

delivered by this approach is entirely contingent on the comparison with prior work on standard

workloads. The approach therefore may not expose the true potential of an idea, simply because

the researchers seek to be efficient in this time-consuming phase, so will tend to stop as soon as the

process reaches a clear result or exhaustion, which could be well short of the ideas’s full potential.

Industrial development will tend to differ in two key respects. The system will first be subjected

to extensive and rigorous correctness tests, perhaps tens of thousands of unit tests — the project

cannot proceed until all correctness tests pass. The system will then be performance optimized, but

unlike the research setting, optimizations typically will not use a set of standard benchmarks, but

instead will target the intended workload, which may be large and inherently non-deterministic.

The system is subjected to load testing, which is similar to the intended deployment workload,

but more contained and manageable. In our system, production evaluations use a deployed mirror

instance which is given duplicated traffic and its responses are discarded. If the proposed changes

meet the performance goals, the new system will roll out to some percentage of live traffic. If

successful, it will then be fully deployed. The criteria are often in absolute performance terms (a

certain query-per-second (QPS), for example) and various business-derived expectations, rather

than relative to those in a previous research paper.

Section 3 describes our approach and how it brings together the above methodologies.

2.4 LSJ and Our Production Environment
We evaluate the LXR GC on a large-scale, externally-facing latency-sensitive proprietory production

Java workload, LSJ. During testing, LSJ instances run in the datacenter receiving duplicated live

traffic. This setup is a common industrial practice, but limits our ability to measure and debug.

Shared Hardware. Instead of a dedicated physical machine, each LSJ instance shares CPU and

memory with other production services. This setting highlights the importance of opportunity cost

— memory and CPU that we save can be utilized by other services or other LSJ instances. Huge page

availability is one example of how this setting impacts performance engineering. OS huge page

availability tends to diminish over time and we do not have the luxury of rebooting the machine to

make huge page availability more deterministic, as we might have in a research setting.

Data Confidentiality. LSJ requests contain user-sensitive data, and thus we may not inspect

the process state or examine how different request types impact LXR. We only observe overall

performance and prescribed telemetry.

JVM Configuration. LSJ configures the JVM and G1 GC in a highly specialized manner. It uses

compressed pointers [13] and a heap size almost equal to the 32GB compressed pointer address
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space, introducing the challenge of virtual memory exhaustion. LSJ carefully configures G1 with a

large young generation. In production, it disables concurrent marking because full-heap collections

significantly degraded tail latency. Instead, LSJ is specially configured to periodically stop sending

requests to each LSJ instance and then force a full heap collection. G1 then performs an expensive

stop-the-world full heap collection without impacting tail latency of any requests. Our goal is for

LXR to outperform this G1 configuration without performing traffic redirection, eliminating these

additional LSJ instances.

Class Loading. LSJ frequently loads new classes into the JVM, putting high pressure on the

meta-space (the space for storing class metadata) and thus the garbage collector. Class unloading

was not supported by the original LXR.

Nondeterminism. The nature of LSJ means that it does not need to process requests in a re-

producible way, resulting in potentially different responses for identical requests. Moreover, the

number of user requests directed to LSJ is a fixed proportion of the total received during any given

time window. Thus its QPS (query-per-second) is influenced not only by GC performance but by

time of day and noticeably varies between peak and off-peak periods. QPS is a critical performance

metric for LSJ. These uncertainties exacerbated the noise in our evaluations, making GC behavior

harder to reason about.

Many of the above environmental factors are likely shared by other very large scale industrial

services. We therefore believe that our experiences and lessons generalize beyond this concrete

experience with LXR and LSJ.

3 Our Methodology for Performance Debugging in Production
This paper reports a productization process that led to a striking performance improvement. At the

heart of the methodology are two simple ideas:

(1) iterative refinement combining both research and industrial development practices, and

(2) systematic mapping of production pathologies to metrics matched in manageable workloads

that we then use for debugging.

Iterative Refinement. The classic iterative refinement process is one of repeatedly and systemati-

cally following each fix with testing that is designed to ensure that fixing one metric does not regress

another. Our twist on this approach is to overlay the metrics applicable to our industrial target

with the research metrics associated with the original research. We thus integrate conventional

iterative development processes with performance optimization whack-a-mole (Section 2.3). We

first applied this approach to the exhausting and relatively unexciting process of addressing LXR’s

shortcomings using Google’s large internal JVM test suite, fixing bugs, and adding missing features

until we had LXR𝐹 , a fully featured version of LXR that passed all tests. The feature-complete

LXR𝐹 performed 3.1% better than G1 (Table 4) on a 2× heap, a modest improvement over the 1%

advantage we saw in our initial evaluation of LXR (Table 3). We next applied the refinement process

to the task of reaching our performance objectives on the LSJ workload, iteratively addressing

performance challenges exposed by LSJ and reevaluating on the standard workloads to ensure

performance did not regress. Ultimately this process delivered a complete, compliant, optimized

LXR, LXR𝑂 , that stretched LXR’s performance advantage further, to 10.9% (Table 4).

Mapping Pathologies to Metrics Exhibited in Other Workloads. The practicalities of a hyperscale
industrial workload such as LSJ make performance debugging challenging (Section 2.4). To address

this challenge, we employ a pattern of systematically finding pathologies in LSJ, determining a

symptomatic metric that reveals the problem, and then use that metric to identify a workload with

similar symptoms. We use the DaCapo benchmarks [3, 4] for these workloads as well as some
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internal workloads that are amenable to desktop debugging and analysis. The DaCapo benchmark

suite is diverse and comes with nearly fifty metrics characterizing each benchmark’s behavior,

which made the process of mapping pathologies to benchmarks easier. It is important to stress

that our methodology does not depend on having a benchmark suite containing a workload similar

to the target industrial workload. Instead, we map individual pathologies to benchmarks, so the

requirement on the benchmark suite we use is just that there exist one or more benchmarks that

exhibit each of the production pathologies we identify. Note that the problem may not necessarily

be on the critical path of the benchmark in its default configuration. Sometimes, we found it was

necessary to adjust JVM options in order to push a benchmark to a corner case that captured the

pathology clearly. Improving the problematic metric may or may not improve the target benchmark

in its default configuration, but it almost always improved LSJ. Table 1 lists examples of identifying

problems, metrics that reveal the underlying pathology, and mapping them to workloads.

3.1 Systematically Mapping Pathologies from LSJ to Manageable Workloads
Table 1 lists six concrete examples of the pathology mapping process, listing each problem, its

symptoms, the metric/s we used, the workloads that exhibited the same problem, and the section

where we discuss its resolution. The first problem (Slow SATB) is slow snapshot-at-the-beginning

pauses (Section 2.2). The symptom was unacceptable latency in LSJ from expensive final SATB

pauses due to concurrent tracing not keeping up with LSJ’s allocation rate. The metric is SATB

tracing rate. We quickly observed that the h2 DaCapo benchmark exhibited the same behavior in

tight heaps. We then debugged this complex issue using this well-understood benchmark. Note

that Zhao et al. [29]’s performance analysis does not expose this problem, yet it is a major problem

for LSJ. Figure 1 illustrates the problem and fix and Section 3.2 explains our optimization.

We handled all problems in Table 1 similarly. We identify a problem with LSJ, narrow down its

symptoms, identify key metrics, and map it to a standard workload that exhibits the same problem.

For virtual memory fragmentation, we did not have any workloads whose minimum heap size

was close to the 32GB of virtual memory available with compressed pointers. However, we easily

modified the h2 benchmark to give it a much larger heap footprint for debugging. We think that

workloads with such large footprints are valuable and successfully upstreamed our modified h2.
In addition to capturing the major problems we identified with LXR, Table 1 highlights that: i) we

do not need a silver bullet — we do not require a facsimile of LSJ among the standard benchmarks,

and ii) Zhao et al. left performance on the table, as evidenced by diversity of benchmarks affected

by these performance problems and their subsequent improvements.

3.2 Case Study: SATB Performance
We use the slow SATB problem from Table 1 as a case study to illustrate our process concretely. GC

logs revealed that LXR’s Snapshot-At-The-Beginning (SATB) concurrent marker could not keep

up with the application’s allocation rate. This problem is a classic one for concurrent collectors.

Because a concurrent marker cannot free any space until it completes its trace of the entire heap, it

must trace at a rate that can keep up with the application’s allocation demands, otherwise it will

force the application to stall. LXR, like other collectors, tries to avoid this situation but if it does

arise, it falls back to an expensive stop-the-world full heap collection, harming both throughput and

latency. Further analysis revealed that the slowdown was not attributable to poor load balancing or

GC task scheduling, pointing to the performance of the main tracing loop as the likely issue.

Mapping to a Benchmark. We found similarities between LSJ and the large variant of the DaCapo

Chopin h2 benchmark, including their memory use, allocation rate, and object size demographics.

We modified h2’s configuration to match LSJ’s very large heap footprint. With this change, we
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Table 1. Problems we observed in LSJ using LXR, how they manifest (symptoms), a metric that reveals
the problem, the workloads with similar metrics that we use for debugging, and cross references to solutions.

LSJ Problem Symptom Metric Workload Soln.

Slow SATB Unacceptable latency due to long final SATB
pauses when LXR can not finish concurrent
tracing before heap exhaustion. LXR thus
pushes lots of marking into the final mark
pause. Surprisingly, this pause grows larger
than an emergency GC pause, which scans
all live heap objects. This pathology indicates
LXR concurrent marking is slower than stop
the world (STW) tracing.

SATB tracing rate:
number of objects
traced per unit time

fop, h2,
lusearch,
tomcat

§3.2

Virtual
memory frag-
mentation

LSJ runs out of memory and crashes on a
large memory allocation in the large object
space (LOS) when the Java heap is not full,
revealing inter-chunk fragmentation as the
LOS requires contiguous pages.

Large minimum heap
size (minheap): con-
figure very large min-
heap workload

h2 §4.2

Block
sweeping is
slow

We observe LXR’s sweeping phase on large
heaps is slow and does not scale well because
LXR sequentially sweeps all the young blocks
during a pause. The very large heap size for
LSJ exposes this problem. Instead of paral-
lelizing the sweep, LXR𝑂 uses lazy sweeping,
where each mutator sweeps its own blocks.

Stop the world (STW)
time

lusearch,
h2

§4.3

High resource
unloading
time

MMTk’s phase timers show that apart from
slow SATB tracing, LXR’s final mark pause
on LSJ is dominated by resource unloading,
especially the weak reference processor and
class unloading.

STW and class un-
loading time

jython,
kafka,
trade-
beans

§4.4
§4.5

GC trigger
tuning

In GC logs, we find LXR triggers very fre-
quent GCs that led to high CPU overheads
for LSJ.

Allocation rate, sur-
vival ratio, GC fre-
quency (SATBs and
emergency GCs)

h2 and
xalan

§4.5

High resident
set size (RSS)

LXR crashes quickly due to high RSS usage
when running on a different internal work-
load.

RSS usage: use bpf-
trace to dump RSS us-
age over time

fop §4.5

reproduced the concurrent tracing problem in LSJ in h2. Figure 1(a) illustrates the original problem.

The gap between the initial SATB pause (gold) and the final pause (red) is nearly seven seconds,

spanning 8 minor RC collections, and the final pause is 358ms.

Precisely Identifying the Issue/s. Precisely measuring concurrent collector performance is compli-

cated by the fact that (by definition) the application is running concurrently, making cost attribution

difficult. We addressed this problem by (temporarily) modifying LXR to pause all application threads

while the SATB trace runs. Measurements of this setup precisely identified five distinct problems:

i) a duplicate load when marking, ii) a dynamic dispatch in the hot loop, iii) an expensive mmap
check, iv) a suboptimal reference count check, and v) suboptimal loop ordering.
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The first three are relatively straightforward performance bugs, which were likely missed because

tracing performance was not previously as stressed, but they were exposed by LSJ and our modified

h2. The last two issues are more interesting, so we discuss them next.

For the fourth problem, it is necessary to explain details of the implementation of important

optimization introduced by the original LXR: the exclusion of young objects from the SATB

trace [29]. The implementation exploits the fact that LXR maintains the invariant that all young

objects have zero reference counts until they are promoted to mature objects [20]. Thus by checking

their reference counts, LXR can identify and skip young objects when performing the SATB trace.

LXR employs a densely-packed table (metadata stored off heap) to track per-object reference

counts. Every two bits in this table map to a 16 B ‘memory cell’ in the heap, which is also the

minimum size of a Java object. Thus, each Java object maps to a unique 2-bit RC counter in the

table, irrespective of its actual size and alignment. This mapping ensures that one byte in the RC

table maps to a 64 B memory slice in the heap, which may contain up to four Java objects. Hence,

checking the RC for each object involves: i) loading the relevant byte from the RC table, ii) extracting

the appropriate bits, and iii) comparing them with zero. These operations when executed within

the tracing hot loop can be expensive. However, we observed that the nature of the Immix allocator

prevents the interleaving of young and mature objects within the same 256 B Immix line. Each

Immix line maps to four bytes in the RC table. This implies that, in step (i) above, the four RC

counters in the loaded byte would either be all zeros for young objects or all non-zeros for mature

objects. This insight allows us to simplify the RC check to just a load and a compare with zero,

eliminating the bit extraction step.

To fix the last problem, we adopted the observation from Garner et al. [9] that inverting the

order of the traditional tracing loop can counter-intuitively yield a performance benefit. Instead of

enqueuing objects for scanning after they are successfully marked (‘grey’), Garner et al. enqueue

all children objects (‘white’) for marking and scanning, improving locality at the expense of more

queuing operations. They refer to this approach as edge enqueuing. We adopt this approach and

optimize LXR by enqueuing ‘white’ objects instead of ‘grey’ objects, further improving the marking

performance.

Evaluation. Together, the five tracing optimizations described above improve LXR’s SATB tracing

rate by 63.0%. Figure 2 shows the impact of each of the five optimizations on the SATB tracing
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Fig. 2. Tracing rate for concurrent marking optimizations. We show the number of scanned objects
per microsecond, normalized to the baseline without any optimizations (higher is better). The yellow bar
is LXR without any optimizations. The middle five bars show LXR with a different single optimization for
incremental comparison. The last bar shows the cumulative improvement from all optimizations. We exclude
three benchmarks from the trace rate measurements as they do not perform an SATB trace.
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rate on the DaCapo Benchmarks, following the methodology discussed in Section 5.
2
The five

optimizations contribute to tracing rate improvements of 8.2% (no duplicate load), 6.4% (no dynamic

dispatch), 19.6% (no mmap), 13.2% (fast RC check), and 8.2% (edge enqueuing), averaged across

the benchmarks. No benchmark saw an overall regression larger than the 95-percent confidence

intervals. The only optimization to regress any benchmark was edge enqueuing, which slowed

down biojava, jython, luindex, and xalan by 58.5%, 27.3%, 9.3%, and 22.9% respectively. However, all

together they improve the average tracing rate by 63.0% and together never degrade the tracing

rate. h2 showed a tracing rate improvement of 145.5%, which is perhaps unsurprising given that h2
was our target benchmark for the tracing optimizations.

Figure 1(b) illustrates the pause reduction from these optimizations. The final pause is an order

of magnitude shorter (31ms v 358ms), the total duration of the SATB is reduced from about 7 s to

about 2 s, and the number of intervening RC pauses is reduced from 8 to 2.

After verifying each optimization on the DaCapo benchmarks, we applied the fix to the production

setting. The optimizations are similarly successful for LSJ— the SATB trace and final pause now

keep pace with LSJ’s allocation rate, eliminating long pauses.

The SATB performance case study highlights the importance of mapping pathologies from the

production setting onto standard workloads which we then performance debug using standard

techniques. We emphasize that at each step, we evaluated each potential change against the entire

DaCapo benchmark suite and did not press forward until we were able to deliver an overwhelmingly

consistent improvement. We constantly monitored the performance of LSJ, inspecting GC logs and

monitoring server QPS, CPU usage and memory usage for each change.

4 Major Issues Addressed During Productization
Having outlined our approach and used SATB performance as a case study (Section 3.2), we now

briefly discuss the other major issues we addressed during the productization process: i) missing

JVM features, ii) virtual address space fragmentation, iii) block allocation and sweeping, iv) VM

resource unloading, and v) noteworthy secondary issues.

4.1 Missing JVM Features
The original LXR did not support three key JVM features: compressed pointers, weak reference

processing, and class unloading. While these features do not affect correctness, the performance

requirements of our production environment makes them essential. For instance, LSJ performs

frequent class loading and unloading to apply dynamic software updates, which imposes significant

memory pressure on the meta-space. Given strict memory constraints, a lack of class unloading

rapidly exhausts the meta-space. We implement all these three missing features in MMTk and LXR.

Compressed Pointers. OpenJDK’s pointer compression improves heap utilization by using 32

bits to represent 64-bit pointers [13, 19]. In its default implementation, OpenJDK’s compressed

pointers exploit eight-byte object alignment to offer a 35-bit (32 GB) effective address space. When

OpenJDK’s compressed pointers are enabled, all intra-heap pointers are compressed. However, the

runtime may hold a mixture of compressed and uncompressed pointers. As a consequence, when

we enumerate roots from OpenJDK and enqueue them for LXR, we need to introduce tagging so

that LXR will know whether the root holds a compressed or uncompressed value. We were able to

implement this tagging and the associated checks with no observable performance impact.

Class Unloading. LXR’s class unloading implementation follows G1’s, which marks live OpenJDK

class metadata during the transitive closure and unloads dead metadata after each full heap trace.

2
Please refer to the Appendix for detailed tabulated results.
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Similar to G1, class unloading occurs under two conditions: at the end of each full heap trace, or

when a meta-space GC is triggered.

Weak Reference Processing. Java has three weak reference semantics: WeakReference, SoftRefer-

ence, and PhantomReference. LXR piggybacks all weak reference processing on full heap traces,

treating them as strong during RC pauses. Like other OpenJDK GCs, LXR discovers weak references

during the transitive closure, and unloads them when necessary at the end of each full heap trace.

We implemented each of these missing features without any great difficulty, but all of them were

time-consuming engineering exercises. By following our methodology, we were able to implement

each of them without regressing performance, as we show in Section 6.2.

4.2 Virtual Memory Fragmentation
We found that on LSJ, using LXR with a 31GB heap, the server would run out of memory due to

a large object space (LOS) allocation failure within 10–30 minutes after boot. Notably, the out of

memory failure was not due to the heap being full, but due to MMTk being unable to find sufficient

contiguous virtual memory to satisfy the large object allocation request. Counterintuitively, the

behavior could be mitigated by reducing the heap size. Recall that in OpenJDK, with compressed

pointers, the available address space is 32GB by default.

Mapping to a Benchmark. Initially, none of the DaCapo benchmarks exhibited this pathology,

however, as mentioned in Section 3, we soon found that by increasing the size of the h2 benchmark,

which was just a matter of changing some configuration parameters, we could readily reproduce

the problem by running h2-large with heap sizes near the 32GB virtual memory limit.

Precisely Identifying the Issue/s. We soon realized that compressed pointers and our management

of virtual memory were the key concerns. Specifically, it was the combination of LSJ’s heap using

most of the available 35-bit address space and our use of MMTk’s discontiguous spaces. MMTk

supports two strategies for mapping virtual memory to distinct policy domains, or spaces, inherited
from its earlier incarnation in JikesRVM [1]: discontiguous and contiguous. Both mechanisms provide

a way to allocate address space and an efficient way to map from object addresses to the space/policy

to which the object belongs. For 32-bit address spaces, MMTk uses the discontiguous strategy:

it breaks the usable address space into 4MB ‘chunks’, and uses a table to map chunks to spaces.

For 64-bit address spaces, it uses the contiguous strategy, assigning each space 4 TB of contiguous

virtual memory, allowing it to cheaply identify each space by masking pointer bits.

When we implemented compressed pointers (Section 4.1), we adopted MMTk’s discontiguous

strategy. In practice, LXR uses just two MMTk spaces: the Immix space, which manages small

objects and acquires only one 4MB chunk at a time from the global virtual memory resource, and

the large object space (LOS), which may allocate multiple contiguous chunks in a single allocation.

This mixing of multi-chunk and single-chunk allocations will eventually fragment the address

space. Unless there is abundant address space headroom, eventually the heap may not have a

contiguous hole of sufficient size to accommodate a large object space allocation request.

One way to address this would be to more aggressively defragment the Immix space, creating

larger holes for use by the LOS. However, this solution is costly because it requires extensive

copying, which LXR is designed to carefully minimize. Copying for defragmentation is so expensive

in the case of G1’s full heap compactions that LSJ must redirect traffic while it is happening.

Instead, we address the problem with two strategies. i) We make Immix and the LOS use the

address space from opposite ends, avoiding interleaving them. ii) We increase virtual memory

headroom by reducing the heap size given to LSJ. We determined via bisection search that LSJ has
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a minimum heap size of 8 GB. It is normally configured to run at nearly 4× this size (31 GB), but we

reduced it to 2× (16GB). This change reduces heap headroom from 23GB to 8GB but increases

virtual memory headroom from 1GB to 16GB. Although this change very effectively addressed the

problem with LSJ, we are exploring additional strategies to deal with applications with minimum

heap sizes closer to the 32GB limit.

Evaluation. Together, these approaches solved the problem of out of memory failures for LSJ.

In Section 6.3 we conduct a lower bound overhead (LBO) analysis [6], demonstrating that LXR is

more space-efficient than G1, explaining why we could reduce the heap size for LSJ so successfully.

4.3 Block Sweeping and Allocation
While inspecting GC logs from LSJ, we found that LXR spent considerable time sweeping blocks at

the end of each stop-the-world pause. This sweep identifies blocks that have become free during

the collection.

Mapping to a Benchmark. We noted that the cost and importance of block sweeping grows

as allocation rate increases and young object survival decreases. With this observation in mind,

we quickly found that lusearch and h2, the two highest allocation rate, low survival DaCapo

benchmarks (Table 2) manifest the same problem, which we had not noticed previously.

Precisely Identifying the Issue/s. Like many GCs, LXRminimizes synchronization during allocation

by using thread-local allocation buffers. When a buffer is exhausted, LXR sources a new block from

a global pool. Our investigation revealed two related issues. (1) We noticed that block sweeping

time is proportional to the young allocation volume, significantly increasing GC pause time on large

heaps. (2) We also noticed that LXR’s block allocation strategy necessitates global synchronization,

leading to poor scalability on parallel workloads with high allocation rates.

We tackled these two issues at once by introducing a new block allocator that manages blocks

hierarchically: global blocks and thread-local blocks. Mutator threads perform thread-local block

allocations for the common case, and only jump to the global allocator if thread-local block allocation

is unsuccessful. Each mutator thread holds a local block list containing blocks which it currently

owns. After each RC pause, blocks in the list may either be full, partially free, or completely free.

When allocating a block, the mutator traverses this list, and sweeps each block to find available

lines. This approach allows us to remove GC-time block sweeping to reduce pause time. We also

observe that most young blocks are strictly evacuated and become completely free after a RC pause.

We optimize for this case, skipping mutator-time sweeping.

On local allocation failure, the local allocator grabs 𝑁 blocks at a time from the global allocator.

By default 𝑁 is set to 32. The global allocator holds all blocks in the heap in a global list. On the fast

path, it traverses the list to identify blocks without owners. If it fails to find a sufficient number of

blocks, it traverses the list again and steals blocks from other mutators. By employing stealing, the

allocator efficiently improves block utilization, preventing inactive mutators from holding blocks

without using them. Finally, when the global allocator fails to find or steal any blocks, it transitions

to a synchronized slow-path that expands the heap and gets more blocks from the operating system.

This approach optimizes the GC and block allocator in three ways. i) Thread-local and global

block allocation are lock-free for the common case, significantly improving mutator performance.

ii) Mutators tend to reuse thread-local blocks when possible, enhancing locality and performance.

iii) Mutators sweep the blocks in their local list to find blocks for allocation, thereby eliminating

the need for block sweeping during GC pauses, significantly reducing GC pause time.
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Fig. 3. Different block allocators and their effect on total stop-the-world (STW) time. We compare
LXR with the old block allocator, the old block allocator with the memory leak fix (§4.5), and LXR with the
new block allocator, normalized to the baseline with the old block allocator.

Evaluation. Figure 3 shows a significant reduction on stop-the-world time with LXR’s new block

allocator.
3
It shows three different block allocators: the old block allocator, the old allocator with

the memory leak fix (§4.5), and the new block allocator. It normalizes results to the minimum value.

Note that the new allocator contains the memory leak fix. The memory leak fix leads to a reduction

in the number of stop-the-world (STW) pauses by 5.1%, which resulted in a 2.0% STW time reduction.

The new allocator also significantly improved mutator utilization. LXR had a 10.0% decrease in

number of STW pauses, and 8.4% reduction in STW time. The extreme case was batik, which
had a substantial STW time reduction of 45.7%. However, on four benchmarks: cassandra, eclipse,
graphchi, and h2, we observe a STW time increase of 9.2%, 7.8%, 10.8%, and 20.6% respectively. Upon

detailed inspection of the worst case, h2, we discovered that the new allocator’s block allocation

order changed heap fragmentation for h2, leading to 42.9% more concurrent marking epochs. The

extra cost of performing mature evacuation at the end of each concurrent marking leads to higher

STW time overhead. This result indicates that the new block allocator may degrade GC scheduling

behavior for LXR’s GC trigger, which is less-tuned in production settings. Although GC time is

reduced for most benchmarks, we did not observe any performance change on mutator time.

4.4 Weak Processor Performance
LSJ’s GC logs revealed that LXR’s final mark pause was dominated by OpenJDK’sWeakProcessor and
class unloading. We discussWeakProcessor below and briefly mention class unloading in Section 4.5.

Mapping to a Benchmark. We examined work distribution in final mark pauses for DaCapo

benchmarks and found three DaCapo benchmarks that also suffered significant WeakProcessor
overheads in the final mark pause: jython, kafka, tradesoap.

Precisely Identifying the Issue/s. OpenJDK maintains references into the Java heap for a variety of

reasons. Many of these must be weakly held to avoid the runtime keeping application heap objects

alive as a side effect of referencing them. The are implemented as handles which are maintained

by the WeakProcessor . (An example is in the implementation of JNI’s Weak Global References,

which allow weak references into the Java heap from JNI.) When the garbage collector moves or

reclaims an object referenced by theWeakProcessor , theWeakProcessor must be scanned to forward

references to moved objects and remove handles for reclaimed objects. OpenJDK collectors perform

this work at the end of every collection. We found that the reason for LXR’s costly WeakProcessor

3
Please refer to the Appendix for detailed tabulated results.
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Fig. 4. The effect of the WeakProcessor optimization on total stop-the-world time. We show stop-the-
world time normalized to the baseline without the optimization.

unloading is that it frequently calls into MMTk to determine heap object liveness, incurring large

numbers of expensive C++ to Rust transitions.

Ultimately, the solution to this problem is to lift the liveness test into C++ code, following the

pattern for other hot cross-component calls such as for write barriers and allocation sequences.

Instead we decided to address the issue with a global remembered-set that records all newly created

weak handles, keeping them alive and updated across RC pauses. The remembered-set is managed

on the MMTk side, thus frequent cross-component calls are avoided, significantly reducing the

scanning cost. We perform occasional unloading only at the end of each full heap trace, which still

requires a full traversal of the storage and some costly cross-component calls. While investigating

this issue, we also observed that LXR may over-mark objects and leak dead CodeCache objects
by incorrectly sending references in the WeakProcessor to the concurrent marking queue. This

issue was not exposed by most DaCapo benchmarks. However, for workloads like LSJ with large

code cache sizes, addressing this leakage substantially reduced the heap live size and concurrent

marking time. We fixed this issue.

Evaluation. We measure the stop-the-world time change in Figure 4, comparing LXR with and

without the WeakProcessor optimization and bug fix.
4
We report results for individual benchmarks

and the geometric mean, normalized to the minimum value. LXR achieves an overall STW time

reduction of 2.4% on average with this change. Specifically, jython shows the greatest improvement,

with a pause time reduction of 13.0%. However, jme has a slowdown of 6.7%. We found that

the optimization does not change the number of pauses jme does. Instead, it defers significant
WeakProcessor unloading work to the concurrent marking pauses, rather than processing them

earlier in every GC pause as G1 does. A potential future optimization for such cases might be to

slightly increase the frequency of concurrent marking for more timely and efficient clearing out of

obsoleteWeakProcessor entries.

4.5 Other Minor Issues and Enhancements
We also resolved some other minor correctness and performance issues. These issues were surpris-

ingly impactful in terms of DaCapo performance and robustness and performance of LSJ. We list

the most notable ones below.

i) We resolved a memory leak that prevented partially-free blocks from being reused, signifi-

cantly reducing the total number of GCs.

ii) We reverted an LXR optimization that reduces evacuation cost by selectively evacuating

young objects. Evacuating all young objects reduces fragmentation, leading to fewer GCs.

4
Please refer to the Appendix for detailed tabulated results.
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iii) We reduced block allocation contention by removing unnecessary spin locks.

iv) We tuned GC trigger parameters using both the DaCapo benchmarks and LSJ.

v) We resolved a C2 compiler issue where barrier elision fails to function correctly without

special processing of all slow-path allocated young objects. This issue impacts all generational

collectors; for instance, G1 must apply deferred and conservative barriers to these objects [16].

vi) We identified and fixed a high resident set size (RSS) issue we observed in MMTk that resulted

in LSJ being terminated by the OS. MMTk, by design, eagerly initializes all off-heap metadata.

We replaced it with lazy initialization, which completely eliminated the crashes due to high

RSS, and also sped up the VM boot process. We upstreamed this fix to MMTk.

vii) We ported an optimization from G1 that skips some of the expensive class metadata cleaning

steps when class unloading does not occur [24]. The performance impact was not revealed by

DaCapo benchmarks, but was exposed by LSJ. Although the fix was trivial, it took a complete

problem resolution cycle to identify and fix the issue.

Having described our systemic approach to productization and outlined key changes we made to

LXR along the way, we now evaluate the performance impact of these improvements.

Table 2. Benchmark characteristics: minimum G1 heap size; total allocation volume; ratio of allocation to
minimum heap; allocation rate relative to G1’s mutator time; mean object size in bytes; percentage of large
object bytes to total bytes; and percentage of survivor bytes to total bytes for a 32MB nursery. The first eight
benchmarks are the request-based latency-sensitive subset.

Heap Allocation Obj %
Benchmark MB GB /heap MB/s Size Large Survival

cassandra 124 4.1 34 681 39 0 5
h2 679 21.2 32 8 192 43 0 2
kafka 205 2.7 13 413 53 18 1
lusearch 19 23.1 1247 7 782 78 0 2
spring 51 9.0 180 4 448 60 6 2
tomcat 21 5.4 265 1 525 90 0 2
tradebeans 135 7.5 57 1 175 44 0 4
tradesoap 91 3.6 40 852 41 0 3

avrora 7 0.1 19 22 31 0 5
batik 194 0.3 2 227 55 12 45
biojava 97 9.1 96 1 323 29 0 1
eclipse 137 6.4 48 566 83 28 9
fop 15 0.3 23 639 42 1 17
graphchi 183 10.6 59 3 416 162 3 4
h2o 71 11.3 163 2 928 165 1 17
jme 29 0.0 1 5 161 41 5
jython 29 3.6 129 674 43 0 1
luindex 47 2.1 45 484 275 69 6
pmd 196 5.4 28 3 613 32 4 12
sunflow 35 17.6 515 4 851 45 0 3
xalan 15 4.6 311 4 783 90 12 43
zxing 141 1.5 11 1 765 194 52 24
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5 Evaluation Methodology
5.1 LXR and OpenJDK Configuration
LXR is implemented in MMTk on OpenJDK 11.0.19+1 [23]. Unless otherwise stated, we use three

versions of LXR:. i) LXR, the original version of LXR [28], using source code published by Zhao

et al. in April 2022, based on JDK-11.0.11+6 [27]. ii) LXR𝐹 , in which we fix all major correctness

issues found in production and add all JVM features required by LSJ. iii) LXR𝑂 , which includes

all performance optimizations as well as all fixes and features in LXR𝐹 . Both LXR𝑂 and LXR𝐹 are

patches against Zhao et al.’s publicly available LXR codebase. We compare LXR’s performance

against other modern OpenJDK collectors, including G1 and Shenandoah from OpenJDK version

11.0.19+1, unless otherwise stated. ZGC does not support compressed pointers, which are required

by LSJ, so we do not include it in our evaluation. Although LXR and MMTk are not available in

OpenJDK 21 at the time of writing, we include comparisons with G121 — the G1 collector with

OpenJDK 21 — in Table 4 and Figure 6. OpenJDK 21 is the latest OpenJDK LTS at the time of writing,

allowing us to anchor our results with the latest state of the art OpenJDK collector.

5.2 Machine Configuration
We perform our evaluation on Zen 3 machines, with 16/32 cores 3.4 GHz CPU, and 64GB DDR4

3200MHz memory. All machines run Ubuntu 22.04.

5.3 Benchmarks and Their Characteristics
We use all 22 benchmarks from the DaCapo Chopin (v. chopin-23.11) benchmark suite unless

otherwise stated [3]. Table 2 presents their characteristics, including the minimum heap in which

G1 will run, allocation statistics, object sizes, and survival ratio. Twelve benchmarks exhibit high

allocation rates of more than 1GB/s, with the highest being h2, which allocates over 8GB per

second. The large object ratio quantifies the percentage of allocated bytes for objects larger than

32 KB. Notably, two benchmarks, luindex and zxing, have a large object allocation ratio exceeding

50%. The survival ratio is measured with a fixed nursery size of 32MB, with batik showing the

highest value at 45%. Eight benchmarks are request-based latency-sensitive workloads simulating

popular, real-world production servers for interactive web applications, the first eight listed in

Table 2. We use them for latency analysis.

We conducted a similar analysis on LSJ. We found that LSJ has a minimum G1 heap size of

8 GB and an allocation rate of 6-8 GB/s. It has a high survival ratio of more than 20% with a 32MB

nursery. Aside from the survival ratio, we found that h2 and h2-large are often our best choices for

replicating production issues. h2-large, with a 10GB minimum heap and an 8GB/s allocation rate,

often mirrors LSJ’s behavior.

5.4 Throughput and Latency Methodology
We run each DaCapo benchmark 20 times, repeating the workload for 5 iterations within each run,

and only report the performance results from the last iteration. This methodology minimizes noise

by thoroughly warming up the compilers and the cache before measuring peak performance. We

report the geometric mean, with 95% confidence intervals across the 20 runs.

We measure request latency distribution on the first eight benchmarks in Table 2. We measure

the user-experienced latency, which captures three major factors. i) the uninterrupted time to

process each request, ii) interruptions due to garbage collection or OS task scheduling, and iii) the

time consumed by request queuing. The DaCapo suite reports two types of latency: simple and

metered. The simple latency captures the first two factors, whereas the metered latency captures
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all three by modelling the effect of a queue. We present metered latency with latency distribution

curves.

We use two methodologies, one for consistency, when comparing with Zhao et al. [29], the other

unconstrained by the limitations of the original LXR.

5.4.1 Comparison with the Original LXR. When we compare LXR𝑂 to the original LXR, we adjust

our methodology to match the prior work. Since the original LXR lacked support for JVM features

discussed in Section 4.1, we disable these features on all GCs.We used the sameDaCapo development

version [2] and heap sizes as those used by Zhao et al. We also adhere to their methodology, which

disables C1, and forces C2 compilation by using the -Xcomp JVM flag. We report both throughput

and latency results across multiple factors of the min-heap, from 1.3× to 6×, as Zhao et al. did. We

limit this comparison to 17 of the 22 DaCapo benchmarks, due to limitations in the original LXR.

We deviate from Zhao et al. by using more performant unexploded OpenJDK builds rather than the

exploded builds they used.

5.4.2 Evaluation of the Optimizations. We evaluate each optimization discussed in Sections 3 and 4,

as well as the cumulative performance improvement of all the optimizations, tweaks, and bug fixes.

We use the latest DaCapo benchmark stable release, chopin-23.11, and report results for all the 22

benchmarks in the suite. We use 2× G1’s min-heap unless otherwise stated. For the cumulative

performance analysis, we compare LXR𝑂 with the LXR𝐹 and report both throughput and latency

results. LXR𝐹 contains only correctness fixes without any performance optimizations, and completes

all 22 DaCapo benchmarks. It is thus a suitable baseline for evaluating the cumulative performance

contributions from the optimizations. To align with the original methodology employed by Zhao

et al., the throughput results are measured on 2× G1’s min-heap, and the latency results are

measured on a 1.3× min-heap. Since the MMTk codebase is implemented with no manually-tagged

inlining hints, we use profile-guided optimization (PGO) on both LXR𝐹 and LXR𝑂 to improve the

inlining decisions. To follow best practices, we train PGO on completely distinct applications. We

train PGO with GCBench [5], which is not in DaCapo. We use the resulting PGO profile to produce

the final binary for evaluation.

5.5 LBO Analysis
We perform a Lower Bound Overhead (LBO) analysis to expose the GC costs of both LXR𝐹 and LXR𝑂 ,

following the methodology described by Cai et al. Our analysis includes all available OpenJDK

collectors except ZGC, which does not support compressed pointers. The LBO methodology

measures overheads as the difference between total cost for a system and an approximation to the
ideal. The approximation to the ideal is found for each benchmark by running with all available

GCs and for each result subtracting all overheads easily attributable to GC, such as STW time,

then finding the fastest among these. We then derive the LBO value for each benchmark as the

ratio of the total wall clock time of each collector to this idealized baseline. We compute LBO

for each collector on each of the 22 DaCapo benchmarks and report the geometric mean across

all benchmarks. We conduct LBO analysis on multiple heap sizes, ranging from 1.3× to 6× G1’s

minimum heap size, to expose the total costs of each GC and the time-space trade-off it makes.

6 Evaluation
6.1 Comparison with the Original LXR
Table 3 replicates Table 5 from Zhao et al. [29] and adds LXR𝑂 , using the modified methodology
described in Section 5.4.1. Consistent with prior results, the original LXR outperforms the other

two production collectors in OpenJDK, from a tight 1.3× min-heap to a generous 6× min-heap.
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Table 3. Reproduction of Table 5 from Zhao et al. plus optimized LXR (LXR𝑂 ). Using the methodology
described in §5.4.1, we report latency and throughput across heap sizes. LXR𝑂 outperforms the state-of-the-art
on latency and throughput. On the left is the geometric mean of 99.99th percentile latency for the eight
latency-sensitive benchmarks and on the right throughput for all benchmarks normalized to G1.

99.99th Percentile Latency (ms) Time/G1
Heap G1 LXR

Zhao et al.
LXR𝑂
Ours Shen G1 LXR

Zhao et al.
LXR𝑂
Ours Shen

1.3× 143.5 98.7 101.2 177.7 1.00 0.98 0.91 1.96
2× 100.1 88.0 80.1 203.8 1.00 0.99 0.94 1.42
6× 103.3 87.0 79.7 111.6 1.00 1.02 0.97 1.07

Our results for G1 and LXR are close to, but not identical to, Zhao et al.’s. The small differences

could be accounted for by different operating systems versions and our use of unexploded builds.

LXR𝑂 outperforms the other collectors on five of the six measures reported in the table. The only

exception is 99.99% latency on a 1.3× min-heap, where LXR𝑂 is slightly worse than the original

LXR by an average of just 1ms, primarily due to noise. LXR𝑂 ’s 99.99% latency is significantly better

than LXR, G1, and Shenandoah on moderate and large heaps.

6.2 Overall Correctness, Throughput, and Latency
We evaluate correctness, throughput, and latency with two variants of LXR:

i) LXR𝐹 , which primarily includes bug fixes and support for missing JVM features, and

ii) LXR𝑂 , which includes fixes for both correctness and performance issues,

and two OpenJDK collectors: G1 and Shenandoah. This comparison and the remainder of the paper

use the methodology from Section 5.4.2.

Correctness. Benefitting from all the fixes discussed in Section 4, both LXR𝐹 and LXR𝑂 correctly

complete all 22 DaCapo benchmarks, compared to the original LXR which was limited to 17.

Throughput. Table 4 reports throughput using a moderate 2× min-heap, relative to the minimum

heap required for G1. The second column reports G1’s total running time in milliseconds and the

remaining four collectors in subsequent columns normalize running times to G1. All collectors

complete all 22 benchmarks. The benchmarks were invoked with compressed pointers enabled,

leading to a reduced memory footprint and thus smaller minimum heap sizes for G1.

On average, LXR𝐹 achieves a 3.1% throughput improvement over G1. This improvement is

substantial compared to the 1% for the original LXR in Table 3. While the two results by necessity

use different methodologies (Section 5.4.1 v Section 5.4.2), this result nonetheless offers a nice

repudiation of the conventional wisdom that once the functional limitations of published research

are addressed, performance results will be less impressive.

The highest gain was observed on xalan, which improved by 43.5%. In contrast, six benchmarks

are slower than G1. The largest is tomcat at a slowdown of 14.8%. We observed that a slowdown in

total STW time dominates the total throughput reduction for these benchmarks. Correctness fixes

to LXR𝐹 result in notable changes in GC behavior in these benchmarks, leading to 46.8% increases

in number of pauses when compared to G1. This STW time overhead suggests potential problems

in GC scheduling. Additionally, the spring benchmark exhibited a 6.2% increase in mutator time

overhead relative to G1. The slowdown in mutator time suggests that the concurrent operations of

LXR, such as concurrent marking and lazy decrements, are less effective in the spring benchmark.
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Table 4. Benchmark throughput with a 2× min-heap and fully featured collectors. We report G1 total
execution time in milliseconds and normalize the other four collectors to G1. We show the best results for
each collector in green and the worst in orange. The confidence intervals (unshown) are less than 1% for most
systems. For three benchmarks – eclipse, kafka, and sunflow – the intervals exceed 5%, with the highest
value on kafka at 15%. The comparison includes G121, which uses OpenJDK 21, the LTS at the time of writing.

Benchmark G1 G121 LXR𝐹
w/o opt.

LXR𝑂
w/ opt. Shen.

cassandra 6 459 0.988 0.983 0.973 1.104
h2 2 875 0.975 1.050 0.956 2.987
kafka 7 023 0.913 1.101 0.928 0.979
lusearch 3 153 1.618 1.062 0.869 14.171
spring 2 551 0.888 1.086 0.914 3.531
tomcat 3 893 1.059 1.148 1.006 2.528
tradebeans 6 921 0.977 1.017 1.070 1.091
tradesoap 4 579 1.018 1.022 0.965 1.162

avrora 4 524 1.459 0.902 0.905 1.018
batik 1 660 0.962 1.054 1.004 0.990
biojava 7 087 0.992 1.002 0.965 1.660
eclipse 12 003 0.885 1.016 1.008 1.015
fop 690 1.050 0.981 0.908 1.491
graphchi 3 413 1.101 0.911 0.910 2.167
h2o 5 343 0.812 0.999 0.897 1.863
jme 6 915 1.003 0.998 0.998 1.005
jython 6 190 0.976 0.971 0.963 1.779
luindex 4 588 0.970 0.946 0.938 1.066
pmd 1 997 0.870 0.970 0.872 1.693
sunflow 4 525 0.954 0.896 0.651 6.955
xalan 3 930 0.812 0.565 0.406 7.536
zxing 1 007 0.843 0.825 0.817 0.950

geomean 0.992 0.969 0.891 1.860

LXR𝑂 exhibited improvements across nearly all benchmarks, achieving an average total time

speedup of 10.9%. xalan saw the most throughput improvement, with a 59.4% increase over G1. The

worst-performing case, tradebeans, exhibited a slowdown of 7.0% compared to G1.

LXR𝑂 shows the greatest improvements over LXR𝐹 on xalan, sunflow, and lusearch, with total

time reductions of 28.1%, 27.4%, and 18.2% respectively. The GC trigger improvements reduced

the number of GC pauses by 41.3%, 29.6%, and 29.9% for these three benchmarks, respectively.

Fewer pauses translate to reductions in total STW time by 38.8%, 30.6%, and 54.6% for these

benchmarks. The sunflow improvement also stems from the new block allocator, resulting in a total

time reduction of 7.8%. xalan and lusearch also benefited from the minor optimizations discussed

in Section 4.5. Optimizations ii) and iii), when combined, lead to total time reductions of 10.8% and

16.0%, respectively. These two optimizations also enhance the throughput for sunflow by 5.6%. The

geometric mean of the throughput improvements of LXR𝑂 over G1 is a surprising 10.9%.

Request Latency. Figure 5 reports the request latency distribution for the eight latency-sensitive

benchmarks, measured on 1.3× G1’s min-heap. LXR𝐹 exhibits significantly worse latency on

six benchmarks compared to G1. On the other two benchmarks, tradesoap and kafka, it shows
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Fig. 5. Request latency curves on 1.3×min-heap. The y-axis plots latency in milliseconds, while the x-axis
plots the percentile of requests of that latency. For instance, ‘90’ on the x-axis corresponds to the latency
observed by the 90th percentile of requests. Each solid line denotes the average latency from 20 invocations,
accompanied by a shaded area that illustrates the 95th percentile variance.
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comparable latency to G1. This trend suggests that addressing correctness issues and adding missing

platform features led to latency regressions.

With all the performance fixes, LXR𝑂 demonstrated improved latency over LXR𝐹 across all

eight benchmarks. h2 exhibits the most significant improvement, achieving reductions of 82.9%

respectively in 99.99% tail latency compared to LXR𝐹 . The substantial improvement is mainly due to

the 53.9% fewer pauses, and a 49.9% reduction in total pause time. We believe this result is primarily

attributable to the minor fixes discussed in Section 4.5, which significantly reduce both latency and

pause time. Similarly, on lusearch, LXR𝑂 exhibits a 71.3% reduction in total pause time compared

to LXR𝐹 , leading to a 81.9% decrease in 99.99% tail latency.

Nevertheless, the tail latency beyond the 99% mark for both LXR𝐹 and LXR𝑂 on h2 is still worse
than G1. As illustrated in Figure 1, we believe that the large RC pause following each SATB cycle is

a major contributor to the high tail latency. We observed that these relatively longer RC pauses are

due to both a substantial allocation volume and a high survival rate. The longer pauses are likely a

consequence of the aggressive class and WeakProcessor unloading policy we added to LXR, which

may force certain objects to be recreated frequently, thereby leading to increased GC pressure. We

intend to address this issue in our future work.

6.3 Lower Bound Overhead
Figure 6 presents the geometric mean of the lower bound overhead (LBO) [6] on each collector

for each of the 22 benchmarks, relative to the approximation to the ideal collector. We evaluate

seven collectors, including LXR𝐹 , LXR𝑂 , and four OpenJDK collectors. The LBO results explore

heap sizes range from 1.3× to 6× the minimum heap size of G1. Each line in the figure represents

the LBO results for a single collector across all evaluated heap factors.

G1’s time overhead is 62.9% with the smallest 1.3× heap and reduces to 32.3% with a moderate 2×
heap. As the heap headroom increases, G1’s overhead further decreases, reaching 14.6% with the

6× heap. Contemporary collectors like Shenandoah have higher overhead than G1 at all heap sizes.

In contrast, LXR𝐹 and LXR𝑂 deliver lower overhead than all OpenJDK collectors across all heap

sizes. LXR𝐹 ’s overhead is 61.2% for the 1.3× heap, 1.7% lower than G1’s overhead. The minimal

overhead observed for LXR𝐹 is 13.3%, achieved with the largest 6× heap. LXR𝑂 further reduces

overhead compared to LXR𝐹 and has an overhead of only 37.1% on the 1.3× heap. With the largest

6× heap, LXR𝑂 incurs an overhead of 10.1%, the lowest among all collectors evaluated. With a

2× heap, LXR𝑂 ’s overhead is 18.7%, close to G1’s overhead with a 4× heap (17.8%). This indicates

that LXR𝑂 is sufficiently efficient to achieve a similar GC overhead as G1 while operating on a

significantly smaller heap — nearly half the size. These findings influenced our decision to use half

of G1’s heap size for both LXR𝐹 and LXR𝑂 , to address virtual space fragmentation issues on LSJ

(Section 4.2) without incurring a significant performance penalty.

6.4 Comparison with OpenJDK 21
Blackburn et al. [3] found that G1 in OpenJDK 21 (G121) achieves the best performance and lowest

GC overhead on most DaCapo benchmarks when compared to other OpenJDK 21 collectors.

(Remember that LXR is not yet ported to OpenJDK 21.) Consequently, we include G121 in Table 4

and Figure 6 as the reference production state-of-the-art OpenJDK collector.

As shown in Table 4, G121 delivers throughput slightly better than in OpenJDK 11, just a 0.8%

improvement. Individual benchmarks show significant variations. For instance, xalan has a 18.8%

improvement, while lusearch shows a 61.8% slowdown. Figure 6 shows a similar trend — the average

total time overhead of G111 and G121 are similar across all heap sizes.
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When compared to G121, LXR𝑂 still achieves a notable 10.2% throughput improvement on the

2× min-heap. LXR𝑂 also consistently outperforms G121 on all heap sizes in terms of total time

overhead. On the largest 6× heap, G121’s overhead is 15.2%, while LXR𝑂 ’s overhead is only 10.1%.

We also evaluated the total time for G1 in OpenJDK 24 on the same 2× min-heap. At the time

of writing, OpenJDK 24 is the most recent available version. Three out of the 22 benchmarks —

cassandra, tradesoap, and tradebeans— do not complete with G124 due to their use of deprecated

APIs. On the remaining 19 benchmarks, G124 achieves a geometric mean throughput improvement

of 3.8% over G111, whereas G121 provides only a 0.9% improvement. Nonetheless, LXR𝑂 continues

to surpass G124, with a 9.1% throughput improvement.

These results indicate that LXR𝑂 , implemented on OpenJDK 11, delivers performance competitive

or superior to the latest available OpenJDK collectors. Furthermore, the many non-GC-related

performance enhancements introduced in OpenJDK 24 will benefit applications using LXR𝑂 once

MMTk is ported to OpenJDK 24.

6.5 LSJ in Production
We evaluated all of the optimizations and fixes on LSJ. The most impactful fix was addressing the

virtual space fragmentation, as discussed in Section 4.2, which efficiently eliminated out-of-memory

errors. Subsequent correctness fixes further enhanced stability, allowing LSJ to use LXR𝑂 for days

under load without incident.

We observed a significant reduction in LSJ’s tail request latency with LXR𝑂 compared to LXR𝐹 .

Following the implementation of the concurrent marking performance fix discussed in Section 3,

LXR𝑂 ’s tail latency approached that of the modified baseline G1, with only a minor slowdown. This

minor regression was attributed to the less-optimized lazy RC decrements, which could occasionally

slow down and block other GC tasks. By disabling the lazy processing of RC decrements, LXR𝑂 ’s

tail latency became competitive with the modified G1.

Given that we compared our LSJ results with a highly customized and optimized G1 that only

performs young GC, LXR’s final delivered performance was very encouraging. Our findings show a

productization pathway that delivers on correctness and performance while advancing performance

on standard benchmarks. Nonetheless, some issues discussed in Section 4 are not fully resolved. We

believe that resolution of these issues will likely yield even better performance, both on benchmarks

and in our production environments. We believe that resolving these remaining tail latency issues,

coupled with the significant memory savings and the elimination of the need for server redirection,

will be sufficient to launch in production.

Fig. 6. The average lower
bounds on collector overheads
across all benchmarks. Follow-
ing the LBO methodology [6],
all results are compared to an
estimated ideal collector with no
GC overhead. Each line indicates
the geometric mean LBO overhead
across all 22 benchmarks on heap
factors ranging from 1.3× to 6×.
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7 Lessons
Beyond performance and correctness improvements in production, a valuable outcome of our work

is transferable lessons for future productization processes.

Lesson 1. A systematic combination of research and production methodologies can meet production
objectives while simultaneously advancing the research state-of-the-art.

Our productization process is iterative and each iteration ensures that neither production nor

research objectives regress. We systematically employed a pathology mapping process to readily

identify and address performance issues found in the production environment. This approach

deviates significantly from the traditional practice of tuning an OpenJDK GC in production —

besides benefiting the production workload, it can simultaneously improve the research algorithm

and in our case, led to improvements in research benchmark suites.

Action 1. When performance-tuning a research innovation for a production workload, use standard
research benchmarks systematically to rapidly highlight inadvertent regressions.

Lesson 2. A benchmark suite need not contain facsimiles of production workloads. It is sufficient that
the suite can replicate individual pathologies that manifest in production.

Reproducibility is necessary for any debugging process, including production debugging. However,

we demonstrate that simply replicating individual pathologies, rather than completely reproducing

the issues, is sufficient and effective for production debugging, with the aid of our pathology

mapping process. For example, high class unloading time is not a performance bottleneck in the

DaCapo benchmark suite; thus, no benchmark can fully reproduce the pause time slowdown caused

by slow class unloading. Once we captured the related pathology in some of the benchmarks,

subsequent analysis and debugging became straightforward. Sometimes we configured the JVM dif-

ferently to force a benchmark into the pathology. Our results illustrate that a systematic debugging

methodology and a sufficiently diverse benchmark suite such as DaCapo are effective at capturing

production performance issues without altering the workloads, even when reproducibility and

observability are limited.

Action 2. Benchmark suite contributors and maintainers should prioritize diversity and breadth of
coverage when building suites, maximizing the space of performance pathologies the suite covers.

Lesson 3. Productization experiences can and should strengthen research workloads; we upstreamed
one such improvement.

Productization enhances both production and research workloads. In our case, we discovered that

our pathology mapping process failed to immediately capture the virtual memory fragmentation

issue (Table 1) on the DaCapo benchmarks. Consequently, we modified a benchmark (h2) to require
substantially greater heap usage. As part of the mapping process, we also performed detailed

analysis on each benchmark, enhancing our understanding of the benchmark behavior. These

improvements have been upstreamed to the DaCapo benchmark suite, providing the research

community with a strengthened and more comprehensive benchmark suite.

Action 3. When benchmark users identify a gap in a suite’s coverage, they should prioritize con-
tributing a workload that addresses that gap.
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Lesson 4. The requirements of a production environment are myriad and sometimes prosaic, extending
well beyond those that can reasonably be addressed in a research paper.

Research ideas and evaluations are built upon abstraction and simplification. They allow researchers

to clearly shape a research idea within a less complex scope and work on the core problem with less

interference from corner cases found in a production environment. Therefore, it is neither necessary

nor feasible to address all production issues in a research paper — doing so would significantly

complicate any research project and distract researchers from core problems. Our takeaways from

this tension are that i) researchers need not address all production concerns in a research project,

and should not be penalized for it, but they should clearly list the limitations of their research work.

Thus, ii) a subsequent productization process will be necessary to fill these gaps, and based on our

experience, may also result in further improvement over the original research.

Action 4. Reviewers should respect the value of research which does not manifest in a system that is
engineered to production standards.

Lesson 5. Replacing core technology in industry is a challenging sociotechnical problem.

Adopting new technology in industry involves more than just technical challenges [7]. Many

companies are reluctant to adopt new algorithms due to factors such as long-term maintenance

costs, restricted and specialized production environments, real or imagined risks, or commercial

concerns. Although we address key issues related to the specialized environment by introducing a

pathology mapping process, our work is not yet deployed in production.

Action 5. Researchers and reviewers should not interpret the failure of industry to embrace a research
innovation as evidence of weakness of the idea.

8 Discussion
Benchmarks. Many important languages including Python, JavaScript, Rust, and Go, lack widely-

used, rich, representative benchmarks of the kind that were central to the productization process

we undertook. On the one hand, one might say that this limits the transferability of our approach.

On the other hand, we would argue that this highlights just how important it is that the community

(academia and industry) invest in widely available, representative benchmark suites for all of these

important languages. We hope that the community will note how well Java and C have been served

by their benchmark eco-systems, and acknowledge the value in continued investment in keeping

them up to date and representative.

Productization Dividend. We invite the community to think carefully about the ‘productization

dividend’ and its effect on the peer review process. We are not aware of other accounts that quantify

this effect, so we do not know how representative the 10% that we observe is. However, it is

clear that in this domain, at least, the dividend is substantial enough to introduce bias into our

research priorities. As we observed at the start of this paper, it seems plausible that researchers are

implicitly advantaged if they can exploit the dividend already built into the highly tuned systems

that define the status quo. If the status quo is engineered monolithically, in such a way that entirely

new ideas cannot be readily built on it, then incremental work will tend to carry a substantial

advantage over entirely new work, which does not bode well for innovation. Perhaps the research

community should explicitly set performance expectations differently for entirely new ideas? We

do not have answers to this dilemma, but we believe that the research community, particularly in

areas where mature products define the state-of-the-art, would do well to consider whether the

effect we describe is real and if so, how to mitigate it in such a way as to ensure innovation can

thrive.
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9 Conclusion
The goals of clarity and generality in research often render research outcomes less suitable for

complex and specialized production environments. Consequently, a translation process is essential

to bridge the gap between research advances and production-readiness. Even when this translation

occurs, the process rarely appears in the literature, so the nature of the gap and techniques for

bridging it tend not to be well known, likely impeding translation.

We use the LXR garbage collector as a case study to systematically discuss our experience in pro-

ductizing a research artifact in a complex industry workload. We show that our problem resolution

methodology efficiently addresses issues in production and show that it significantly improved

the correctness and performance of the LXR collector, resulting in a runtime that outperforms

the mature state of the art by more than 10%. Our methodology and lessons demonstrate how the

translation process can feed back and enhance both the project itself and other research tools in

the broader systems community, such as standard research benchmark suites. The productization

dividend of 10% that we experienced is itself interesting, and raises questions about how the peer

review process evaluates novel work when the state-of-the-art is mature and highly productized.

10 Data-Availability Statement
Our source code, the DaCapo benchmark suite, and detailed instructions for reproducing our results

are publicly available [30, 31].
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