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ABSTRACT
Until recently, the best performing copying garbage collectors used
a generational policy which repeatedly collects the very youngest
objects, copies any survivors to an older space, and then infre-
quently collects the older space. A previous study that used garbage-
collection simulation pointed to potential improvements by using
an Older-First copying garbage collection algorithm. The Older-
First algorithm sweeps a fixed-sized window through the heap from
older to younger objects, and avoids copying the very youngest ob-
jects which have not yet had sufficient time to die. We describe and
examine here an implementation of the Older-First algorithm in the
Jikes RVM for Java. This investigation shows that Older-First can
perform as well as the simulation results suggested, and greatly im-
proves total program performance when compared to using a fixed-
size nursery generational collector. We further compare Older-First
to a flexible-size nursery generational collector in which the nurs-
ery occupies all of the heap that does not contain older objects. In
these comparisons, the flexible-nursery collector is occasionally the
better of the two, but on average the Older-First collector performs
the best.

1. INTRODUCTION
Garbage collection for object-oriented programming languages au-
tomates memory management and thus relieves programmers of a
source of errors and the burden of explicit memory management.
Since most objects die quickly [15], generational copying collec-
tors divide the heap into generations [3, 9, 15]. They collect the
youngest objects frequently, and copy survivors into progressively
older generations. When the heap fills, they collect the older gen-
eration together with the younger generation.

Generational collectors prematurely copy the very youngest objects
because every object needs some time to die. The Older-First copy-
ing garbage collector [14] exploits this observation by avoiding col-
lecting the youngest objects. It organizes the heap in order of object
age and collects a fixed-size window that slides through the heap
from older to younger objects. When the heap is full, Older-First
collects the window, compacts the survivors (logically) in place, re-
turns any free space to the nursery, and then positions the window
for the next collection over objects just younger than those that sur-
vived. If it bumps into the allocation point, it resets the window to
the oldest end of the heap.
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Previous work describes a range of implementation possibilities for
the Older-First collector (OF) [13, 14]. It also presents garbage col-
lection simulation results that show OF performs much better than
a fixed-size nursery generational collector. In this work, we de-
scribe an implementation of OF for Java in IBM’s Jikes RVM, a
well performing system [1, 2]. We present a variety of execution
results that (1) validate our simulation model, (2) compare execu-
tion times and copying ratios of OF and generational collectors, and
(3) explore pause times (the range of times for one collection) and
the total collection time tradeoff.

These results show that Older-First delivers on its promise and out-
performs a tuned fixed-size nursery generational collector by on av-
erage 5–25% for 10 Java programs on a wide range of heap sizes.
We further show that these improvements are mostly due to reduced
copying costs.

In our experiments [4] the flexible-nursery collection introduced
by Appel [3] consistently performs better than a fixed-size nursery
collector. Our results show that OF sometimes (in 7 of the 10 pro-
grams studied) does better than this generational collector as well,
and further, OF almost always beats both generational collectors on
maximum pause time, since the generational collectors must some-
times collect the whole heap, which OF never does.

We proceed in Section 2 with an overview of OF and design deci-
sions we made in the implementation as part of our Garbage Col-
lector Toolkit for the IBM Jikes RVM for Java. In Section 3, we
give the details of the experimental setting and Section 4 gives a
comparative performance evaluation of the collector with respect
to throughput, and in Section 4.3 with respect to garbage collection
pause times.

2. DESIGN AND IMPLEMENTATION OF
THE OLDER-FIRST COLLECTOR

The Older-First collector organizes the heap by object age [14].
It collects a fixed-size window that slides through the heap from
older to younger objects. When the heap is full, OF collects the
window, makes any free space available for future allocation, and
then positions the window for the next collection over objects just
younger than those that survived. If it bumps into the allocation
point, it resets the window to the oldest end of the heap.

This scheme is illustrated in Figure 1, which shows the allocation
region A and the copy region C, each of which can be considered as
queues of window-size groups of objects. OF allocates to the back
of region A. Whenever all usable memory is consumed, OF collects
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Figure 1: Design of the Older-First Collector

a window from the front of region A, copying survivors to the back
of region C. If all usable space is consumed and A is empty, then
OF ‘flips’ the roles of the two regions, collects the first window in
the new region A, and copies its survivors to the back of the new,
now empty, region C. OF then continues to allocate to the back of
the new region A.

As illustrated in the figure, the heap is organized from left to right,
older to younger objects. The Older-First collector must remember
pointers from any uncollected regions to the collected region, and
during a collection assume that pointers into the collected region
refer to live objects. OF need not remember all pointers between
regions; it needs to remember a pointer between two regions only
if it will independently collect the target before the source. A gen-
erational collector with two generations has just one such region
boundary, but OF has many boundaries and thus its write barrier
remembers more pointers.

Previous work discusses the design and several implementation strate-
gies for OF [13, 14]. We make a few modifications to this design for
our implementation. Most of these changes are necessary because
the collector uses a 32-bit environment in Jikes RVM instead of the
envisaged large address space, which would enable optimizations
that reduce pointer maintenance costs. The original design had sev-
eral other mechanisms to reduce pointer maintenance costs, and
this implementation introduces a further enhancement to reduce
the number of remembered pointers. The remainder of this section
presents the high-level design of the Older-First algorithm imple-
mentation and discusses how this implementation deviates from the
initial OF design.

2.1 Blocks and Frames
Jikes RVM currently supports only 32 bits of address space, which
prevents us from using an address-ordered heap in which the write
barrier can quickly compare virtual addresses to determine if it
needs to remember a pointer. We instead simulate a larger address
space by organizing objects within frames, which are mapped (by
software) into a larger, logical, age-ordered address space. A frame
is a contiguous aligned chunk of virtual address space of size 2F ,
where F is set at system build time and was 26 for this work, giving
up to 64 frames of 64 Mb each. (In practice we actually use a few
less than 16 frames because of virtual address space restrictions im-
posed by the operating system, etc.) We call the high order bits of
a frame’s address the frame number.

A frame is the largest amount of contiguous space in which ob-
jects reside, and the frame size thus determines the maximum ob-
ject size. A frame is also the minimum unit of collection, so in
general we do not fill frames completely. For example, in the OF
collector, the window size determines how much space we allocate
within a frame.

The collector represents ages by associating a time-of-death (TOD)
with each frame, using an array indexed by frame number. We use
TOD because TOD values do not change as time passes, whereas
ages do. The TOD corresponds to the frame’s position in the larger
logical address space, and allows us to apply an age-order write
barrier that is analogous to (but not as efficient as) the address-order
write barrier possible in a larger virtual address space in which the
frames would be placed in virtual address space in age order.

As the program executes, first one hands frames out to the A region,
filling each one with a windowfull of objects. When the heap is
full, one starts handing frames out to the C region, filling them
with survivors from collecting the oldest frames of the A region.
After copying survivors from a collected frame, the frame becomes
available to handout to either the A or C region. The actual order of
the frames in virtual memory does not matter: the TOD table gives
the necessary logical ordering both for collection and for the write
barrier.

Space within frames is allocated in aligned chunks of size 2B that
we call blocks. For this study, B � 17, giving a block size of 128K.
A block can be no smaller than a virtual memory page and no larger
than a frame. We perform space accounting (i.e., enforce maxi-
mum heap size) in terms of blocks, and we map and unmap virtual
memory dynamically to allocate space to frames dynamically and
to recover the space at the end of each collection. Within a frame,
allocation proceeds sequentially. When the next object allocation
would cross a block boundary, we attempt to obtain an additional
block for the frame (assuming the frame is not full). This will trig-
ger collection if the block budget is exhausted.

2.2 Managing TOD Values
As we allocate frames to the A and C regions, the frames obtain
increasing TOD values, drawing from one sequence for the A re-
gion and a higher numbered sequence for the C region. Now if the
survival rate from the A region collections is low (say 1%), then the
A region will consume TOD values much more rapidly than the C
region grows (100 times as fast for 1% survival), which means that
the A region TOD values can collide with the C region values.

In an actual large address space implementation, one would need to
do something, and since we are trying to emulate the large address
space case, what we do even in this implementation is collect the
remaining frames of the A region all at once, and “flip” regions just
as we do in the case of a window reset. In fact, we call this case a
hard window reset (“hard” because it is forced; we also call normal
window resets “soft”).

When there is a “flip”, we establish the starting TOD value of the
new C region a certain amount higher than the starting TOD value
of the (new) A region. We call that amount the zone size, and one
can specify on the command line as a multiple of the maximum
heap size (itself a command line parameter). For our runs we ad-
justed the zone size so that hard resets did not occur (so in fact we
did not implement the hard reset case since we did not need to).

Another exceptional case is having so many window resets, hard or
soft, that the TOD values themselves overflow. One way to handle
this in a large address space implementation is to copy the entire
heap to the other end of the address space, which we call a zone
reset. As with hard resets, we chose the zone size so that that zone
resets did not occur in our runs. We note that for long running
programs, it may be impossible to avoid zone resets.



2.3 Write Barrier
Our implementation limits the number of remembered pointers while
maintaining the simplicity of the OF write-barrier test. The OF
write-barrier test needs to remember a pointer between two blocks
only if it will collect the target block before the source block. This
occurs only if the TOD value of the target block’s frame is less than
the TOD value of the source block’s frame. Hence, it never needs
to remember intra-frame pointers.

Our write barrier is complicated by the fact that we could not use
a pure address-ordered write barrier, but had to use the logical or-
dering of frames (age). Making each frame hold a single collec-
tion window, we ensure that collections advance frame-by-frame.
Therefore our write barrier can exclusive-or the source object’s and
target object’s addresses to determine if they are in the same frame.
(OF collects objects within the same frame at the same time and
need not remember intra-frame pointers.) If the objects are from
different frames, the barrier looks up the frames’ ages in a table and
uses the original age-based pointer filtering technique (OF always
collects older objects before younger ones). Although more expen-
sive than a pure address-ordered test, the implemented write barrier
significantly limits the number both of expensive table lookups and
of remembered pointers.

In the event, the following are the PowerPC [10] instruction se-
quences that the two barriers are compiled to. Figure 2 shows the
code of the address-order write barrier, used in the generational
collectors. Figure 3 shows the write barrier with age lookup in the
frame table, used in the OF collector.

;; clear low-order 28 bits of pointer source:
rlwinm Rtemp, Rsource, 0x0, 0x0, 0x3
;; compare with pointer target:
cmp cr1, Rtarget, Rtemp
;; if comparison is favorable, skip remembering:
bge 1 label:do-not-remember-pointer
;; fall-through: remember pointer

Figure 2: Address-order write barrier

3. EXPERIMENTAL METHOD
In this section, we describe the collectors, implementation environ-
ment, hardware platform, test programs, configuration parameters,
and metrics we use to evaluate our work.

3.1 Collector families
In these experiments, the baseline is a two-generation collector with
variable nursery size [3]. We refer to this collector as the Appel
collector. It devotes all free space to the nursery. When the nursery
is full, it copies surviving objects to the older generation, and then
reduces the nursery size by this volume. It repeats this process
until the older generation occupies the entire heap, at which point
it performs a full heap collection, returning all free space to the
nursery. We have found this to be the best performing generational
collector [4].

Normalized to this collector, we compare two families of collectors
with fixed window size—the traditional two generational fixed-size
nursery collectors and the Older-First collectors. In a nursery of
size k, the two generational fixed-size nursery collector sizes the
nursery at k bytes, and collects every k bytes of allocation. It pro-
motes surviving objects into the older generation, and when the

;; calculate frame numbers for source and target:
rlwinm Rtemp1, Rsource, 0x6, 0x1a, 0x1f
extsb Rtemp1, Rtemp1
rlwinm Rtemp2, Rtarget, 0x6, 0x1a, 0x1f
extsb Rtemp2, Rtemp2
;; intraframe pointers test:
cmp cr1, Rtemp1, Rtemp2
beq 1 label:do-not-remember-pointer
;; heap boundary test:
cmpi cr1, Rtemp2, 0xf
blt 1 label:do-not-remember-pointer
;; load base of TOD array:
lwz Rtemp3, a-static-offset(JTOC)
;; look up age of source and target:
sli Rtemp1, Rtemp1, 0x2
lwzx Rtemp1, Rtemp3, Rtemp1
sli Rtemp2, Rtemp2, 0x2
lwzx Rtemp2, Rtemp3, Rtemp2
;; age comparison test:
cmp cr1, Rtemp1, Rtemp2
ble 1 label:do-not-remember-pointer
;; fall-through: remember pointer

Figure 3: Write barrier with age lookup

heap is full, it collects the entire heap. We refer to this collector as
the generational or fixed-generational collector.

We also include the non-generational semi-space collector which
demonstrates that all of the collectors perform better than collecting
the entire heap.

3.2 Experimental environment
We use and measure collectors in the Jikes RVM release 2.0.3 [2]
(formerly Jalapeño), built and running with the optimizing com-
piler turned on. Jikes RVM has no interpreter, and all Java byte-
code is translated to native PowerPC code before execution. The
virtual machine is itself written in Java, and it translates its own
bytecodes to native code [1]. This translation could be done at run-
time, but to avoid obscuring the behavior of benchmark programs,
the classes of the virtual machine are precompiled during the build
stage of Jikes RVM. However, the measured execution includes the
compilation of the application methods to native code.

Our version of Jikes RVM includes the recently developed and pub-
licly available version of the UMass GC Toolkit. We believe the
collector implementations to be well-tuned. The write barrier used
in the Appel and fixed-generational collectors is an address-order
write barrier with fast common case code [14, 5]. The write bar-
rier used in the Older-First collector is somewhat less efficient, as
discussed in the preceding section.1

The hardware platform is a Macintosh PowerMac G4 with a single

1These results can still be improved for the compiler does not fully
optimize the write barrier code. Upon inspecting the compiled re-
sult, around the actual barrier code (Figure 3) we find some un-
needed instructions and at least one extra branch. We expect that a
fully optimized barrier would provide an additional 1-2% time sav-
ings, but, without significant reengineering of the optimizing com-
piler we cannot replace the compiled barrier with fully optimized
code to verify this savings. On the other hand, we are currently
developing a 64-bit version of Jikes RVM which will permit using
the address-order write barrier for the Older-First collector as well.



733 MHz PowerPC 7450 processor, 32 KB L1 data and instruction
caches, 256 KB unified L2 cache, and 640 MB of memory, run-
ning Yellow Dog Linux 2.1 (Linux kernel 2.4.10). The machine is
placed in single-user mode and disconnected from the network for
the duration of the experiment.

3.3 Test programs
We use all 8 programs from SPECjvm98 [11, 8] without any mod-
ification. Using SPEC JBB [12] posed a challenge: in its original
form, it is a throughput-based self-calibrating program. We modi-
fied the code so that it performs a fixed amount of work. To avoid
confusion, this benchmark is named pseudojbb. In a similar fash-
ion, pseudojBYTEmark was derived from the javaBYTEmark code.
A summary of benchmark programs used is in Table 1.

Since the Appel collector serves as reference for performance mea-
surements, we use it to determine the minimum heap size needed
to run each benchmark (namely, we stipulate that under no circum-
stance will the memory manager request more memory from the
operating system than a given amount—instead, the memory man-
ager fails if it cannot satisfy all requests within that amount of mem-
ory). In many cases, other collectors need somewhat larger heaps
to operate and thus data points for very small heaps will be absent.
In the results below, we report heap sizes relative to this minimum
heap size.

3.4 Configuration parameters
We vary the heap size between the minimum feasible size and 3.25
times that amount. This range reveals the space-time tradeoff which
is de rigueur in garbage collection. In small heaps, the collector
runs more frequently and in larger heaps, less. In very large heaps
that are sparsely populated with live objects, paging results. Note
that even the largest benchmark configurations operate in less than
a third of available physical memory on the experimental platform,
therefore we entirely avoid paging activity in these experiments.
We cover the range 1–3.25 with 17 heap sizes, spaced more densely
towards the low end.

For both generational and Older-First collector families, we vary
the window size between 5% and 60% of maximum permissible
size, which is roughly half the heap size. (Within this range, we
find the best-performing window sizes for each family. With larger
window sizes, both families quickly degenerate into the semi-space
collector.) We use 9 window sizes in this range.

3.5 Metrics
The first performance metric is the mark/cons ratio. For copying
garbage collectors such as the ones we consider here, this ratio is
the total amount of data copied by the collector divided by the to-
tal amount of data freshly allocated by the program (last column
of Table 1). If the expense of copying data is the predominant ex-
pense of garbage collection, and that cost is nearly proportional to
the amount copied, the mark/cons ratio ought to be a good indicator
of performance. Perhaps this expense solely determined collection
costs early in the history of garbage collection work. In general,
systematic differences arise between collector families because of
copying costs and other costs, such as pointer tracking [14]. Nev-
ertheless, the mark/cons ratio provides a clue into the copying cost,
and remains the only direct metric derivable in simulation.

Counting the amount of data allocated imposes a significant over-
head on each object allocation, and similarly for the amount of data

copied. Therefore, we perform separate statistics-gathering experi-
mental runs to obtain mark/cons ratios.

We use the total execution time of the program as the ultimate met-
ric of garbage collection performance. Each reported time is the
minimum over three measured runs for a given configuration. Total
execution time includes costs incurred both at garbage collection
time and within the mutator, including the cache locality effects of
object motion and of write-barrier actions. Unfortunately, the total
execution time does not provide an insight into the contribution of
these various effects. We do report garbage collection times, and
include a few results for write-barrier effects.

Garbage collection time is the sum of all collector induced pause
times, which we measure in elapsed time using the Jikes RVM in-
terface to the PowerPC Linux system clock, with an effective mil-
lisecond resolution. Note that the reported garbage collection time
does not capture the full cost of memory management, since most
allocation and write barrier actions take place during the execution
of the mutator program, and not during garbage collection pauses.
These actions are extremely short and interleaved with application
code as a result of instruction scheduling and out-of-order execu-
tion; therefore it is not feasible to measure their cost directly.

4. RESULTS
Because the experimental results cover a large configuration space,
we begin by considering in detail a single benchmark, and then
present total time, mark/cons, and pause-time results for all bench-
marks. We choose pseudojbb as our detailed study because it allo-
cates the most and has the largest live data size in our set.

4.1 Results for benchmark pseudojbb
Figure 4 shows the mark/cons ratios obtained in statistics-gathering
runs, with a graph for the generational collector, and a graph for the
Older-First collector. Heap size (horizontal) is drawn to a logarith-
mic scale to provide details at smaller sizes close to the minimum
feasible. Mark/cons ratios (vertical) are normalized with respect to
the mark/cons ratio of the Appel collector at each given heap size.

For the fixed-generational collector, the relative mark/cons ratio is
almost always above 1. Thus, the Appel collector copies signif-
icantly less and utilizes the heap better than a fixed-generational
collector, for all choices of nursery size on a range of heap sizes.
This result agrees with the goals of the Appel collector [3], but is
only now appearing in the literature [4]. Figure 4(b) shows that the
mark/cons ratio of the Older-First collector is both lower than the
generational collector and usually lower than Appel. These results
confirm our earlier simulation-based study comparing OF with the
fixed-generational collector [14].

Looking more closely at the sizes of the collected region (nursery
in the case of the generational collector, window size for OF), we
note that there is considerable variation in which region size gives
the lowest mark/cons ratio, as the heap size is varied, and also that
efficient sizes tend to be small, but not too small. Many configura-
tions of the generational collector operate well with nursery sizes
from 5 to 15% of the heap size, but fail with large sizes. OF is more
robust with respect to this parameter; it operates well with window
sizes between 5 and 40% of the heap.

Figure 5 shows the garbage collection times for different garbage
collectors, again for pseudojbb. Although there is variation in the
fine detail, garbage collection times have the same behavior as



Program Description MH AL
SPEC 201 compress Compresses and decompresses 20MB of data using the Lempel-Ziv method. 19 215
SPEC 202 jess Expert shell system using NASA CLIPS. 12 508
SPEC 205 raytrace Raytraces a scene into a memory buffer. 15 252
SPEC 209 db Performs series of database functions on a memory resident database. 22 192
SPEC 213 javac Sun’s JDK 1.0.4 compiler. 28 639
SPEC 222 mpegaudio MPEG audio decoder 10 153
SPEC 228 mtrt Graphics ray tracer 21 255
SPEC 228 jack Generates a parser for Java programs. 14 534
pseudojbb Fixed-work version of the SPEC JBB benchmark 59 667
pseudojBYTEmark Fixed-work version of the JavaBYTEmark benchmark 12 211

Table 1: Benchmark programs used in the experiment. MH is the minimum heap size needed to run the program using the Appel
collector, and AL is the total amount of data allocated by the program. Both are expressed in megabytes.
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Figure 4: Mark/cons ratio: pseudojbb.

the mark/cons ratios: the fixed-generational collector generally ex-
hibits higher garbage collection times than Appel, and OF generally
further lowers times, with relative differences diminishing towards
larger heap sizes.

Figure 6 shows the total execution times for pseudojbb. Recall that
total execution time comprises the time spent in garbage collection
(previous figure), mutator or useful work time, and write-barrier
time (incurred within the mutator but not measured separately).
Comparison of Figure 5(a) and Figure 6(a) shows that the fixed-
generational collector has a higher total execution time than the
Appel collector, but the relative difference is not as pronounced as
for garbage collection time alone. This dilution of differences is
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Figure 5: Garbage collection time: pseudojbb.

expected, because garbage collection time is considerably less than
mutator time, especially for larger heaps, as shown in Figure 7 for
the Appel collector.

Comparison of Figure 5(b) and Figure 6(b) shows that the range of
heap sizes at which the total execution time of the Older-First col-
lector is below that of the Appel collector (1–1.6) is reduced with
respect to the corresponding range for garbage collection times
alone (1–2.5). This result is explained by an unequal contribution
of write-barrier times: OF must record more pointer stores than
generational collectors, and its write barrier implementation is not
as efficient.
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Figure 6: Total execution time: pseudojbb.
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To demonstrate these differences, we take as a case study the exe-
cution of pseudojbb in a heap of size 74 (relative heap size � 1.25),
comparing the Appel collector and the OF collector with window
size 10%. Total execution times are 42.035s (OF) and 45.155s (Ap-
pel), giving the ratio 0.93 (as in Figure 6(b)). Garbage collection
times are 5.148s (OF) and 9.378s (Appel), giving the ratio 0.55 (as
in Figure 5(b)). Mark/cons ratios are 0.173 (OF) and 0.334 (Appel),
giving the ratio 0.52 (as in Figure 4(b)). Now we look at pointer-

maintenance costs. In each case, 98.2 million write barriers (code
in Figure 3 or fig:write-barrier-address-order) were executed. The
number of interesting pointers, which must be remembered, is 6.24
million for OF, but only 2.59 million for the Appel collector, giv-
ing a ratio of 2.41. A further difference arises at garbage collection
time, when remembered pointers with target in the collected region
are processed. In OF, a total of 10.32 million remembered pointers
are processed, but only 2.59 million for the Appel collector, giving
a ratio of 3.99. A further difference is in the number of garbage
collections; OF performs 97 collections, the Appel collector 85.
Although a larger number of collections may be good for reduc-
ing pause time (Section 4.3), it increases the execution time, since
stacks must be scanned more often. Here is the tradeoff we have
made. The flexible choice of garbage collection region as in OF has
resulted in having to record approximately 2.5 times more pointers
at write barriers, and to process approximately 4 times more point-
ers at garbage collection time; 14% more time is spent in stack
scanning and other GC startup overhead. In spite of these measured
factors, and the disadvantage of a slower write barrier “fast path”
which we could not directly measure, the total execution time for
OF is 7% lower, thanks to a halving of the mark/cons ratio. In other
program runs (db) we noticed that OF achieved improvements that
we could not explain entirely as a tradeoff between copying and
pointer-maintenance costs, and that are most likely a consequence
of improved cache performance. A detailed study of comparative
cache behavior of these garbage collection algorithms in a Java vir-
tual machine is called for but beyond the scope of the present paper.

4.2 Total Time and Mark/Cons Results for All
Benchmarks

We now present total execution time data for all 10 benchmarks.
For each benchmark, we summarize generational collector data into
a single plot line, using the best possible nursery size for each heap
size. Similarly, we present the best OF window size for each heap
size. Automatically or adaptively choosing these region sizes is a
very challenging problem that we do not explore here. Figures 8–
10 present these two results together with the semi-space collector,
and normalize them with respect to the total execution time of the
Appel collector.

Performance results, namely total execution times, are surprisingly
favorable to the Older-First collector. An earlier study based on
fully accurate garbage collection traces and faithful simulation [14]
found that the Older-First collector’s mark/cons ratio was occa-
sionally as low as one-tenth that of the fixed-generational collec-
tor using the best configuration of each. In such cases, the study
predicted, according to an estimate of the write-barrier costs, that
total memory management costs could be a factor of two to three
lower with OF. That study made no prediction about total execu-
tion times, but from these estimates and from Figure 7 we could
extrapolate a reduction of between 2.5% (for larger heap sizes) and
20% (for small heap sizes). However, among the set of Smalltalk
and Java program traces used in the earlier simulation study, only
a few showed such dramatic reductions in the mark/cons ratio with
OF; for many programs, it found no significant improvement of
mark/cons ratios and estimated there could be only marginal im-
provement in total collection cost.

In the present live measurements, we observe more consistent re-
ductions in the mark/cons ratio (Figures 11–13) with the Older-
First collector compared to the generational collector, although not
dramatically lower as in the earlier study. These improvements in
the mark/cons ratio, however, translate into measurable reductions
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Figure 8: Total execution time, for best configuration.
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Figure 9: Total execution time, for best configuration (contin-
ued).
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Figure 10: Total execution time, for best configuration (contin-
ued).

of total execution time (Figures 8–10). Of note is that on several
benchmarks, the mark/cons ratio of Older-First is lower even than
that of the Appel collector which is tuned to minimize copying. In
7 out of 10 benchmarks (compress, jess, raytrace,db, jack, pseudo-
jBYTEmark, pseudojbb), the total execution time with the Older-
First collector is ultimately lower than with the Appel collector for
a wide range of heap sizes.

4.3 Measurements of Pause Times
The design goal of OF is to improve throughput by reducing the
mark/cons ratio, however OF achieves low mark/cons ratios with
small window sizes. Since the amount of data copied at each col-
lection is bounded by the window size, previous work predicted
[14] that lower pause times would be an additional benefit when
using OF as compared to the generational collectors which occa-
sionally collect the entire heap. Similar reasoning applies to using
a fixed-generational collector as compared with Appel, or a semi-
space collector. We measure pause times for OF, fixed, and Appel
in the Jikes RVM collector and we analyze them using the recently
developed method of mutator utilization [4, 7].

Reporting the duration of each garbage collection pause in a general
timing run introduces a slight overhead. Whereas the time reported
for each pause is accurate, over the execution of the entire program
this reporting increases the total time. To avoid this problem, sep-
arate pause-timing runs were performed, whereas the timing runs
described in the preceding section only reported the time once, at
the end of execution.
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Figure 11: Mark/cons ratio, for best configuration.
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Figure 12: Mark/cons ratio, for best configuration (continued).
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Figure 13: Mark/cons ratio, for best configuration (continued).

We first focus on maximum pause times and present an aggregate
picture of all program runs (for all heap sizes and collector config-
urations) in Figure 14. Each scatter point corresponds to a single
program run, and the marks distinguish the runs of generational,
OF, Appel, and the semi-space collector. The horizontal coordinate
gives the longest pause time incurred in the run, and the vertical
gives the mutator utilization averaged over the entire run, i.e., the
fraction of total execution time spent outside the garbage collector.

The semi-space collector points form a vertical band about 3 wide
on the logarithmic scale, which is expected given that the span of
heap sizes is 3.25. The shortest maximum pause times come from
the generational collector when the heap is so large that it never
performs a full heap collection. Most generational collector runs
incur some long pauses when it collects the nursery together with
the older generation. The Appel collector has some of the highest
mutator utilization scores, but it too has high maximum pause times
for major collections. The Older-First collector points are clustered
in the favorable region of high mutator utilization and low maxi-
mum pause times, but there are also a number of runs with very
long pause times.

A survey of maximum pause times does not capture the pause be-
havior of a collector completely. For interactive (or real-time) use
it is important for the mutator to be able to make progress within
any given period, and therefore it is important that garbage collec-
tion pauses do not occur in clusters. To quantify this progress, we
examine all time intervals within a program execution. We say that
minimum mutator utilization or MMU for interval length w is m if
for all intervals of length equal to or greater than w, the mutator
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Figure 14: Mutator utilization vs. maximum pause time, all
program runs.

utilization in the interval is at least m.2

MMU plots are shown in Figures 15–17 for all 10 benchmarks, at
the same relative heap size for each, twice the minimum heap size.
For the fixed-generational collector, we show a representative well-
performing nursery size of 15%, and a window of the same size for
OF.

For six of the 10 benchmarks, compress, jess, and raytrace, mpe-
gaudio, pseudojBYTEmark, and pseudojbb, the Older-First collec-
tor achieves both a higher average mutator utilization (y-intercept)
and a lower maximum pause (x-intercept) than the Appel collector,
and its MMU curve is everywhere above the Appel collector curve.
For pseudojbb, there is a fivefold reduction in maximum pause
time. In addition, for mtrt, the Older-First collector has higher mu-
tator utilization and a lower maximum pause, but for a mid-range
of pauses the Appel collector has greater MMU. For javac there is
little difference among collectors with respect to maximum pause
time, and the Older-First collector comes close to Appel with re-
spect to average mutator utilization; however, its MMU curve in
between the extremes is markedly lower than the Appel collector
curve. For db, the Appel collector is the best both in terms of
throughput and responsiveness. Finally, jack is an aberration with
the semi-space collector having the smallest maximum pause time;
we must investigate this further.

Note that none of the collectors we discuss provide any kind of
real-time guarantee. Therefore, these results are only indicative of
actual behavior, insofar as the benchmarks are representative of true
workloads.

5. SUMMARY
We present a first implementation of the Older-First collector, in-
side a Java virtual machine. We evaluate it against its natural com-
petitor, the fixed-size nursery generational collector, as well as the
Appel variable-size nursery generational collector. In the domain
of throughput metrics, we find that the Older-First collector yields
lower mark/cons ratios than the fixed-size nursery generational col-
lector and is also lower than the Appel collector for a range of im-

2This formulation is exactly as in [4]. It is slightly different from
[7] in that MMU curves are necessarily monotone increasing.
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Figure 15: MMU.
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Figure 16: MMU (continued).
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Figure 17: MMU (continued).

portant, relatively small, heap sizes, across the SPECjvm bench-
mark suite. Moreover, this result is true of total program execution
times, though the improvement over the Appel collector is never
more than 30%. In the domain of pause-time metrics, we found
that for many benchmarks, though not all, the Older-First collec-
tor achieves significantly lower maximum pause times than gener-
ational collectors.

We believe better implementations of OF are possible. For in-
stance, profile-driven pretenuring provides immediate improvements
to this basic collector organization [6]. We hope eventually to build
OF in a 64-bit environment, in which OF will have the same fast
write barrier as the generational collectors. The question of adap-
tive tuning of window size and other heap configurations remains
open, as well as generalizations of the Older-First window motion
policy.
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