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Garbage collection (GC) implementations must meet efficiency and maintainability requirements, which are
often perceived to be at odds. Moreover, the desire for efficiency typically sacrifices agility, undermining
rapid development and innovation, with unintended consequences on longer-term performance aspirations.
Prior GC implementations struggle to: i) maximize efficiency, parallelism, and hardware utilization, while
ii) correctly and elegantly implementing optimizations and scheduling constraints. This struggle is reflected
in today’s implementations, which tend to be monolithic and depend on coarse phase-based synchronization.

This paper presents a new design for GC implementations that emphasizes both agility and efficiency.
The design simplifies and unifies all GC tasks into work packets which define: i) work items, ii) kernels that
process them, and iii) scheduling constraints. Our simple insights are that execution is dominated by a few
very small, heavily executed kernels, and that GC implementations are high-level algorithms that orchestrate
vast numbers of performance-critical work items. Work packets comprise groups of like work items, such as
the scanning of a thread’s stack or the tracing of a single object in a multi-million object heap. The kernel
attached to a packet specifies how to process items within the packet, such as how to scan a stack, or how to
trace an object. The scheduling constraints express dependencies, e.g. all mutators must stop before copying
any objects. Fully parallel activities, such as scanning roots and performing a transitive closure, proceed with
little synchronization. The implementation of a GC algorithm reduces to declaring required work packets,
their kernels, and dependencies. The execution model operates transparently of GC algorithms and work
packet type. We broaden the scope of work-stealing, applying it to any type of GC work and introduce a novel
two-tier work-stealing algorithm to further optimize parallelism at fine granularity.

We show the software engineering benefits of this design via eight collectors that use 23 common work
packet types in the MMTk GC framework. We use the LXR collector to show that the work packet abstraction
supports innovation and high performance: i) comparing versions of LXR, work packets deliver performance
benefits over a phase-based approach, and ii) LXR with work packets outperforms the highly-tuned latest
(OpenJDK 24), state-of-the-art G1 garbage collector. We thus demonstrate that work packets achieve high
performance, while simplifying GC implementation, making them inherently easier to optimize and verify.
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(a) Immix with phases
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(b) Immix with work-buckets

1 # GC workers main execution loop
2 def thread_main():
3 loop:
4 # Fetch a packet
5 loop:
6 p = get_or_steal_packet()
7 if p != null:
8 break
9 sleep()
10 # Execute the packet
11 p.execute()
12 # Update the bucket
13 b = get_bucket(p)
14 b.remaining_packets -= 1
15 if b.remaining_packets == 0:
16 bucket_is_empty(b)
17
18 def bucket_is_empty(bucket: Bucket):
19 # Try to activate child buckets
20 for s in bucket.successors:
21 if s.all_predecessors_empty():
22 # Activate the bucket
23 succ.activate()

(c) Work packet scheduling pseudo code

Fig. 1. Simple phase-based scheduling limits parallelism. Dependency graphs with (a) traditional phases
(in rectangles), (b) work packets (in rounded corners) for Immix, and (c) pseudo code for work packet scheduling.
The edges indicate the dependencies. Scan Roots and Reset Mark Table can execute concurrently.

1 Introduction
Garbage collection (GC) algorithms are performance-critical components of managed runtimes. A
highly optimized GC implementation is of course essential for achieving high application perfor-
mance. On the other hand, GC implementations are part of large and complex runtime systems, so
agile, maintainable software design and correct implementation are equally critical. Modern GC
implementations often fail to meet both requirements. Consider the mature high performance G1
and Parallel GC algorithms in OpenJDK [14]. First, they address efficiency through distinct,
highly-specialized, monolithic implementations, with carefully optimized hot code paths.
Both GCs have their own highly optimized implementation of the transitive closure [33, 36], despite
their very similar implementations. Their monolithic designs make it difficult to reuse code and
optimizations across different GC algorithms. Second, they address high-level correctness by
using synchronous phases that ensure temporal ordering across each step of the GC algorithm.
Figure 1(a) shows an example of sequential phase ordering using Immix [6] which is indicative
of both OpenJDK and MMTk collectors. In a phased approach, all GC worker threads must, for
example, finish Transitive Closure before Sweep Blocks to ensure correctness. Synchronization
barriers between phases are unavoidable for correctly ordering phases, introducing unnecessary
synchronization overhead and suboptimal load balancing. Third, they make it difficult to in-
novate and to integrate systematic performance analysis or verification tools due to their
monolithic design and the algorithm-specific phases. Such tools are challenging to share across
different GC algorithms and require extra engineering effort to integrate into each algorithm.
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Fig. 2. 92–99% of GC execution is concentrated in 5% of GC code. Cumulative distribution of execution
time for different instructions that GC worker thread execute in G1, Immix, and LXR, measured at instruction
cache line (64 B) granularity. The point (0.01, 0.95) on the Immix curve indicates that 95% of samples are in
the top 1% of cache lines, i.e., 1% of code accounts for 95% of execution time.

In this paper, we introduce a new work packet design based on two insights.

i) Most performance-critical GC work is concentrated in a few lines of code.
ii) Phases introduce unnecessary synchronization.

Figure 2 shows the evidence for the first insight. We sample instructions executed by GC worker
threads for three GC algorithms: G1, Immix, and LXR in OpenJDK [6, 14, 62, 65]. We plot the
distribution of instruction hotness at cache line (64 B) granularity. These GCs spend 92–99% of their
execution time in 5% of the code. This 5% encompasses core performance-critical GC components
such as transitive closure and GC metadata access. GC execution is thus highly concentrated. In
addition, key kernels are generic to most GC algorithms, e.g., they inspect GCmetadata and perform
tracing, suggesting potential for sharing implementations across multiple algorithms.
Our second insight is that the traditional phase ordering does not fully exploit available paral-

lelism. For example, scanning roots does not depend on clearing the mark table and not all roots
need to be scanned in order to start the transitive closure, as depicted in Figure 1(b). However,
some work does have dependencies. For example, all mutator threads must stop before the GC may
move any object (unless the collector supports concurrent copying).
Motivated by these insights, we rethink GC design by distilling performance-critical

code into a kernel-centric GC execution model. This design seeks to maximize efficiency and
maintainability. We break down algorithm-specific GC tasks and phases into algorithm-independent
work packets. Each work packet contains a set of fine-grained work items, a small kernel that
processes them, and dependencies that determine when to schedule them. For example, a work
packet may contain a single mutator stack work item, a stack scanning kernel, and a dependence
on mutators being stopped. A scan stack work item may generate many trace object work items.
We build an execution model that respects dependencies while maximizing parallelism, as shown
in Figure 1(b). For example, by removing the synchronization barrier between Scan Roots and
Transitive Closure, a root scanning packet will generate transitive closure work items while it
identifies root pointers, and any idle workers will immediately pick the packets up and perform
tracing without waiting for all root scanning to complete. GC worker threads are entirely work-
agnostic. Whenever idle, they simply pick up any ready work packet and invoke its kernel.
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By introducing a unified work packet runtime, we automatically broaden the scope of work-
stealing to apply to any type of GC work, not only the transitive closure. In contrast, existing
OpenJDK collectors perform work stealing only during the transitive closure. We introduce a
two-tier work-stealing algorithm in which worker threads steal coarse- and fine-grained work
items from other workers, enhancing parallelism beyond coarse-grained work packet stealing. In
the common case, GC workers consume work packets from their local queues. Idle workers may
steal either one packet or a single work item from other workers’ local queues. The rationale is
that neither packets nor work items are always the right granularity for work stealing. When work
packets infrequently generate new work packets because the heap shape is such that they consume
most of the work that they produce, coarse-grained packet stealing is inefficient. Stealing just one
item from the packet in this situation can significantly improve load balancing, but only operating
at a fine grain is expensive, hence our two-tier approach.

We implemented our design in two stages. First, we implemented an initial version of the work
packet runtime that uses coarse synchronization between phases, and contributed it to the Rust
MMTk GC framework [50]. Then, we implemented a series of optimizations including work packet
dependencies and two-tier work stealing that expose and exploit more parallelism, which we
evaluate here and plan to contribute. We evaluate the software engineering and performance
benefits of work packets in this context.

For the software engineering benefit, we show that the work packet design achieves high kernel
reuse between algorithms. MMTk implements eight collectors with work packets. All together the
collectors instantiate a total of 49 unique work packet types. Seven collectors require zero to three
unique work packet types. Only one collector (LXR) uses more, at 15 unique types. LXR is the only
reference counting collector, so this result is expected. The eight collectors share 23 or more work
packet types, demonstrating many kernels are common and reusable (Table 2).

For the performance evaluation, we have two parts. i) An apples-to-apples comparison of Immix
and LXR with three work packet versions: phased based, fine-grain dependencies, and two-tier
work stealing in OpenJDK 11, and ii) a comparison of LXR in OpenJDK 11 to G1 in OpenJDK 11, 21,
and 24. For part one, we show that both fine-grain dependencies and two-tier work stealing improve
both Immix and LXR garbage performance and total performance on the DaCapo Benchmarks. For
example, total performance for Immix improves by 6% and stop-the-world time improves by 10%
on a tight heap (Table 6). For part one and two, we ideally would also compare apples-to-apples: a
single collector implemented both with the work packet runtime and with a traditional monolithic
implementation. Unfortunately, re-engineering a highly-optimized monolithic production collector
such as G1 to use a modular work packet framework is likely a multi-year effort and thus impractical
and out of scope. Likewise, because our initial design was integrated into MMTk in OpenJDK 11
early in its development, such a comparison within MMTk is also out of scope. We therefore
compare the best MMTk collector, LXR, to G1, the state-of-the-art monolithic system. LXR is
implemented in OpenJDK 11 and we compare to G1 in OpenJDK 11, 21, and 24. At the time of
writing, OpenJDK 21 is the latest long term support release and we have not finished porting MMTk
to OpenJDK 21. LXR outperforms all versions of G1 by at least 6% in total execution time on a
moderate heap size and by at least 40% in GC time. These results demonstrate that a collector built
with work packets can outperform the state-of-the-art collector.

In summary, this paper contributes work packets, a new abstraction for GC implementation which
achieves state-of-the-art performance while simplifying GC implementation. Work packets achieve
high performance via kernels that are easy to optimize and schedule. The abstraction simplifies GC
implementation through modularity, creating high code reuse, minimizing algorithm-specificity,
facilitating verification and encouraging the exploration of innovative GC designs.
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2 Background and Related Work
2.1 Phase-Based GC Design in OpenJDK
OpenJDK is the most widely used Java virtual machine implementation and includes a number
of high-performance garbage collectors. The Garbage-First (G1) collector [14] was introduced
in JDK 1.6 and subsequently became the default GC in JDK 9. G1 is a region-based generational
collector. It divides the heap into fixed-sized regions and, in the common case, performs young GC
pauses to collect the newly allocated regions, copying nursery survivors. G1 also performs mixed
GC with concurrent marking or full GCs to collect mature regions.

G1 and other OpenJDK GCs organize high-level tasks as a list of sequentially-ordered function
calls. Each function call can be considered a standalone phase, launching GC workers to perform a
specific high-level task in parallel, and synchronizing before moving to the next step. For example,
G1’s young GC pause has the following phases: i) root scanning, ii) remembered set scanning,
iii) transitive closure-based evacuation, iv) weak reference processing, v) weak processor processing,
and vi) optional string deduplication (disabled by default).
Within phases i) to iv), multiple worker threads execute in parallel. Only one thread exe-

cutes phases v) and vi). Except for the transition from phase ii) to iii), synchronization bar-
riers between each phase ensure sequential ordering [34, 35]. Although this phase-based de-
sign simplifies implementing GC algorithms and enforces temporal correctness constraints, it
introduces unnecessary barriers and single-threaded phases, hindering parallelism (Section 6).

Listing 1. A simplified phase-based execution
model for Immix in JikesRVM’s MMTk. Immix
pre-defines a list of phases, calling collectionPhase

once per phase in order with all GC workers syn-
chronizing before moving to the next phase.

1 void collectionPhase(short phaseId,

2 boolean primary) {

3 if (phaseId == PREPARE && primary) {

4 immix.prepare();

5 return;

6 }

7 if (phaseId == STACK_ROOTS) {

8 VM.scanning.computeThreadRoots();

9 return;

10 }

11 if (phaseId == ROOTS) {

12 VM.scanning.computeGlobalRoots();

13 VM.scanning.computeStaticRoots();

14 VM.scanning.computeBootImageRoots();

15 return;

16 }

17 if (phaseId == CLOSURE) {

18 currentTrace.completeTrace();

19 return;

20 }

21 if (phaseId == RELEASE && primary) {

22 immix.release();

23 return;

24 }

25 }

Although OpenJDK native collectors express their
phases as clearly separated function calls, this sep-
aration is unrelated to code reuse — each phase is
specialized and built monolithically, without shar-
ing of common components among collectors. In
Section 4, we show that our work packet runtime
significantly improves code reuse and maintain-
ability by building most GC components in an
algorithm-neutral way and sharing them across
multiple GCs.

2.2 MMTkJ: Phase-Based Design
MMTk is a memory management toolkit [5] that
was originally implemented in JikesRVM [1] and
systematically used a phase-based design for all of
its garbage collectors. In contrast to OpenJDK, its
implementation was highly modular with a major
focus on code reuse and its phases were reused
across GCs. Listing 1 illustrates a simplified list
of phases for JikesRVM’s implementation of the
Immix GC [6]. Each GC collection is divided into
multiple phases. Some phases, such as PREPARE and
RELEASE, are global phases that are executed once
by a single worker thread (i.e., the primary thread).
Other phases are run in parallel by all available
worker threads. Similar to OpenJDK, JikesRVM
phase execution is sequentially ordered with syn-
chronization barriers between each phase.
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2.3 MMTkR: OpenJDK and Other Runtimes
In 2020, MMTk was rewritten in Rust as a standalone GC library that is now connected to multiple
virtual machines, including JikesRVM, OpenJDK, V8, Ruby, and Julia [13, 48, 51, 52, 57]. We refer
to this new version as MMTkR, and the JikesRVM version as MMTkJ. Our work is undertaken in
MMTkR.

We contributed our initial phase-oriented work packet runtime to MMTkR and all of the MMTkR
collector implementations use it today [60]. Our initial implementation uses phases rather than gen-
eralized work packet scheduling and it lacks work stealing. More recently we added: i) fine-grained
dependencies, and ii) two-tier work-stealing, which we will contribute to MMTkR. Throughout the
remainder of the paper, we consider three variants of MMTk.

i) MMTkP implements our Phase-based work packets and work-packet stealing. (MMTkP is
identical to MMTkR with the addition of instrumentation features.)

ii) MMTkD implements fine-grained Dependencies on top of MMTkP.
iii) MMTkS implements both fine-grained dependencies and two-tier work-Stealing.

The contributions described in this paper comprise the entire design and implementation of the
work packet runtime, including the implementation already upstreamed to MMTk.

2.4 OpenJDK 11 and Later Versions
Although a port of MMTk to OpenJDK 21 is underway, MMTk’s OpenJDK binding currently only
supports OpenJDK 11. Therefore, we implement our systems using OpenJDK 11 and use both
MMTkP and G1 in OpenJDK 11 as baselines for our evaluation. At the time of writing, OpenJDK
21 is the latest long-term support (LTS) release, while OpenJDK 24 is the most recent version. In
Section 6.2, we show that when using G1, OpenJDK 21 improves over OpenJDK 11 in terms of
throughput by 5.1% and 3.2% with heap sizes of 1.5× and 2× the minimum required, respectively.

2.5 Immix and LXR
We use Immix and LXR, two high performance GCs, to demonstrate the work packet runtime [6, 62].
Immix is a stop-the-world full-heap tracing collector that uses a two-tier mark-region hierarchical
heap structure, consisting of blocks, divided into lines, to manage memory [6]. The Immix imple-
mentation in MMTkP retains a phase sequence similar to the original implementation in MMTkJ,
as shown in Figure 1(a), but it implements work packets within each phase.

LXR is a state-of-the-art garbage collector implemented in MMTkR [62, 65]. It leverages reference
counting with backup concurrent marking to achieve high throughput and low request latency.
Like other collectors in MMTkR, LXR is built on the work packet runtime, organizing tasks as work
packets and distributing them as phases. LXR shares 26 work packet types with other collectors in
MMTkR, such as the root scanning and weak reference processing packets (see Section 4). Work
packets implement mechanisms but are algorithm-oblivious, with the 26 common packets shared
by almost all collectors in MMTkR. Any GC that requires these work packets types can directly
reuse and instantiate them without modification. In this work, we port Immix and LXR to our new
work packet implementations, MMTkD and MMTkS, and evaluate their performance.

2.6 Work Stealing
Work stealing [7] is a technique for scheduling tasks efficiently across multiple worker threads
by allowing idle workers to ‘steal’ work from busier workers, maximizing CPU utilization and
parallelism. This technique is widely implemented in several language runtimes, including Cilk [19]
and X10 [9], and is adopted in application-level parallelism libraries such as Intel oneTBB [45]. Our
algorithm is implemented as part of the MMTk framework.
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Garbage collectors often use work stealing to enhance load balancing during tracing. It allows
idle worker threads to steal objects from the mark stacks of other workers [38–40], improving
overall CPU utilization, especially when tracing irregular heap shapes. OpenJDK uses a modified
ABP-style deque (double-ended queue) [2]. Each GC thread maintains a local deque as the local
mark queue for the transitive closure. The deque has a both public end for stealing and a private end
for the owner, effectively reducing contention between the stealers and the victim. In the common
case, workers push and pop items from the deque’s private end during heap traversal. When the
deque is empty, workers steal items from other workers’ public ends. The ABP-style deque uses
fixed-sized arrays, limiting the number of stored items. The Chase-Lev algorithm [10] solves this
problem by dynamically resizing the deque, but it introduces contention overhead due to an atomic
buffer resizing operation. Instead, we incorporate a resizable private stack for overflow items. The
private stack is not visible to other workers, thus operations on it do not require synchronization.
This design avoids the contention cost associated with frequent stack operations but limits available
items for stealing. This design is also used by OpenJDK’s native collectors [37].

Work Stealing in ZGC. ZGC performs work stealing differently. Instead of using a work-stealing
deque and stealing items one at a time, ZGC maintains each local mark stack as a set of mark stack
segments. By default, one segment can hold up to two thousand object references. Starved workers
steal an entire segment at a time from other workers’ local mark stacks instead of just one item [40].
This design reduces contention overhead associated with frequent stealing operations, though its
coarse stealing granularity may lead to suboptimal load balancing.

Work Stealing in MMTkR. Similar to ZGC, the work packet design in MMTkR and MMTkP
implements a stack of work items in each transitive closure work packet. Idle workers steal one
packet of any type from other workers, not limited to transitive closure. We thus broaden the scope
of work stealing by exposing parallelism across all parts of the GC. We further enhance this design
by introducing a two-tier work-stealing algorithm. Workers may steal either a coarse-grained work
packet or a single work item to maximize load balancing. Section 3.3 presents our approach.

2.7 Other Related Work
Our GC task scheduling system manages a set of fine-grained parallel tasks across multiple workers.
The systemmaintains dependencies between tasks to ensure correctness, while also bulk processing
tasks to improve throughput. Ossia et al. [42] proposed a GC algorithm that uses a similar scheduling
approach, grouping heap pointers into packets to improve load balancing during marking. In
contrast, our design goes beyond partitioning of work to provide a general abstraction for GC
implementation. As such, it is algorithm-agnostic and applies to the entire GC process, not just
marking, and it associates a kernel and dependencies with each packet. Our abstraction can support
any GC algorithm and enhances software engineering by improving code reuse and maintainability.

Our design adheres to data-oriented design principles. Other systems use a similar design pattern.
For example, the Vector Packet Processor [54] batch processes network packets of the same type to
improve throughput and cache locality. Similarly, the soft update algorithm in file systems [20]
reduces synchronous updates by tracking fine-grained job dependencies. Different from these
systems, our work-packet scheduler must handle the generation of new work items and packets.
Also related to work packets is Miao et al.’s execution model for stream processing [29]. They

group stream records as cascading containers, and schedule them in parallel under the constraints
of local container dependencies. Although we have similar multi-level task granularity, our design
has a completely different execution model which necessitates a different dependence tracking
mechanism (called work buckets) to ensure correct task ordering. We also introduced a novel
multi-granularity work stealing algorithm to further improve load balancing.
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3 Design
Our implementation consists of the following components. Work packets encapsulate work
items, the kernels that process them, and scheduling dependencies. Work buckets manage packet
dependencies and execution order without explicit synchronization. A simple runtime manages
scheduling and parallel execution.Tools analyze work packet performance and perform verification.

Weuse work packets to execute all GC tasks, includingmutator yielding, root scanning, remembered
set processing, sweeping, and more. One or more work-agnostic worker threads executes all GC
work. They loop indefinitely acquiring and processing available work packets. With this structure,
we instantiate the entire GC algorithm as a collection of work packets and their execution order
constraints. Concretely, MMTk uses the work packet runtime to implement eight collectors that
have a mixture of stop-the-world and concurrent execution elements (Table 2).

We next discuss the complete design that covers all four components, and explain how they are
integrated to create a GC implementation that is both efficient and general.

3.1 Work Packets
A typical GC collection epoch may process many millions of work items. Coarse grained work
items such as stack scanning may take microseconds, while fine grained work items like marking an
object take just nanoseconds. Efficiently scheduling a sea of heterogenous work items is challenging.
To address this challenge, we introduce work packets as the default unit of scheduling. Each work
packet contains one or more work items, with packets sized large enough to garner locality and
amortize fixed costs, but not so large as to inhibit load balancing. We design work packets to
include the processing kernel for their work items, such that our GC workers can be oblivious to
work-packet type, allowing them to process any ready work packet.

3.1.1 Work Items. We break down all work required by a GC into units called work items. Each item
is the smallest unit of work of a given type that can be processed by a single thread. An example of
a large work item is scanning one mutator stack. An example of a small work item is marking the
reference to one heap object. By abstracting the concept of work items and generalizing it to all
types of GC work, we more easily transfer optimizations between GC components. For example,
work stealing generalizes to any work type and is not limited to objects in the transitive closure
(see Section 3.3).

3.1.2 Kernels. Each work packet has a kernel for processing its work items. A kernel is a fully
general Rust function, with an inner loop that, for example, might be just a few lines of code that
mark an object, or a call to a runtime-specific C++ implementation of stack-scanning. Each kernel
processes work items and may generate new work items of the same or different type. For instance,
a kernel for stack scanning consumes a mutator stack, scans it, and produces work items for the
transitive closure. This kernel’s responsibility is limited to root scanning. It generates work items
of another type, which will ensure that all of the pointers it discovers are processed. By limiting the
scope of the kernel strictly to processing its homogenous work items, we keep the kernel as small
as possible. For example, the transitive closure’s hot path (L17-24 in Figure 3(a)) contains seven
lines of highly optimized code. This design encourages developers to write short, concentrated
code leading to implementations that are easy to write, maintain, and optimize.
Because kernels are just functions that operate over work items, they are very flexible. For

example, one can simply replace the Stack data structure (L2 in Figure 3) with a FIFO queue to
process work items in breadth-first order instead of depth-first.

3.1.3 Dependencies. We implement work packet dependencies by associating work packets with
work buckets (Section 3.2). A work bucket captures all packets that share the same dependencies.
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1 class TransitiveClosurePacket:
2 stack: Stack[Address]
3
4 # Create a new packet on overflow
5 def flush_half_stack():
6 half_stack = split_stack(stack)
7 spawn TransitiveClosurePacket(
8 half_stack
9 )
10
11 # Push a newly discovered item to the
12 # private stack
13 def push_item(slot: Address):
14 stack.push(slot)
15
16 # Mark the object and scan fields
17 def process_item(slot: Address):
18 o = slot.load_object()
19 if o.is_null(): return
20
21 if o.attempt_mark():
22 for f in scan_fields(o):
23 push_item(f)
24 if overflow:
25 flush_half_stack()
26
27 def execute():
28 # Drain the private stack
29 while !stack.empty():
30 slot = stack.pop()
31 process_item(slot)

(a)Without two-tier work stealing

1 class TransitiveClosurePacket:
2 stack: Stack[Address]
3 ...
4
5 # Push to work-stealing deque first to
6 # make them visible to other threads
7 def push_item(slot: Address):
8 if !TLS.item_deque.push(slot):
9 stack.push(slot)
10
11 def execute():
12 while !stack.empty() and !TLS.

item_deque.empty():
13 # Drain both the stack
14 # and TLS deque
15 while !stack.empty() and \
16 !TLS.item_deque.empty():
17 s = pop_from_stack_or_tls()
18 process_item(s)
19 if there are pending packets:
20 # Finish this packet
21 # so the worker
22 # will work on other packets
23 return
24 # No available packets.
25 # Try to steal items.
26 try_steal_items()
27
28 class ThreadLocalStorage:
29 # Work stealing deque with fixed size
30 item_deque: CappedDeque[Address]

(b)With two-tier work stealing

Fig. 3. Transitive closure work packet implementation with and without two-tier work stealing.
The packet contains a stack of heap or root addresses to trace, adding any discovered fields during tracing.
Figure 3(b) shows two-tier work stealing implementation for fine-grained load balancing by placing a small
fixed-sized deque in front of the packet-private stack.

Only once a bucket’s dependencies are satisfied and the runtime marks it as active can GC worker
threads commence executing the work packets it contains.

This work packet design has a number of performance benefits. i) The kernel is highly iterative,
enabling the inlining and specialization of hot code, reducing overheads such as dynamic dispatch.
ii) Processing multiple items of the same type enhances cache locality. iii) Each worker thread polls
one packet at a time for execution, effectively reducing the overhead of thread synchronization.
Figure 3(a) illustrates the pseudo code for the transitive closure work packet. The work packet

comprises a private stack that stores its work items — addresses of objects to trace (L 2). The kernel
operates in a tight loop, draining the stack and tracing each address (L 28–30). During tracing,
the kernel may identify new work in the form of additional fields to trace. When the new work
is the same work packet type, the kernel pushes them onto its own stack (L 22). Allowing the
stack to grow indefinitely, however, hinders load balancing. We thus flush the stack periodically
when either: i) the stack size exceeds its capacity, or ii) the number of push operations surpasses a
threshold (implemented within the Stack, not shown). When these conditions are satisfied (L 23),
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we flush half of the stack to a new packet, making the work immediately available to other threads
(L 5–9). We chose a stack capacity of 1024 items, and a threshold of 512 push operations as these
values provided the best performance across a range of workloads. Future work could explore
dynamically adjusting these values based on run-time statistics.

The work packet design simplifies developing and debugging GC algorithms as follows.

Simplified implementation. All GC work is encapsulated within work packets, making the
development of newGC algorithms easier. The upstreamedMMTkR successfully demonstrates
that work packets simplified and accelerated the prototyping and development of advanced
algorithms such as Iso [44] and LXR [62], which both outperform the state-of-the-art.

Small and focused kernels simplify optimization. Each work packet frequently executes its
corresponding kernel inlined within a hot loop, enabling developers to focus on optimizing
the critical path rather than tracking performance issues across the entire codebase. As an
example, Table 1 shows the execution time breakdown of the dominant work packet types
for the Immix GC. Over 90% of execution time is spent in transitive closure work packets,
naturally capturing the most focused and performance-critical GC code. This characteristic
easily identifies critical code for optimization.

Highly reusable code. Breaking down algorithms into small kernels enhances GC code reuse.
For example, all MMTkR GC algorithms share the same root scanning work packets with only
minor modifications, rather than each implementing its own version in specialized phases as
in most of the OpenJDK collectors [30–32, 41].1 Consequently, exploring a new GC algorithm
becomes simpler and less error-prone.

3.2 Work Buckets and Scheduling
Table 1. Breakdown of Immix work packet
types by relative execution time. Immix is a
full-heap algorithm, tracing the entire heap at ev-
ery collection. The dominance of transitive closure
is therefore unsurprising.

Work Packet Type Time (%)

Sweep Blocks 1.1
Reset Mark Table 1.2
Process Weak Refs 1.8
Resurrect Finalizables 2.7
Transitive Closure 90.7
All Other Packet Types 2.6

We use work buckets to schedule work packets
onto work-agnostic GCworker threads. This design
gives the scheduler the liberty to flexibly schedule
any kind of work to any worker. We implement
dependencies at the granularity of work packet type
rather than through more rigid phases, giving the
scheduler further flexibly. By contrast, traditional
implementations’ use of sequential phases over-
constrains scheduling and limits parallelism.

Parallel Execution Without Fences. The sched-
uler dispatches work packets in an implementation-
agnostic approach, interleaving the execution of
different types of work packets without needing
fences or thread synchronization. We maintain a global shared queue for all ready to execute work
packets, mixing all packet types. For example, work packets that clear the mark table and scan
stacks are ready to execute at the same time (Figure 1(b)) and may thus interleave. The scheduler
manages a pool of parallel workers that: i) avoid explicit synchronization, ii) pop work packets
from the global queue and execute them, and iii) enter a sleep state when the queue is empty. To
maximize CPU utilization, worker threads may steal work packets and more fine-grained work
items from others (see Section 3.3).

1Earlier OpenJDK GCs, such as Serial, Parallel, and CMS, share the same root scanning implementation. However, later GCs
such as G1, Shenandoah, and ZGC, duplicate this code even though much of the root scanning process remains unaltered.
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Work Buckets and Dependencies. The correctness of GC algorithms is contingent on maintain-
ing strict temporal orderings between various collector tasks. For example, no transitive closure
work should start before all mark table zeroing is complete, to avoid missing objects due to incorrect
mark states. On the other hand, scanning root work packets generates transitive closure packets
(an implicit dependence), but these two packet types may correctly execute independently and thus
require no explicit dependency relationship.
We use work buckets to manage work packets with common dependencies. For example, each

space in the heap has its own implementation of mark table zeroing, but they share the same
dependencies so the scheduler puts them in the same work bucket. We statically analyze the work
packet dependencies for each GC, and attach dependencies to work buckets, forming a bucket
dependency graph for each collector. The scheduler activates buckets in an order that satisfies their
dependencies, ensuring that no packet executes before all of its dependencies are satisfied. This
process trivially satisfies transitive dependencies. We maintain a global queue of active packets
and each work bucket has an inactive queue with a count of packets. The inactive queues are
unavailable to GC workers. We track the number of predecessor buckets that are incomplete for
each inactive bucket. When all predecessor buckets are empty and thus complete, we activate the
dependent bucket, transferring all packets from the inactive queue to the global shared active queue,
making them available for execution.
We also support prioritized work packet execution, maintaining separate queues within each

work bucket for packets of different priorities. The scheduler is designed to preferentially select high-
priority packets when they are available. For instance, the LXR garbage collector [62] utilizes this
feature to prioritize lazy RC decrement work packets over concurrent marking packets, facilitating
faster RC completion and the timely release of memory.

Dependency-based Scheduling. Our scheduler is shared across all GC algorithms, executing
work packets agnostic to the packet type and GC algorithm. The work packet design generalizes
over classic phase-based ordering, which is trivially expressed in work packets by specifying
simple linear dependencies, as in Figure 1(a). The baseline system in MMTkR groups packets into
sequential phases, with each phase dependent on the completion of the previous one. (MMTkR does
not contain the work bucket implementation described above.) Each phase corresponds to a work
packet queue and a state indicating whether the phase is active. Worker threads poll packets by
inspecting queues within the active phases. When the queue of a phase is emptied, the scheduler
activates the next phase, ensuring that the GC tasks are executed in the correct sequence. For
example, an arrow from the Reset Mark Table phase to the Transitive Closure phase in Figure 1(a)
shows that no tracing packets in the Transitive Closure phase can execute until the entire Reset
Mark Table phase completes.

Figure 1(b) illustrates work buckets and their dependencies and Figure 1(c) provides the pseudo
code for dependency-based scheduling. We relax unnecessary ordering constraints between work
buckets that may execute in parallel. During each GC epoch, the scheduler first activates the Stop
Mutators bucket. This bucket contains a single packet instance that stops the mutators and adds
initial work packets to other buckets to kickstart the GC process. A worker thread will then execute
the packet, and once complete, will mark the bucket empty, activating its successors, the Scan Roots
and Reset Mark Table buckets. Workers then consume packets from either bucket, performing
root scanning and mark table zeroing with maximum parallelism. Note that although some tracing
work is emitted by the Scan Roots packets, the Transitive Closure bucket remains unavailable until
the Reset Mark Table bucket completes.

In our initial implementation, we observed that the phase-based scheduler requires GCworkers to
inspect multiple active work packet queues to find available packets, leading to increased contention
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and reduced CPU utilization. To reduce this overhead, we created a global queue to hold all available
packets. When a bucket is activated, we transfer all packets to this global queue. Workers then
retrieve packets from a single queue, effectively reducing the cost associated with dequeuing
packets. The next section discusses how we prevent dequeuing contention.

Work buckets and the dependency graph manage the ordering and dependencies of work packets,
ensuring correctness. Packet execution is highly parallelized, avoiding thread synchronization
barriers except where dependencies specifically demand it.

3.3 Two-tier Work Stealing
To maximize parallelism and reduce thread starvation, we introduce a novel two-tier work stealing
mechanism to our runtime. Idle threads may steal work packets, and in some circumstances, work
items for fine-grained load balancing.

Work Packet Stealing. In addition to the global work packet queue, we add a thread-local work
packet queue to each GCworker thread. During execution, when a newwork packet is generated for
an active bucket, the work packet runtime puts the packet in the worker’s local queue, minimizing
contention on the global shared queue. (Packets for closed buckets are not schedulable, so always
go straight to the respective bucket.) To load balance, when a worker exhausts its local queue and
the global queue is empty, it can steal work packets from the local queues of others. We use the
Chase-Lev style work-stealing deque [10] to manage the local work packet queues. Under this
model, worker threads push and pop packets from their deque’s private end, while other threads
use the public end of the deque to steal work.

Work Item Stealing. Load balancing of numerous performance-critical transitive closure work
packets is challenging. Work packet stealing depends on workers producing new packets. However,
during a transitive closure a worker may run for long periods pushing and popping work in
approximately balanced quantities and therefore not generating any net new work. Such workers
may nonetheless have substantial work in their local stack, albeit less than a full packet. To address
this problem, we allow worker threads to steal individual work items from busy workers, enhancing
load balancing when no packets are available locally, globally, or for stealing.

One straightforward implementation would be to replace the private stack in each packet with
a work-stealing deque to allow work item stealing. However, frequent deque operations require
expensive memory barriers [25]. From our experiments, using just a work-stealing deque signifi-
cantly increased contention and degraded GC performance. Adapting the design from OpenJDK
collectors, we split the stack into a small fixed-sized ABP-style work stealing deque [2] and a private
atomic-free stack. When pushing new items, we first attempt to push into the work-stealing deque,
making items visible to other threads quickly. If the deque is full, items are pushed onto the packet’s
private stack. Similarly, workers prioritize popping items from their private stack. These operations
on the private stack are synchronization-free and do not require heavy memory barriers, thereby
reducing contention costs significantly.
Figure 3(b) presents the pseudo code for the transitive closure work packet with two-tier work

stealing. Each worker’s Thread Local Storage (TLS) includes a small fixed-sized work-stealing
deque (L 24), while each packet retains a private stack (L 2). The kernel function processes the stack
and TLS deque (L 11, L 13) followed by attempts to steal items from other workers’ deques (L 20).
When at least one item is stolen and added to the local stack, the kernel restarts the entire process
to process the local work. Work packet stealing (i.e., stealing an entire packet) is notably more
efficient than stealing individual items. Consequently, a crucial optimization is early work packet
termination if new packets are available in the global queue or other workers’ local work-packet
queues, allowing quick acquisition of new packets for processing.
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While achieving performance improvements in the common case, frequent work-item stealing
may lead to increased contention. We will discuss some examples in Section 6.1, where we saw
degradation due to such synchronization overhead. We currently apply work-item stealing only to
transitive closure packets, as these are the most common packets throughout the entire GC cycle
(Table 1). We plan to add item stealing to other packet types.

4 Software Engineering Evaluation
This section analyzes and discusses the software engineering benefits of the work packet design,
including its generality. We quantify code reuse and show how the concentration of critical code in
kernels simplifies optimization, verification, and performance analysis.
Code Reusability. Table 2 shows substantial code reuse across GC algorithms in the work

packet-based MMTk. The table presents the number of unique work packet types for each GC and
the number of shared (reused) work packets. MMTk defines 28 reusable and algorithm-oblivious
work packet types. Each GC uses a subset of them and may define its own packets. For example,
all GCs reuse 14 work packet types that together implement root scanning for MMTk’s OpenJDK
binding. Immix (IX) uses 25 types of packets, 23 are shared with other GCs, and 2 are unique to
Immix. LXR has relatively more unique work packet types at 15, as the only reference counting
GC in MMTkR, but LXR still reuses 26 types. If MMTkR adds more reference counting collectors
in the future, they will likely reuse some if LXR’s work packet types. Note that GenCopy, GenIX,
StickyIX, and SemiSpace require zero unique types, and MarkSweep and MarkCompact only need
one and three unique packets respectively. Please refer to the appendix for the complete list of
work packet types that our system currently defines.

This high level of code reuse significantly reduces code duplication across different GC algo-
rithms, simplifies the maintenance of the GC framework, and enables rapid development and
experimentation. Reusing work packets streamlines the optimization process, since optimizing a
shared packet benefits all GCs that use it. In contrast, most existing GC frameworks implement GC
algorithms as a monolithic entity, leading to large amounts of code duplication and a complex code
base with significant maintenance burden.
Table 3 shows the lines of code (LOC) breakdown for the GC modules in OpenJDK and MMTk

with work packets. We use LOC as a metric due to the difficulty of attaining reliable cross-language
complexity metrics on these code bases, and past evidence that LOC is a reasonable measure of
code complexity [22]. LOC excludes comments, blank lines, and platform-specific code (e.g., object
scanning implementations, which are closely tied to the runtime rather than the GC module). Only
19.4% of OpenJDK GC code is shared across GCs, while MMTkR achieves 85.6% code reuse. First,
because of this high code reuse, MMTk’s LOC is significantly lower than OpenJDK’s LOC, while
still implementing 10 GCs including the high-performance LXR collector. Second, the LOC required
to implement a new GC algorithm is reduced. For example, comparing to the default G1 GC, LXR

Table 2. Reuse of work packet types for eight GC algorithms in MMTkR.We exclude two debugging
GCs (NoGC and PageProtect). MMTkR and its OpenJDK binding define 49 work packets types. 28 types are
reused across different GCs. The first row shows the number of types that are unique to each GC. The second
row shows the number of types common to two or more GC algorithms.

IX LXR GenCopy GenIX StickyIX SemiSpace MarkSweep MarkCompact

Unique 2 15 0 0 0 0 1 3
Shared 23 26 25 25 23 23 23 23
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Table 3. Unique Lines of Code (LOC) breakdown for the GC algorithms in OpenJDK and MMTkR,
excluding comments, blank lines, and platform-specific code in absolute numbers and percentages.

(a) OpenJDK GC Module

GC LOC %

CMS 14 531 12.5
Epsilon 698 0.6
G1 27 625 23.8
Parallel 15 025 13.0
Serial 1 975 1.7
Shenandoah 20 393 17.6
ZGC 13 247 11.4
Shared 22 437 19.4

Total 115 931 100.0

(b) MMTkR with Work Packets

GC LOC %

GenCopy 301 0.7
GenImmix 301 0.7
Immix 508 1.1
LXR 3 886 8.6
MarkCompact 305 0.7
MarkSweep 228 0.5
NoGC 164 0.4
PageProtect 157 0.3
SemiSpace 236 0.5
StickyImmix 388 0.9
Shared 38 613 85.6

Total 45 087 100.0

requires 85% less algorithm-dependent code, which subsequently simplifies its implementation,
performance tuning, and maintenance.

Our two-tier work stealing code is a patch against the transitive closure work packet code, and
applies directly to any heap traversal component in MMTkR, including IX’s full heap tracing, LXR’s
RC increments, concurrent marking, and mature evacuation. This design structure thus delivers
scheduling optimizations to all the work packet types, efficiently boosting the performance in both
concurrent and stop the world collectors easily without porting this optimization (see Section 6.3).

Verification and Performance Analysis Tools. The use of well-encapsulated kernels simplifies
verification and performance analysis, as prior work [21, 58] demonstrates. This research on
performance tracing and verification used an early prototype of work packets inMMTkR. Integrating
these tools into kernels is straightforward. The high reuse of work packets ensures that most trace
points and verification processes require one implementation per kernel for all GC algorithms that
use the kernel. Huang et al. [21] demonstrate that the modular work packet design facilitated high-
fidelity performance measurements with very little code, exposing subtle performance regressions.
Xu et al. [58] apply model checking to work packet kernels. They show that the small kernels
make model checking tractable, isolating critical components in a way that is very hard to do in a
monolithic garbage collector.

Transferability and Flexibility. The work packet system is designed to be language-agnostic.
In addition to OpenJDK, which we evaluate in Section 6, the upstream version of the work packet
runtime in MMTkR already supports four other language runtimes: JikesRVM, V8, CRuby, and
Julia [13, 48, 49, 53, 57], demonstrating the design’s flexibility in handling diverse and complex
platforms.
Generality. The work packet framework is algorithm-agnostic and general by construction.

Although it is out of scope to demonstrate generality by reimplementing extant production collectors
in the work packet framework, we demonstrate generality two ways.
First, we point to the diversity of collectors already implemented with work packets (Table 2).

Among them are the canonical full-heap algorithms: semi-space [11, 17], mark-sweep [28], mark-
compact [47], and Immix [6], as well as their generational variants [56]. LXR [62] additionally builds
upon reference counting [12], coalescing reference counting [26], region-based collection [24],
remembered sets [56], and snapshot at the beginning concurrent collection [59]. These canonical
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Table 4. The algorithmic building blocks of four of today’s state of the art GCs, replicated from [61].
MMTk implements all of these building blocks aside from the loaded value barrier (LVB).

L&D [24] G1 [14] Shenandoah [18] C4 [55] ZGC [27]
Heap structure Single-Level, Fixed-Size, Region-Based
Primary Liveness Whole-Heap Trace
Reclamation Mixed Evacuation Only
Trace S.T.W. Concurrent SATB [59] Concurrent LVB [55]
Evacuation Stop-the-world Concurrent LVB [55]
Generational GC Not supported Supported Not supported Supported Not supported

collectors are powerful algorithmic foundations that form the basis for other garbage collectors. For
example, G1 [14] is built upon region-based collection [24], remembered sets [56], and snapshot at
the beginning [59]. More recently, two new collectors use the work packet framework. Iso [44]
combines DLG-style thread-local garbage collection [15, 16] with Immix to deliver state-of-the-art
performance on request-based workloads. An implementation of the Compressor [23] was recently
contributed to MMTk, marking another significant algorithm supported by the framework. While
the coverage of implementations will never be complete, we claim that these building blocks are a
strong demonstration of generality of our system, covering a significant part of the algorithmic
design space of modern garbage collectors.

Second, we consider existing state of the art production collectors, in particular G1 [14], Shenan-
doah [18], and ZGC [27]. To understand the algorithmic building blocks of these collectors, we
refer to [61]. The authors document the algorithmic relationships between these collectors and
the high degree of commonality between them. In Table 4, we replicate a table from that paper,
decomposing the algorithmic structure of each collector. The current implementation of MMTk
already supports all building blocks needed by G1. MMTk does not currently have a loaded value
barrier (LVB), required to implement C4 [55], ZGC [27], and Shenandoah [18]. Read barriers are
injected by the compiler into the application code and their implementations are dominated by
runtime and compiler challenges. They are thus largely incidental to the work packet framework we
present here. This analysis gives us confidence that there are no in principle challenges associated
with implementing G1, Shenandoah, ZGC or C4 on the work packet framework, although all of
them would be significant engineering undertakings. ZGC lead Erik Österlund at his ISMM’25
keynote noted that: “building a production garbage collector [...] and sorting out all the performance
issues [...] takes about 10 years.” [43]. His implementation experiences further motivate our work.

5 Performance Evaluation Methodology
We evaluate our design in MMTkR on OpenJDK 11.0.19+1 [53]. We report total execution time, GC
stop-the-world (STW) time, and CPU utilization for the following two high-performance collectors
(also see Section 2.5): i) LXR, a state-of-the-art GC algorithm [62], and ii) Immix [46], a fully
stop-the-world full heap tracing collector, abbreviated to ‘IX’ for the remainder of this paper. We
compare the following three configurations.
P: This configuration implements a traditional Phase-based GC task scheduling.
D: This configuration replaces phases with Dependence scheduling of fine-grain work packets.
S: This configuration adds the two-tier work-Stealing algorithm to D.
We also measure and report total execution time and GC STW time for G1 in OpenJDK versions
11, 21 (the latest long-term support (LTS) release), and 24 (the most recent available release). All
experiments use G1’s default configuration. As a phase-based collector, G1 serves as an alternative
baseline for evaluating our work packet design. Blackburn et al. [4] found that G1 in OpenJDK 21
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achieves the best performance and the lowest GC overhead on most DaCapo benchmarks when
compared to other OpenJDK collectors. As such, G1 represents a production-ready, state-of-the-art
OpenJDK-native collector in our evaluation. Three out of the 22 DaCapo benchmarks — Cassandra,
Tradebeans, and Tradesoap— use deprecated JVMAPIs and cannot run with OpenJDK 24. Therefore,
in all experiments involving OpenJDK 24, we exclude these benchmarks from all configurations,
including G1, Immix, and LXR.
P is the original implementation we contributed to MMTkR with minor changes for instru-

mentation. Both D and S implementations are patches against P . All three variants implement
work-packet stealing, but only S implements both work-packet and work-item stealing. All three
configurations differ only in their schedulers and otherwise they share the same GC implementation
and runtime, precisely revealing the impact of the scheduler design changes.

Ideally we would make apples-to-apples comparisons between two or more collectors that differ
only in whether they use work packets. Unfortunately, MMTkJ does not use work packets and is
part of an entirely different runtime system, JikesRVM. OpenJDK’s native GCs also do not use work
packets. They implement different GC algorithms than MMTkR and use a different implementation
lanuguage (C++). Thus neither MMTkJ nor OpenJDK’s native collectors are suitable for an apples-
to-apples comparison. For this reason, we use MMTkP as the baseline for our analysis. Even though
it does not allow us to compare with a non-work packet-based system, MMTkP does serve as a
good baseline to precisely measure the impact of removing phases and synchronizations, which is
the difference between the P and D variants. In addition, Section 6.4 analyzes the scalability of
MMTkP and G1, demonstrating the scalability of our design.
MMTk is designed to rely entirely on Rust’s profile-guided optimization (PGO) framework for

build-time optimization. It eschews manually-inserted optimization directives. We use GCBench [8],
which is not part of our benchmark evaluation set, to generate the profiles used at build time. Open-
JDK’s collectors are written in C++ and use established approaches for performance optimization
including templates, inline functions, macros and pragmas, not relying on PGO.

5.1 Benchmarks
We use the 23.11-chopin version of the DaCapo benchmark suite [4] for our evaluations, in the
default configurations. We report results for all 22 benchmarks from the suite. Unless otherwise
stated, we run each benchmark 20 times and report the average for each benchmark. For each run,
we repeat the workload five times, only reporting the last iteration’s statistics. This methodology
warms up the JVM to reach steady state before we collect the statistics, reducing experimental
noise. We set the heap size individually for each benchmark by determining its minimum runnable
heap size using a bisection search and set the heap size to multiples of this minimum heap size.

5.2 Machine Configuration
We use Zen 3 and Zen 4 machines. We use Zen 3 machines for most experiments. They have 16/32
cores with 3.4 GHz CPUs, and 64GB DDR4-3200 memory. We use Zen 4 machines to evaluate
scalability. They have 64/128 cores with 2.45GHz CPUs, and 256GB DDR5-4800 memory. All
machines use the same system image: Ubuntu 22.04.4 with Linux kernel 6.8.0-40-generic.

5.3 Total and Stop-the-world Time Measurements
Wemeasure and report the impact of MMTkP, MMTkD, and MMTkS variants on total execution time
and GC stop-the-world time for IX and LXR. Although G1 is not directly comparable, we normalize
to G1 because: i) it is the default production collector in OpenJDK, and ii) it is a state-of-the-art
GC algorithm that fully employs phase-based GC task scheduling with synchronization barriers.
It therefore grounds our results in the state-of-the-art. For each configuration, we measure the
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per-benchmark total execution time and stop-the-world time, and report the geometric mean across
all 22 benchmarks. We perform the analysis on both a moderate 2× heap and a tight 1.5× heap. We
use default JVM parameters for all experiments.

5.4 Utilization Measurements
We show that a major advantage of our design is better load balancing.We report the CPU utilization
for each DaCapo benchmark and the geometric mean. We calculate utilization as follows. i) For a
given GC pause, we calculate𝑇Σ𝑥 , the sum of time spent executing work packets by all workers, and
𝑇Σ𝑒 , the sum of elapsed time (elapsed time × number of workers). ii) We calculate the utilization for
each pause as the ratio 𝑇Σ𝑥/𝑇Σ𝑒 . iii) For each benchmark, we report the average utilization across
all GC pauses. We also report the geometric mean across all benchmarks. We use this approach
with respect to three different types of utilization.

• Overall utilization for the entire GC pause.
• Utilization when the GC is performing the main transitive closure, including IX’s marking and
evacuation trace and LXR’s mature evacuation trace. This period is the most time-consuming
part of their pauses, where our two-tier work-stealing algorithm aims to improve, and is thus
reported separately. The transitive closure for weak reference processing is excluded.

• Utilization only during the period when LXR is performing reference counting increments.
RC increments dominate LXR’s pause time and benefit from the two-tier work-stealing
algorithm, so we study it separately.

5.5 Scalability Measurements
We assess the scalability of our design by running the benchmarks across different numbers of
hardware threads, ranging from 1 to 128. We use both the taskset command and JVM options to
control the number of hardware threads available to the JVM and the number of GC threads. We
had to exclude 11 benchmarks from these results because they initialize more mutator threads when
more hardware threads are available, leading to increased memory allocation and out-of-memory
errors on a moderate 2× min-heap. Increasing heap size to prevent OOM error was not feasible as
it leads to fewer GCs with fewer and more noisy data points. For each benchmark and core count,
we report the mean over 10 runs. We also report the geometric mean across all 11 benchmarks.

For the scalability test on utilization, we also report the geometric mean ideal utilization across
the 11 benchmarks, and compare it against the real utilization. We report the transitive closure
utilization on three Immix variants: IX𝑃 , IX𝐷 , and IX𝑆 , as the real utilization.

Ideal Utilization. We use the methodology proposed by Barabash and Petrank [3] to measure
ideal CPU utilization during a garbage collector’s transitive closure. Ideal utilization is calculated
by simulating a transitive closure on a heap graph. The simulator is parameterized with the number
of available CPU threads denoted as 𝐶 , simulating per-tick tracing jobs. For each tick, 𝐶 objects
are popped from the mark stack, marked, and their fields scanned, pushing child objects back
onto the stack. The simulator assumes processing each object by a thread takes exactly one tick. If
fewer than𝐶 objects are processed in a tick, it indicates idle threads during that tick. The simulator
reports overall ideal utilization for a heap graph by summarizing per-thread idle and busy ticks.
We perform our ideal utilization measurement offline using heap snapshots, containing all

reachable live objects and their fields. We use a customized garbage collector to generate snapshots
by recording accessed objects and fields during each GC pause, dumping data for later analysis. For
each benchmark, we collect multiple heap snapshots — one for each GC pause. We calculate each
snapshot’s utilization as the ideal utilization for this GC pause’s transitive closure period. We then
report the geometric mean across all the benchmarks.
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Table 5. The impact of fine-grained dependencies and two-tier work stealing. We evaluate three
variants of IX and LXR: the phase-based baseline (P), adding fine-grained work packet dependencies (D), and
adding fine-grained dependencies and two-tier work stealing (S). The best values across the three variants
are in green, and the worst values in orange. We show total stop-the-world (STW) time, total utilization,
trace utilization, and reference counting increment utilization, measured at a heap size 2× G1’s min-heap.
We report the geometric mean across all benchmarks. Times are normalized to G1’s STW time.

STW Time / G1
Lower is better

Utilization
Higher is better

Trace Util.
Higher is better

RC Inc Util.
Higher is better

P D S P D S P D S P D S

G1 1.00 – – – – – – – – – – –
IX 1.94 1.86 1.80 0.66 0.70 0.81 0.85 0.85 0.92 – – –
LXR 0.50 0.50 0.47 0.32 0.31 0.40 0.53 0.56 0.75 0.42 0.41 0.52

We use the ideal utilization to qualitatively evaluate how closely the work packet runtime
approximates the ideal. We use IX for this experiment because it is a stop-the-world full-heap
tracing GC and its transitive closure utilization is directly comparable to the ideal utilization, which
is also measured based on the heap snapshot collected by IX. In this methodology, ideal utilization
is strictly related only to the heap shape. In real-world GC pauses, factors such as thread contention,
operating system scheduling, and the varying scanning and copying costs for different object types
impact pause times. Therefore, even when a GC traces the heap in an optimal order, it is unlikely
to achieve ideal utilization.

6 Performance Evaluation
Recall that we cannot perform a direct apples-to-apples comparison of a garbage collector using
the work-packet runtime against a highly tuned monolithic implementation of the same collector
using ad hoc work stealing. Instead we point to the performance of LXR in Table 5, Table 6, and
Figure 5. While the overall performance of LXR is not directly attributable to the work packet
runtime, these results highlight that the framework is sufficiently flexible and performant as to
support the development of innovative collectors that deliver state of the art performance [44, 65].
We focus most of our performance study on the advantages of fine-grained dependency
(D) and two-tier work stealing (S), relative to the baseline work packet runtime (P).

6.1 Stop-the-world Time
The first column of Table 5 shows that work packet variants D and S reduce stop-the-world (STW)
time for both IX and LXR. Per-benchmark total STW time is reported in Figure 4, normalized to P .2

Comparing with OpenJDK GCs. Table 6(b) presents the stop-the-world (STW) times for IX
and LXR on 1.5× and 2× heap sizes, normalized against the STW time of OpenJDK 11 G1. For
comparison, we also evaluate and present G1 in OpenJDK 21 in the same table. G1 in OpenJDK 21
achieves significantly lower STW times than G1 in OpenJDK 11, with reductions of 19.8% and 22.1%
on 1.5× and 2× heaps, respectively. Nonetheless, our highest performing collector, LXR𝑆 , surpasses
G1 in OpenJDK 21 by 48.4% and 40.1% on these two heap sizes in terms of STW time. LXR and G1
are fundamentally different algorithms, so this striking result cannot be directly attributed to the
work packet framework, however the result clearly demonstrates that the work packet framework
is suitable for constructing innovative, high performance collectors.

2Please refer to the Appendix for detailed tabulated results.
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(a) IX: normalized stop-the-world time for IX𝑃 , IX𝐷 , and IX𝑆
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(b) LXR: normalized stop-the-world time for LXR𝑃 , LXR𝐷 , and LXR𝑆

Fig. 4. The impact of P, D, and S variants on stop-the-world (STW) time for IX and LXR, measured on
a 2× heap. Both figures are normalized to the corresponding P variants for each GC.

Fine-grained Dependency (D). On the moderate 2× heap, using fine-grain dependencies reduces
IX𝐷 ’s STW time by 4.2% over IX𝑃 on average, and nine out of 22 benchmarks exhibit a STW time
reduction of more than 5%. Fop shows the largest reduction, 12.1%. This reduction is primarily due
to the removal of synchronization barriers between Scan Roots, Reset Mark Table, and Transitive
Closure buckets. In IX𝐷 , Scan Roots and Reset Mark Table start simultaneously. If GC threads
complete Reset Mark Table early, they can promptly begin Transitive Closure jobs without waiting
for Scan Roots to finish. However, this improvement is not universally evident. Pmd and H2 show
no observable STW time change, with a difference of less than 2%. Two benchmarks, Biojava and
Graphchi, exhibits a STW time increase (4.1% and 3.4% respectively) compared to IX𝑃 . We observed
that these benchmarks tend to complete their Reset Mark Table bucket after the Scan Roots bucket
is finished. Consequently, the execution of Transitive Closure packets is less likely to overlap with
Scan Roots packets, resulting in negligible performance gain.
In contrast to IX’s noticeable improvement, LXR𝐷 shows little improvement in STW time

compared to LXR𝑃 , with a difference of less than 0.1%. Graphchi exhibits the most considerable
STW time reduction of 3.9%, primarily due to the lower synchronization overhead on maintaining
bucket dependencies than phases. No benchmarks exhibit observable slowdowns or speedups. The
largest slowdown is observed on Biojava, with a STW time increase of 4.9%, but this is within
the margin of error. The major reason for the minimal stop-the-world time improvement is that
LXR𝑃 ’s STW time is dominated by root scanning and RC increments. LXR already executes these
packet types in the same bucket to minimize synchronization overhead. Thus, adding fine-grained
dependencies has minimal impact on LXR’s STW time. These results motivate the search for other
optimization opportunities, such as the two-tier work stealing algorithm, which we discuss next.
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Table 6. Total execution time and stop-the-world time for IX, LXR,
G1 on JDK 11, and G1 on JDK 21, measured on 1.5× of G1’s min-heap.
The best values for each GC are highlighted in green, and the worst
values in orange. We report geometric mean across all benchmarks. All
values are normalized to G1. All collectors are built based on JDK 11,
except for G121 in the gray columns, which is from JDK 21, the latest
LTS version.

(a) Total execution time

Heap G121 G1 IX𝑃 IX𝐷 IX𝑆 LXR𝑃 LXR𝐷 LXR𝑆

1.5× 0.95 1.00 1.29 1.26 1.21 0.86 0.86 0.88

2× 0.97 1.00 1.08 1.06 1.05 0.90 0.90 0.89

(b) Total stop-the-world time

Heap G121 G1 IX𝑃 IX𝐷 IX𝑆 LXR𝑃 LXR𝐷 LXR𝑆

1.5× 0.80 1.00 2.45 2.29 2.21 0.45 0.45 0.41

2× 0.78 1.00 1.94 1.86 1.80 0.50 0.50 0.47

Two-tier Work Stealing (S).
The S variants of our system
add two-tier work stealing, con-
sistently improving parallelism
and reducing STW time for both
IX𝑆 and LXR𝑆 on most bench-
marks compared to the P and D
variants. IX𝑆 decreases the geo-
metric mean STW time by 3.2%
relative to IX𝐷 . Eight out of 22
benchmarks exhibit a STW time
reduction of more than 5%. H2
and Xalan show the most signifi-
cant reductions, 12.3% and 13.4%,
respectively. The improvements
are primarily due to the two-tier
work stealing algorithm success-
fully balancing the fine-grained
work items across all worker threads, which cannot be achieved by stealing only coarse-grained
work packets.

Conversely, Avrora, Batik, and Jython show the largest STW time increase of 11.6%, 7.0%, and
3.7%, respectively. Avrora and Jython show an increase in the number of GC pauses by 14.9%
and 6.3%, respectively compared to IX𝐷 . We observe that the two-tier stealing algorithm changes
the order in which the collector visits objects, thus changing the order in which the collector
allocates memory as it evacuates objects. Consequently, different heap fragmentation patterns lead
to different numbers of pauses. For Batik, the number of pauses is only increased by 2.2%, not
matching the significant STW time increase. However, we find that it has a substantial increase in
the retired instructions of 17.1% within GC pauses. This result suggests that fine-grained work item
stealing may compel worker threads to spend more time spinning and stealing items. A possible
solution is to reduce the frequency of stealing and the maximum retry limit for stealing in the spin
loop dynamically at run time to avoid excessive CPU consumption.

LXR𝑆 reduces its geometric mean STW time by 6.0% compared to LXR𝐷 , with Fop seeing the most
substantial reduction of 23.1%. Ten out of 22 benchmarks show STW time reductions exceeding
5%. The improvement seen in LXR𝑆 shows that the fine-grained load balancing provided by the
two-tier work stealing algorithm is necessary, especially on pauses like LXR’s RC pauses, where
fine-grained dependency-based scheduling does not offer any improvements. No benchmarks
exhibit an observable slowdown in STW time for LXR𝑆 .

6.2 Total Execution Time
On a smaller 1.5× heap, total time improvements for IX𝑆 and LXR𝑆 are about the same. No benchmark
exhibits an observable slowdown for either IX or LXR. Unlike IX, which always performs full-
heap tracing, LXR mostly performs short RC pauses in a single highly-optimized bucket, thus
our optimizations of fine-grained dependency and work-item stealing do not show an observable
total time reduction. On the other hand, on the 1.5× heap, IX GC time improvements impact total
execution time, as shown in Table 6(a) and demonstrate the benefits of the work packet design. IX𝑆

shows a reduction in total execution time of 6.4% compared to IX𝑃 . In a moderate 2× heap, the GC
times of IX or LXR do not dominate total performance, so the STW reductions do not translate to
substantial total time improvements. We saw less than 3% change in overall execution time.
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Our primary evaluation has been in JDK 11 because that is the version supported by MMTk at the
time of writing. However, since G1 has been improved since JDK 11, we also include comparisons
with G1 in JDK 21 and JDK 24. JDK 21 is the latest LTS version available at the time of writing. JDK
24 is the most recent available OpenJDK release. G121 achieves speedups of 5.1% and 3.2% over
G1 on JDK 11 for the 1.5× and 2× heap sizes, respectively. However, it remains slower on total
performance than LXR𝑆 by 8.3% and 8.4% on these two heap sizes, respectively. JDK 24 cannot run
three benchmarks from DaCapo due to compatibility issues, so we cannot directly compare it with
the results in Table 6(a). Excluding the incompatible benchmarks, G124 outperforms G1 on JDK 11
by 7.9% and 5.8% on the 1.5× and 2× heaps, respectively. Nevertheless, its total execution time is
still 6.3% and 7.5% slower than LXR𝑆 on these configurations.
Although these results cannot be directly attributed to the work packet runtime alone, they

demonstrate that it is capable of supporting the construction of high-performance garbage collectors,
such as LXR, which outperform the latest G1 implementations in both JDK 21 and JDK 24. We
note that many of the performance gains seen in G121 and G124 are attributed to optimizations
in other components of the virtual machine, such as the compiler and runtime. We believe most
of these non-GC optimizations are orthogonal to specific garbage collector implementations, so
expect them to also improve performance for systems built on the work packet runtime.

6.3 Utilization
Fine-grained Dependency (D). IX𝐷 improves overall utilization within GC pauses by 4.9% with
fine-grained work packet execution when compared to IX𝑃 by increasing effective parallelism.
Utilization during tracing increases by 0.3%. Most benchmarks exhibit consistent improvement,
except for Biojava, which shows a slight decrease of 1.6% in total utilization, and 1.5% in trace
utilization. Biojava also reports an increased STW time with IX𝐷 . This result suggests that tracing
work packets are less likely to run in parallel with root scanning packets.

LXR is dominated by RC pauses. Unlike IX, LXR’s RC pauses already put all root scanning
and transitive closure packets into a single bucket. Thus, the fine-grained dependency scheduler
should and does have minimal effect on LXR’s STW time and utilization, with no significant
change observed across all benchmarks. However, LXR𝐷 shows a slight 1.1% slowdown in overall
utilization compared to LXR𝑃 . Utilization during RC increments decreases by 1.2%, while trace
utilization improves by 2.9%. The most notable slowdown occurs in Batik, with a decrease in
overall utilization of 7.7%. We ran Batik with only one CPU core to limit the task scheduling and
parallelism noise, and found that it has a 11.0% reduction in CPU utilization compared to LXR𝑃 , but
the STW time has no observable change, with a minor reduction of 0.8%. This result suggests that
although dependency-based scheduling does not affect Batik’s RC performance, it leads to a higher
synchronization overhead. Moreover, LXR on Batik only performs RC pauses, and the RC utilization
on one CPU core also shows no observable change on LXR𝐷 , with a difference of less than 1%
compared to LXR𝑃 . The synchronization overhead likely comes from the other components of RC
pauses, primarily the block sweeping tasks after RC increments. The slowdown on Batik shows
that dependency-based scheduling can sometimes be more costly than phase-based scheduling.
However, due to the improvement in stop-the-world time on IX and LXR, especially the significant
performance gain with a large number of hardware threads (Section 6.4), it is still beneficial to
replace phases with fine-grained buckets.

Two-tier Work Stealing (S). The S variants of IX𝑆 and LXR𝑆 add two-tier work stealing. They
improve load balancing over their D variants and consistently deliver the highest utilization across
all benchmarks. IX𝑆 enhances overall utilization by 11.0% and trace utilization by 7.0% over IX𝐷 .
Graphchi and Luindex experience the greatest improvement in total utilization, at 23.9% and 25.5%,
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Fig. 5. Stop-the-world time for
G1, IX, and LXR at 2× G1’s min-
heap, with the three variants of IX
and LXR: P, D, and S. We report
STW time across on various hard-
ware counts, from 1 up to 128. We
normalize each benchmark’s result
to G1’s single core STW time, and
show the geometric mean across all
benchmarks. We further normalize
the results to the global best STW
time across all configurations. 1 2 4 8 16 32 64 128
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respectively. Similarly, LXR𝑆 increases overall, trace, and RC increment utilization by 8.4%, 19.9%,
and 11.1%, respectively. The most notable improvements are in Fop and Jme, with overall utilization
increases of 20.3% and 26.9%, respectively. No benchmark exhibits a decrease in utilization.
High utilization on average yields improved performance. Luindex, with a 25.5% utilization

improvement, demonstrates a STW time reduction of 4.6% on IX𝑆 , compared to IX𝐷 . Similarly,
Graphchi on IX𝑆 improves utilization by 23.9% over IX𝐷 , with a pause time reduction of 2.3%.
However, higher utilization does not always translate into STW time reduction. For example,
Jython on IX𝑆 has a 5.8% increase in utilization, but a 3.7% increase in STW time, compared to
IX𝐷 . As discussed in Section 6.1, we found that Jython on IX𝑆 increased the number of pauses by
6.3%. This result reveals that heap fragmentation changes due to reordering from parallelism in
IX𝑆 may cause either regressions or improvements. As discussed previously, high overheads due
to ineffective item stealing may waste CPU cycles. An even more effective item stealing policy
remains to be explored.

6.4 Scalability
We evaluate scalability of STW time and utilization on large numbers of hardware threads to show
the parallelism benefits of our design. We compare the STW time scalability with G1, which uses a
traditional phase-based design. We compare the utilization with the ideal utilization, to demonstrate
the load balancing changes and how it approaches the ideal as we add D and S optimizations.

Stop-the-world Time. Figure 5 illustrates STW time for G1, IX, and LXR over different hardware
thread counts, measured with a heap 2× G1’s min-heap.3 We evaluate a total of seven GC con-
figurations. For each GC and benchmark, we normalize the results to G1’s single core STW time,
and present the geometric mean across 11 benchmarks. We then normalize the results to the best
observed value across all configurations, 69.4 ms, which occurs on LXR𝑆 at 32 cores. (Section 5.5
explains why we only use 11 benchmarks in this evaluation.) A key trend revealed in the figure is
the diminishing returns in STW time reduction as the thread count increases to a certain threshold.
Beyond this threshold, scaling is negative. This threshold is 16 hardware threads for G1 and 32 for
all IX and LXR variants. Both IX and LXR exhibit more scalability than G1.
For G1, its best STW time occurs at 16 threads, at 2.3× the best value. G1’s STW time escalates

when the thread count exceeds 16. At 128 threads, G1’s STW time degrades to 4.6× the best value.
Because Immix (IX) is a full-heap stop-the-world GC, it exhibits the highest STW time among all
evaluated GCs. IX𝑃 starts with STW time 25.3× the baseline value at 1 hardware thread (not shown),
and its minimum STW time is at 32 hardware threads with 4.0× the baseline. IX𝐷 and IX𝑆 reflect

3Please refer to the Appendix for detailed tabulated results.
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Table 7. 128 thread total stop-the-world (STW) time for G1, IX, and LXR at 2× of G1’s min-heap. The
first row normalizes time to each collector’s P variant. The second row normalizes STW time to the best STW
time for each GC variant. The best values are highlighted in green and the worst in orange.

G1 IX𝑃 IX𝐷 IX𝑆 LXR𝑃 LXR𝐷 LXR𝑆

X128 / X128,𝑃 – 1.00 0.91 0.91 1.00 0.91 0.89

X128 / X𝐵𝑒𝑠𝑡
2.00

/ 16 Threads
1.63

/ 32 Threads
1.53

/ 32 Threads
1.64

/ 32 Threads
1.48

/ 32 Threads
1.39

/ 32 Threads
1.45

/ 32 Threads

similar patterns, reaching minimum STW times at 32 threads with 3.8× and 3.6×, respectively.
At 128 threads, the STW time of IX𝑃 increases to 6.5× the baseline value. In contrast, IX𝐷 and
IX𝑆 display a reduced growth at 5.8× and 5.9×, respectively. Improved load balancing through the
two-tier work-stealing algorithm more effectively curtails STW time growth as the thread count
increase.

Across varying thread counts, LXR consistently maintains lower STW time than both Immix and
G1. With one hardware thread, LXR𝑃 , LXR𝐷 , and LXR𝑆 have STW times of 5.7×, 5.7×, and 5.9× the
baseline, respectively. They all reach their minimum STW time at 32 threads, with STW times of
1.1×, 1.1×, and 1.0× the baseline, respectively. Like G1 and Immix, LXR’s STW time increases as
the thread count rises beyond its best value (32). On 128 threads, LXR𝑃 has STW time of 1.6× the
best value. Both LXR𝐷 and LXR𝑆 improve STW time significantly and record the lowest STW time
among all GC variants on 128 threads, at 1.5× the optimal. LXR𝑆 has better scalability than both
G1, LXR𝑃 and LXR𝐷 on 128 threads, primarily due to the improved load balancing.

Stop-the-world Time on 128 Threads. We present 128-thread STW time results separately
as they show the most significant STW time reduction with our system where the traditional
phase-based design does not deliver. Table 7 presents STW time for G1, IX, and LXR on 128 threads.

The first row shows STW time for each collector normalized to their P variants. Both fine-grained
dependencies and two-tier work stealing notably reduce STW time on 128 hardware threads. As
expected, the S variants exhibit the largest reduction, with IX𝑆 and LXR𝑆 displaying reductions of
8.6% and 10.8%, respectively, compared to their P variants. This results indicates that both designs
effectively exploit parallelism and reduce STW time on a large number of hardware threads.
The second row presents STW time normalized to each GC variant’s best STW time. For G1,

optimal STW time is attained at 8 threads. At 128 threads, G1’s STW time is 99.8% more than its
optimal value at 16 threads. Both IX𝑃 and LXR𝑃 show improved results compared to G1. They
show a STW time increase of only 63.2% and 48.0%, respectively, when comparing to their optimal
STW time across different thread counts. While STW time reaches a minima at a certain level of
parallelism and degrades after that, IX and LXR both take longer to reach this point compared to
G1. Additionally, IX𝑆 and LXR𝑆 demonstrate similar or better relative improvements compared
to IX𝑃 and LXR𝑃 . Specifically, at 128 threads they experience degradations of 64.4% and 45.4%,
respectively, when compared to their optimal thread count, which are both at 32 threads. This
result confirms that the two-tier work-stealing algorithm and dependency-based scheduler can
mitigate the negative scaling of STW time on large thread counts.

Utilization. Figure 6 illustrates the ideal utilization and the real transitive closure utilization for
IX𝑃 , IX𝐷 , and IX𝑆 across different thread counts, ranging from 1 to 128.4 The ideal utilization
is measured using the methodology proposed by Barabash and Petrank [3], representing the
theoretical maximum utilization for the benchmark suite. (See Section 5.5 for details.) For a single

4Please refer to the Appendix for detailed tabulated results.
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Fig. 6. Ideal utilization and the
real transitive closure utiliza-
tion for IX𝑃 , IX𝐷 , and IX𝑆 across
1 to 128 hardware threads. Each
utilization is the geometric mean
across the 11 evaluated bench-
marks.
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hardware thread, the ideal utilization is 100% , as the single GC thread remains busy throughout
each simulated cycle. However, as thread count increases, workload imbalance due to heap shape
causes a slight decline in ideal utilization. By 128 threads, it decreases to 96.5%, still significantly
higher than the real utilization results. We observe that the heap graph shape for most benchmarks
is sufficiently wide as to keep all threads busy in most simulated cycles.
On a single hardware thread, the real utilization is 93.2% for IX𝑃 , 92.8% for IX𝐷 , and 94.5% for

IX𝑆 , all lower than 100%. Real utilization is measured as the sum of time spent executing transitive
closure work packets divided by the elapsed time spent in the transitive closure. Utilization values
under 100% indicate non-negligible costs associated with activities outside of work packet execution,
such as maintaining work bucket dependencies and stealing work packets. IX𝑆 effectively improved
the utilization by 1.7% compared to IX𝐷 , but does not completely eliminate the overhead.
As the thread count rises, real utilization for all three variants quickly diminishes, dropping

below 90% at 16 threads. Notably, this closely precedes the turning point at 32 threads where the
STW time for the three variants begins to regress (Figure 5). Starting at 16 threads, IX𝑆 utilization
degrades significantly more slowly than both IX𝐷 and IX𝑃 , achieving 4.2% better on 16 threads,
12.7% on 32 threads, and 23.1% on 128 threads, compared to IX𝐷 . This result demonstrates the
effectiveness of the two-tier work-stealing algorithm in improving load balancing and maintaining
utilization, particularly with a large number of hardware threads.
Once again, high utilization does not necessarily translate to low STW time. As discussed

in Section 6.1, there are instances where the synchronization overhead of work-item stealing
outweighs the benefits of improved load balancing. Our load balancing heuristics, derived from
static empirical results, do not universally apply across all benchmarks. We believe that dynamic
policies using run-time statistics will likely further improve work stealing.

7 Threats to Validity
Baseline. An ideal comparison would have used otherwise-identical implementations of one or
more state-of-the-art garbage collectors based on the work packet abstraction and the traditional
monolithic phased-based approach. Unfortunately the size and complexity of state-of-the-art
collectors (Table 3(a)) makes such a comparison untenable for a research paper. We contributed
an early, incomplete version of our work packet implementation to MMTkR during its initial
development phase. This version includes work packets and packet-level work stealing but retains
the use of phases (later addressed by MMTkD) and lacks the two-level work stealing optimization
(implemented in MMTkS). Reverting MMTkR to a traditional phase-based implementation such as
MMTkJ is non-trivial and would require substantial effort. Thus, we use our instrumented version
of MMTkR, MMTkP, as the baseline for our evaluation, emulating a phase-based design.
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OpenJDK 11. Because the MMTk’s OpenJDK binding is only available for OpenJDK 11, most of
our experiments are in OpenJDK 11. However, G1 has improved in subsequent releases of OpenJDK.
To mitigate this, our comparison in Section 6.2 and Table 6(a) includes G1 in OpenJDK 21 (the latest
LTS), and 24 (the newest version at the time of writing), demonstrating the performance of the
latest OpenJDK GCs. While this comparison is not apples-to-apples, due to different LXR and G1
GC algorithms, our results demonstrate that the work packet design supports the development of
interesting new collectors that offer state of the art performance. Porting MMTk to newer OpenJDK
versions is beyond the scope of this paper, but we believe our performance improvements will carry
over when MMTk is ported to future OpenJDK releases. Moreover, we note that many of the JIT
compiler and runtime optimizations introduced in OpenJDK 21 and 24 are orthogonal to the GC
algorithm. These enhancements will benefit applications using collectors built on the work packet
framework once MMTk is available in later OpenJDK versions.

8 Future Work
The work packet framework is young and growing. We are excited to see algorithms from the
literature such as the Compressor [23] and new algorithms such as Iso [44] and LXR [62] built with it.
We believe the emergence of these new algorithms is evidence that the reuse and simplicity of work
packets has made it a catalyst for rapid innovation. The growing move toward managed languages
and the substantial overheads of today’s production collectors [4] point to a need for innovation in
a field that has historically demonstrated surprisingly little [61]. We hope that the community will
see this challenge as an opportunity to explore fresh ideas, rapidly realize and evaluate them in a
production-quality runtime. We are also excited by ongoing efforts to leverage work packets to
verify correctness of GC algorithms [58], an ongoing source of security vulnerabilities.

9 Conclusion
We design and build work packets, a novel framework for garbage collector implementations that
exploits two observations: most performance-critical GC code is concentrated in small kernels
and the classic phase-based approach to temporal correctness limits parallelism. A work packet
combines work item(s), a kernel, and scheduling constraints, distilling critical GC operations.
Work packets are used within MMTk to implement eight distinct GC algorithms, with more under
development. They facilitate a large amount of sharing, delivering significant software maintenance,
reuse, verification, and optimization benefits. We introduce an efficient two-tier work stealing
runtime system to orchestrate work packets in parallel, with minimal synchronization overhead.
We show that work packets achieve software engineering benefits and performance. They improve
performance and parallelism for Immix and LXR GCs across a large number of hardware threads
and benchmarks compared to phase based implementations. We believe that work packets lay an
excellent foundation for GC innovation and for developing more efficient and maintainable GC
implementations.

10 Data-Availability Statement
We made our source code, the DaCapo benchmark suite, and detailed instructions to reproduce the
results publicly available [63, 64].
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