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Abstract

Resource disaggregation has gained much traction as an
emerging datacenter architecture, as it improves resource
utilization and simplifies hardware adoption. Under resource
disaggregation, different types of resources (memory, CPUs,
etc.) are disaggregated into dedicated servers connected by
high-speed network fabrics. Memory disaggregation brings
efficiency challenges to concurrent garbage collection (GC),
which is widely used for latency-sensitive cloud applications,
because GC and mutator threads simultaneously run and
constantly compete for memory and swap resources.
Mako is a new concurrent and distributed GC designed

for memory-disaggregated environments. Key to Mako’s
success is its ability to offload both tracing and evacuation
onto memory servers and run these tasks concurrently when
the CPU server executes mutator threads. A major challenge
is how to let servers efficiently synchronize as they do not
share memory. We tackle this challenge with a set of novel
techniques centered around the heap indirection table (HIT),
where entries provide one-hop indirection for heap pointers.
Our evaluation shows that Mako achieves ∼12ms at the
90th-percentile pause time and outperforms Shenandoah by
an average of 3× in throughput.

CCS Concepts: • Hardware → Communication hard-

ware, interfaces and storage; • Software and its engi-

neering→ Garbage collection; Cloud computing.
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1 Introduction

Resource disaggregation, as an emerging datacenter archi-
tecture, has recently attracted much attention in both
academia [13, 32, 34, 59] and industry [3, 23, 27, 37, 45].
Resource-disaggregated datacenters are made up of servers
dedicated to individual resource types (e.g., CPU, memory,
or accelerators), and connected by high-speed network fab-
rics such as RDMA over InfiniBand. Disaggregation is ap-
pealing due to three major advantages it provides: (1) im-

proved resource utilization: decoupling resources and making
them accessible to remote processes makes it easier for a job
scheduler to achieve full resource utilization; (2) improved

failure isolation: any server failure only reduces the amount
of resource of a type, without affecting the availability of
other types; and (3) improved elasticity: hardware-dedicated
servers make it easy to adopt new hardware.
This paper focuses on an environment where memory is

disaggregated [56, 66]Ða CPU server runs multiple applica-
tions and these applications access data located on multiple
memory servers. The CPU server maintains a small amount
of local memory, which is used by each program as a software-
managed inclusive cache.1 Each memory server has a large
amount (e.g., TBs) of RAM but only weak cores (e.g., wimpy
ARM cores). The mainstream approach to accessing remote
memory [10, 34, 59, 66] is through the paging/swap system

1łCachež refers to a CPU server’s local memory in this paper.
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in the OS; accessing a virtual address whose physical page
is not present in the cache triggers a page fault, which the
OS kernel handles by fetching the page data from a memory
server via remote direct memory access (RDMA). Since each
CPU server may run many programs that all share its local
memory, the amount of cache space for each program is
often small (e.g., <50% of the program’s working set).

As a result, spatial/temporal locality is crucial for satisfac-
tory performance. For example, ML training and MapReduce
applications that perform streaming accesses over large ar-
rays have good spatial/temporal locality. Thus, because most
memory accesses will hit into cache, these programs can still
run efficiently, although each actual remote access incurs a
nontrivial latency (about 100× longer than a DRAM access).
On the other hand, graph analytics applications with little
locality suffer dearly from remote access latency, because
most accesses will trigger page faults and remote fetching.

Problems. Garbage collection (GC) is such a graph work-
load without much spatial/temporal locality. Mainstream
GC performs tracing and reclamation to collect dead objects.
Tracing traverses a heap graph to identify live objects, while
reclamation sweeps dead objects or moves live objects. Both
tracing and reclamation are memory intensive without local-
ity. As such, running modern GCs as is on the CPU server
can slow down a program by 1ś2 orders of magnitude [66].
Concurrent GCs collect memory while the mutator runs,

providing low pause times. However, in this new memory
disaggregation setting, they could suffer more than stop-the-
world (STW) collectors from lack of locality. Concurrent GCs
often have many GC threads that execute simultaneously
with mutator threads. When GC and mutator threads both
run on the CPU server (with most data located on memory
servers), they compete severely for cache and swap resources
(e.g., RDMA bandwidth). For example, the working sets of
GC and mutator threads are often disjoint. When the mu-
tator (or GC) needs space, it evicts pages used by the GC
(or mutator), resulting in significant interference. Our ex-
periments show that modern concurrent collectors such as
Shenandoah [30] can slow down applications by 20×. Al-
though concurrent GCs are necessary for latency-sensitive
cloud applications [48], such high overheads are intolerable.
Our goal is to develop a low-pause, high-throughput GC

for latency-sensitive applications running in a memory-

disaggregated datacenter.

A straightforward idea is to run GC tasks on memory
servers where data is located, while running the mutator still
on the CPU server. Since GC will be physically separated
from the mutator, they no longer compete for resources. In
addition, GC can run much faster as it is near data and poor
locality is no longer a concern. However, a major challenge
with this approach is how to enable the intimate interactions
needed between the mutator and GC to guarantee the safety
of concurrent memory reclamation. In a distributed setting,

it is impossible to port existing concurrent GC algorithms in
a straightforward manner. The reason is that there is no effi-
cient way to enforce memory coherence between the CPU
and memory serversÐan unsolved problem in 30 years of
distributed shared memory research. Therefore, even if GC
tasks are offloaded to memory servers, existing concurrent al-
gorithms such as Shenandoah/ZGC cannot coordinate these
servers due to a lack of efficient fine-grained synchronization
mechanisms (e.g., lock and atomic instructions).

Mako. This paper presents Mako, a distributed and concur-
rent collector that achieves∼12ms pause times (i.e., 2× lower
than Shenandoah) with up to 6× higher throughput on disag-
gregated memory. Mako does so by offloading both tracing
and evacuation onto memory servers, while overcoming the
aforementioned synchronization problems with the heap in-
direction table (HIT). The HIT provides one-hop indirection
for heap references. In the HIT, each object pointer is rep-
resented as the address of an immobile HIT entry, which
records the actual address of the referenced object. The HIT
is a distributed data structure that consists of a set of tablets,
each containing entries for objects in a heap region. The
HIT can be read/written by both CPU and memory servers:
the mutator accesses it on the CPU server upon each object
access, while each memory server can access only the tablets
that correspond to regions hosted by that server. When a
memory server evacuates objects from a region, it only needs
to update the region’s own tablet to reflect the movement of
objects, rather than updating all references to those objects
throughout the heap.
The HIT provides three major benefits. (1) It eliminates

the need to directly update pointers at both the CPU and
memory servers when objects are moved, resulting in a sig-
nificantly simplified algorithm. (2) It allows for immediate
reclamation of an evacuated region rather than relying on
another tracing pass to update all pointers to the moved ob-
jects. (3) It provides fine-grained synchronization: whenever
a memory server evacuates objects in a region, the region’s
tablet is ‘locked’ (i.e., invalidated on the CPU server), auto-
matically preventing mutator threads from accessing objects
in the region, because accessing objects requires looking up
their HIT entries, which have been invalidated.
To reap these benefits, Mako must overcome two chal-

lenges. First, using the HIT naïvely would double the num-
ber of memory accesses. To reduce indirect accesses, Mako
allows stack variables to store direct pointers: whenever a
reference is loaded onto the stack, it is converted from the
address of a HIT entry to the target object address, using a
load barrier. Mako uses a short stop-the-world (STW) phase
to move objects that are directly stack-reachable to guaran-
tee that these references are appropriately updated, before
concurrent evacuation begins. This optimization effectively
reduces the HIT’s run-time overhead to only ∼15%, which
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can be easily offset by the significant savings from offloading
GC onto memory servers.
Second, concurrent evacuation on memory servers re-

quires a small pause to determine a set of regions to be
evacuated and to evacuate root objects in these regions dur-
ing the pause to ensure stack consistency. A naïve approach
to guaranteeing safety is to block mutator accesses to these
selected regions after this pause because any access can po-
tentially load a non-root object onto the stack, making the
stack inconsistent. However, this approach blocks mutator
accesses for the entire span of evacuating all selected regions,
which can defeat the purpose of our low-pause design.

Therefore, we develop a novel algorithm that performs
evacuation on a per-region basis [44]. It does not block mu-
tator access to a region, as long as the region is not being
evacuated. To guarantee correctness, when the mutator ac-
cesses a region that is in the evacuation set but has not yet
been evacuated, we let the mutator evacuate the accessed
object immediately on the CPU server. This guarantees that
any objects accessed before the memory server starts evac-
uating the region have already been moved to the region’s
to-space. Mako only blocks mutator accesses to the region
during its memory-server evacuation. As such, a mutator
thread blocks for at most the time needed to evacuate one

single region (as opposed to all selected regions), which is
5ś10ms in our experiments.

Results.We implemented Mako in OpenJDK 13 and Linux
4.11.0-rc8, and evaluated Mako on a range of cloud applica-
tions with various cache configurations. Mako achieves a
90th-percentile pause time of 11.98ms, which is 2× lower
than that of Shenandoah, and two to three orders of magni-
tude lower than that of Semeru [66], a G1-based generational
GC for disaggregated memory. Furthermore, Mako outper-
forms Shenandoah in throughput by 2ś6× due to offloading
tracing and evacuation onto memory servers. Mako is pub-
licly available at https://github.com/uclasystem/mako.

2 Related Work

Disaggregation Systems.Due to rapid advances in network-
ing hardware, resource disaggregation has quickly turned
from a nebulous idea into a practical solution that is revo-
lutionizing major datacenters [16, 20, 32, 35]. Given that
resource underutilization is a major problem in modern
datacenters, resource disaggregation attacks this problem
head-on, turning resource scheduling from a difficult bin-
packing problem into a much simpler allocation problem.
Programs running on any CPU server can have their data
located on any memory server. A disaggregated cluster
also overcomes the critical ‘memory capacity wall’ prob-
lem [8, 11, 14, 41, 46, 47, 65] by allowing applications to use
unlimited resources. The past few years have witnessed a pro-
liferation of software systems that can take advantage of this
architecture [7, 10, 25, 28, 29, 31, 34, 40, 43, 53, 56, 59, 61, 62].

Semeru [66] is a memory-disaggregated runtime that uses
a unified address space for the distributed heap and offloads
tracing to memory servers. However, Semeru was designed
for throughput and, hence, object evacuation runs on the
CPU server in a long stop-the-world (STW) phase. When
evacuation runs, it must fetch objects from memory servers,
move them onto the CPU server, and write them back to
new locations on their memory servers. This process leads
to exceedingly long GC pauses such as dozens of seconds,
which are often unacceptable for latency-sensitive cloud
services.

Concurrent GC. Many concurrent garbage collectors were
designed to minimize GC pause times for cloud workloads
that are more tolerant of reduced throughput (i.e., longer
end-to-end running time) than increased latency (i.e., longer
GC pauses). Oracle’s Concurrent MarkSweep (CMS) [51]
uses concurrent tracing to mark live objects (plus two short,
STW phases) and concurrent sweeping to reclaim unmarked,
dead objects. Many other concurrent moving collectors use
concurrent tracing to mark live objects; their reclamation
phase performs object evacuation by copying live objects
from a from-space to a to-space. In doing so, they reap the
benefits of reduced fragmentation, increased locality, and
efficient bump pointer allocation, but at the cost of maintain-
ing referential integrity while moving objects concurrently
with mutator accesses.

Concurrent evacuation is prone to data races. A num-
ber of techniques have been proposed to prevent races be-
tween the mutator and concurrent object evacuator, includ-
ing Baker’s load barrier [15], the Sapphire collector’s block-
ing methods [39], CHICKEN and CLOVER’s lock-free meth-
ods [54], and the Compressor collector’s virtual memory pro-
tection mechanism [42]. Oracle’s ZGC [1], RedHat’s Shenan-
doah [30], and Azul’s C4 [64] are widely used commercial
concurrent moving garbage collectors, which use similar
treatments to ensure safety in concurrent evacuation.
All of these concurrent moving collectors rely on syn-

chronization techniques that apply only to cache-coherent
shared-memory settings. These techniques do not work di-
rectly for memory disaggregation without huge performance
penalties. For instance, by leveraging a cache coherence pro-
tocol, modern processors provide atomic instructions (e.g.,
compare-and-swap) for threads to effectively synchronize
over shared memory. However, these atomic instructions
do not work when memory is distributed [36, 66] since net-
work adapters typically do not provide cache coherence be-
tween serversÐe.g., if a memory server concurrently installs
a forwarding pointer in an object, there does not exist a dis-
tributed łcompare-and-swapž operation that can guarantee
that the pointer is visible on the CPU server. As such, new
synchronization techniques must be developed to support
efficient atomicity between servers.
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Other Moving and Non-moving GCs. There exists a large
body of work on moving collectors that move live objects
for memory efficiency. There are two major types of moving
GCs: evacuating collectors [12, 15, 18, 21, 26, 38, 63, 65] that
move live objects to a new space, reclaiming the old space en
masse, and compacting collectors [24, 42, 57] that move live
objects to one end of the same space, reclaiming the unused
portion en masse. Moving collectors reduce fragmentation
and enable the use of efficient allocators (e.g., bump pointer),
but incur either space (for evacuating collectors) or time
overhead (for compacting collectors). Non-moving collectors
typically perform sweep-to-freelist. They are efficient in time
and space, but do not handle fragmentation well and must
use a less efficient freelist-based allocator.

Ossia [52] adds a stop-the-world phase to the mark-sweep
garbage collector that performs partial compaction for sparse
regions in that phase. Immix [19] uses a combination of
coarse-grained blocks and fine-grained lines for managing
memory. It allows for contiguous allocation and resorts to
opportunistic evacuation to defragment memory. Yak [50]
combines a generational GCwith region-basedmemoryman-
agement for big data systems. NumaGiC [33] is a NUMA-
aware GC that is designed to better exploit NUMA locality.
Write-rationing GC [9] and Panthera [65] are moving collec-
tors designed to efficiently migrate objects between DRAM
and NVM. Unlike these moving collectors above, Mako has
several unique characteristics optimized for memory disag-
gregation such as immediate reclamation, per-region evacu-
ation, and fine-grained locking centered around the HIT.

3 Mako Overview

Memory Servers

Java heap

Mako GC agent #1

Memory Server #1 Mako GC agent #2

Memory Server #2

CPU Server 

Java heap
Virtual Address

Local RAM (cache)

Physical Memory

Addresses aligned

Mako Swap System

Page faultsRDMA messages

RDMA over InfiniBand

Virtual Address

Figure 1. Mako’s distributed Java heap.

This section provides an overview of Mako’s heap struc-
ture and distributed GC algorithm.

3.1 Heap Structure

Figure 1 shows the distributed heap structure we use in
our setting. The CPU server runs a JVM with a heap that
is logically split into a number of partitions (i.e., address
spaces), each backed up by physical memory on a memory

server. The CPU server also has a small amount of memory,
but this memory serves as a software-managed, inclusive
cache and hence is not dedicated to specific virtual addresses.
When the mutator accesses pages uncached on the CPU
server, a page fault is triggered. Then, the paging system
swaps in the pages with needed objects into the CPU server’s
local memory cache. When the cache is full, selected pages
are swapped out to their corresponding memory servers, as
determined by their virtual addresses.
Servers are connected by RDMA over InfiniBand. Each

memory server runs a Mako agent, which performs concur-
rent tracing and evacuation over local objects. This agent
listens to the CPU server for commands as to what tasks to
do and when to do them. Due to its simplicity, the Mako GC
agent has a very short initialization time (e.g., milliseconds)
and a low memory footprint (e.g., megabytes of memory for
metadata). Hence, a memory server can easily run many
agents despite its weak compute (i.e., each for a different
CPU-server process). When a Mako agent starts, it aligns the
starting address of its local heap with that of its correspond-
ing virtual address range in the global heap maintained by
the CPU server. As a result, each object has the same vir-
tual address on the CPU and memory servers, and memory
servers can trace their local objects without address transla-
tion.

All object allocations occur on the CPU server with regular
allocation algorithms. However, if the page on which an
object is about to be allocated is uncached, the CPU server’s
OS will swap the page in from its hosting memory server
first before allocation.
Mako uses a region-based heap, allowing us to perform

concurrent object evacuation at the region granularity.When
objects in a region are evacuated on a memory server, the
CPU server can still access objects from other regions. Each
region has a default size of 16MB, and the CPU server writes
back a region if it is selected for evacuation on a memory
server. Further details are discussed in ğ5. Like ZGC and
Shenandoah, Mako uses one single generation, spanning
memory servers. Non-generational collection requires full-
heap tracing to identify live objects. However, since tracing
and evacuation both occur on memory servers and do not
take any compute resources on the CPU server, full-heap
tracing has little impact on mutator performance.

3.2 Mako’s Garbage Collector

Figure 2 depicts the high-level design of Mako’s concurrent
GC. The CPU server runs mutator threads, while memory
servers concurrently trace and evacuate live objects they
host. As shown in Figure 2(a), each GC cycle consists of
four phases. Pre-Tracing Pause (PTP) and Pre-Evacuation
Pause (PEP) are two short STW phases on the CPU server
for synchronization with memory servers, while suspending
mutator threads. Concurrent Tracing (CT) and Concurrent
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CPU Server

Pre-Tracing

Pause (PTP)
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Memory Server
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Tracing (CT)
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GC thread mutator thread

data path control path

Time

CPU Server Memory Server

1
scan stack 

flush write-thru buffer

root objects
2 dirty pagesPTP
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Invariants

IdleObj references 

consistent between 
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region live obj summary 
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update stack
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for evacuation
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Stack vars point to 

updated locs; bitmaps 
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Mutator

CEacks of completion

All HIT tablets 
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C and M- servers Control Path

updated HIT bitmaps

5 merge bitmaps

8
wake up blocking threads

7 Invalidate its 

tablet 

all pages in r

Time

(a) Phase overview (b) GC protocol, control-path communication, and invariants

Figure 2. An overview of Mako’s concurrent GC.

Evacuation (CE) are concurrent phases run by each mem-
ory server, as the CPU server runs the mutator. Figure 2(b)
illustrates the main activities in each phase, as elaborated
below:

Pre-Tracing Pause (PTP). This phase scans the thread
stacks ( 1 ), identifies root objects (i.e., reachable directly

from stack variables2) and notifies memory servers of these
objects as tracing roots. Our concurrent tracing builds on
the classic snapshot-at-the-beginning (SATB) algorithm [68],
which incrementally detects reference overwrites to build the
heap snapshot. However, the correctness of SATB depends
on an implicit assumption that, at the time tracing begins, all
reference updates made before tracing are in place; any fur-
ther updates during tracing will be detected and considered
in the heap snapshot. This assumption holds automatically
(due to cache coherence) in a single-server setting; however,
under memory disaggregation, it no longer holds due to the
lack of memory coherence between serversÐe.g., a memory
server may not see an update made by the CPU server be-
fore tracing starts; missing these updates can lead to missing
reachable objects in the snapshot.

To solve this problem, PTP must write back all dirty pages
to enforce that memory servers see all updates made by
the CPU server before concurrent tracing. To minimize this
write-back overhead, Mako explores a middle ground be-
tween write-through and write-back by batching page up-
dates in a buffer and flushing the buffer asynchronously

2For ease of presentation, we focus on stack variables when discussing roots.

Our implementation also considers static variables, string constants, JNI

references, etc. as roots.

when it is full. When PTP occurs, Mako only needs to flush
the pending pages in the buffer ( 2 ).

Concurrent Tracing (CT). This phase starts on each mem-
ory server, as soon as PTP finishes on the CPU server. CT
performs full-heap tracing. Given that our heap spans multi-
ple servers, memory servers notify each other of cross-server
references, whenever they are seen. As a result, each mem-
ory server performs graph traversal not only from its own
root objects but also from objects with incoming references
from other servers. CT finishes when each memory server
completes its own tracing and does not have any pending
messages from other servers. Mako uses an SATB buffer
to record overwritten values at pointer updates on the CPU
server, while memory servers perform CT. These values are
also sent to memory servers and considered as part of the
heap snapshot to ensure closure completeness.

Pre-Evacuation Pause (PEP). This phase on the CPU server
pauses the mutator to prepare for CE. PEP produces a com-
plete closure by conservatively adding the overwritten values
recorded in the SATB buffer into the closure of reachable
objects computed by CT. Further, PEP evacuates root objects
immediately ( 3 ) and updates their pointers directly on the

CPU server to guarantee that stack variables all point to up-
dated object locations in the to-space. Therefore, concurrent
moving involves only non-root objects in the CE phase and
does not create any stack inconsistencies. PEP computes a
live object ratio for each regionÐthe lower the ratio, the
higher the priorityÐand selects regions for evacuation by
CE ( 4 ).
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Concurrent Evacuation (CE).When PEP is over, eachmem-
ory server starts CE to reclaim memory. A challenge here is
how to provide synchronization between the CPU and mem-
ory servers. As stated earlier in ğ1, the lack of coherence
makes it hard to implement fine-grained synchronization
primitives. Hence directly applying ZGC or Shenandoah’s
algorithm would not work in our setting. To overcome this
challenge, we use the heap indirection table (HIT) to provide
one-level indirection for pointer representation in the heap.
Each reference-type object field contains an HIT entry ad-
dress, whose corresponding value stores the referent’s actual
address. There is a fixed one-to-one mapping between an
HIT entry and a heap object, until the object dies, at which
point the entry is reclaimed.

Note that the HIT is conceptually similar to the object table
design which was used in Smalltalk and in the early days of
the HotSpot JVM [2]. However, the HIT is a distributed data
structure that manages regions spanning multiple memory
servers. The HIT consists of a set of independent tablets,
each mapping to a region. The CPU server stores the entire
HIT metadata but uses the paging system to access specific
entries. Each memory server stores the tablets corresponding
to their regions. Details of this design can be found in ğ4.
The HIT offers two benefits. First, the HIT significantly

simplifies the effort of pointer updating: after an object is
moved, Mako only needs to update a single HIT entry, as
opposed to updating all of its incoming references (usually
via forwarding pointers) in a traditional setting. The HIT
helps to guarantee that memory that stores the object can
be reclaimed immediately after it is moved. If forwarding
pointers were used, memory could not be reclaimed until all
incoming references to the object were updated (usually in
the next tracing pass).
Second, the HIT provides a fine-grained locking mech-

anism between the CPU and memory servers during CE.
Before evacuating a region, the CPU server writes back all
pages in the region (to ensure that the memory server has
up-to-date pages; 6 ) and invalidates the tablet in the HIT

corresponding to this region ( 7 ). Write-back is done con-
currently so as to avoid a pause. If the mutator accesses an
object in a region during its write-back, the mutator moves
the object immediately to the to-space. After its tablet is
invalidated, its hosting memory server will move the rest
of the region to its to-space. During this process, the muta-
tor cannot access the region due to the lack of valid entries
for address translation and hence has to wait in a blocking
state. Once the region evacuation is done, the memory server
updates the region’s HIT tablet with new object addresses
and sends an acknowledgment to the CPU server. The CPU
server subsequently makes the tablet valid again and wakes
up the blocking threads ( 8 ).
To minimize the mutator’s blocking time, CE performs

evacuation on a per-region basis, repeatedly taking the three

steps 6 , 7 , and 8 , until all selected regions have been
evacuated. Due to per-region evacuation, the mutator’s
blocking time is bounded by the time needed to evacuate one

single region, which is typically small (e.g., < 5ms for 95% of
16MB regions). The evacuation algorithm can be found in
ğ5.3.
When basing our GC design on the HIT, to reduce ineffi-

cient unnecessary indirection, Mako allows stack variables
to point directly to objects instead of using the HIT entries.
This is done by using an unconditional load barrier that re-
trieves the object address from the entry and assigns it to
the stack variable, before an HIT reference is loaded onto
the stack. Subsequent uses of the stack variable such as calls
and field accesses will use the actual object address directly.
Conversely, a write barrier is used to convert the object’s
address into its HIT entry ID before writing the reference
to the heap. With this design, the overhead of indirection is
incurred only with heap loads and stores of references.

Control vs. Data Path. Mako uses a data and a control
path for the CPU and memory servers to communicate. The
data path goes through the kernel’s normal paging and swap
systemÐpages are evicted based on an LRU algorithm; ac-
cessing a page that does not reside in local memory triggers
a page fault, and the kernel handles the fault by fetching
the page from a memory server. When the mutator executes,
it accesses the program through the data path. However,
when the GC runs, the CPU server needs to coordinate with
memory servers by sending control information, writing
back regions, synchronizing the HIT tablets, etc. This coor-
dination goes through a control path, implemented via new
primitives we add to the kernel.

Pause Summary. Table 1 summarizes the three types of
pauses introduced by Mako and their time ranges. As shown,
PTP and PEP are very short, while the mutator blocking time
during CE is bounded by the time to evacuate one single
region, which is also acceptably short.

Table 1. Mako’s pause time.

Sources of Pause Type Time

Pre-Tracing Pause STW (all threads) ∼5ms

Pre-Evacuation Pause STW (all threads) ∼10ms

Per-region Threads blocking on the <5ms for 95%

evacuation wait region being evacuated of 16MB regions

4 The Heap Indirection Table

As discussed earlier, the HIT simplifies pointer updating
and provides a fine-grained synchronization mechanism for
concurrent evacuation. With the HIT, reference-type object
fields no longer store heap addresses and instead store ad-
dresses to the HIT entries, each of which stores an actual
object address in the heap. A one-to-one mapping is estab-
lished at allocation between each allocated object and its HIT
entry, which remains unchanged throughout its life span.
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Tablet. The HIT is a collection of tablets. Each tablet corre-
sponds to a heap region and has three components in Fig-
ure 3: (1) an array of (word-size) entries, (2) an entry freelist,
and (3) a mark bitmap. Each entry in the entry array stores
the actual address of an object in the region represented by
the tablet. The freelist keeps track of the addresses of free
HIT entries, for quick allocation of new objects. The mark
bitmap remembers entries whose corresponding objects are
marked during tracing. The bitmap is used to construct the
freelist for quick entry reclamation. The entire entry array in
a tablet is allocated upon the creation of a region; individual
entries are assigned to objects upon their allocation.

entry 

array

allocated entry free entry

mark

bitmap

freelist

tablet for region #1 tablet for region #2

obj A

obj B

field f

header

… …

… …

1 0 0 1 0 0 … 0 0 1 0 0 1 …

Figure 3. The structure of the heap indirection table (HIT).
As an example, the field 𝑓 of object A references object B.

Distributed Structure. Since each object requires an HIT
entry throughout its lifetime, the entire HIT could be too
large to fit in the CPU server’s local memory. Mako thus
stores only the allocation metadataÐthe tablet’s bitmap and
freelistÐon the CPU server’s unevictable region but places
each entry array on the memory server hosting its region.
Entry arrays are subject to paging similar to heap objects.

Since bitmaps are used at both the CPU (in PTP that traces
root objects) and memory servers (in CT that traces the full
heap), we maintain two copies for each region’s bitmap, one
on the CPU server and one on the region’s memory server.
Once CT is done, all live entries are marked. Memory servers
send their bitmaps back to the CPU server in PEP, which are
then merged to produce the latest liveness information.

Entry Assignment. Upon each object allocation in a region,
Mako obtains an HIT entry from the region’s entry array
by querying its freelist. Mako employs 25 unused bits in an
object’s header to store the HIT entry ID. Because it uses per-
region offsets to represent entry IDs, 25 bits are sufficient.
When a direct object reference on the stack is written into
the heap, Mako uses this header field to find its HIT entry
and write the ID of the entry into the heap (see ğ5.1). When
a heap region is created, the entire virtual space for its HIT
tablet is allocated, although its backing physical memory is
committed incrementally.
The HIT entry assignment, if not done carefully, can be

more costly than object allocation. Object allocation can
be implemented using an efficient bump pointer algorithm

(because evacuation moves objects into contiguous space),
but the HIT entries must stay immobile. Hence, to find a
reusable entry, Mako must use a freelist.
Since allocation performance is critical to the mutator’s

throughput, Mako optimizes the HIT entry assignment by
maintaining a per-thread entry buffer, similar to the TLAB
used in HotSpot [60]. When objects die and their HIT entries
return to the freelist, Mako caches a small number of them
(i.e., their addresses) in each thread’s entry buffer. This opti-
mization provides two main benefits. First, entry assignment
can be lock-free as long as this buffer is not empty. Second,
entry assignment does not need to go through the freelist
when there are cached entries. Furthermore, since entry ar-
rays are located on a memory server, obtaining a free entry
(at each object allocation) may need a costly remote fetch.
To solve this problem, Mako uses a daemon thread on the
CPU server to periodically fill the buffer with new entries
and preload their pages from memory servers. As a result,
the freelist is queried asynchronously and most object allo-
cations can quickly retrieve entries from their thread-local
buffers, leading to superior allocation performance.

Reference Resolution. For each object, its reference-type
fields now store the HIT entries. Figure 3 shows such a rep-
resentation when A.f refers to B. There is an additional hop
to retrieve B from A.f. To reduce this indirection-induced
latency, we use direct pointers for stack variables so that any
method calls or field accesses performed on a stack reference
can access the object directly.

Entry Reclamation. After concurrent tracing, Mako begins
entry reclamation according to the mark bitmap. Unmarked
bits represent entries for dead objects and these entries are
returned to the freelist; a subset of them is given to each
thread’s entry buffers for efficient allocation. Mako performs
this step concurrently in a GC thread, when the mutator
runs.

5 GC Design

5.1 Barriers

Heap/Stack Invariant: All stack variables point directly to

objects; all heap locations contain the HIT entry addresses.

An important efficiency property Mako maintains is that all
stack variables point directly to objects. As such, we use a
load barrier (LB) that turns an HIT reference into an object
reference upon loading. Conversely, when a reference on
the stack is written to the heap, we use a store barrier to
retrieve the HIT entry from the object and write the entry
address into the heap location. Algorithm 1 shows our barrier
logic. Our LB has a fast path that skips all the checks if
the execution is not in the concurrent evacuation phase
(indicated by CE_RUNNING, which is set by a daemon thread
and discussed shortly in Algorithm 2).
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Algorithm 1: Mako’s load/store barriers for refer-
ence read/write.

1 Function LoadBarrier(a = b.f)

2 HIT entry 𝑒 ← 𝑏.𝑓 ;

3 if CE_RUNNING then

4 Region 𝑟 ← Region(𝑏.𝑓 );

5 if 𝑟 is in the evacuation set 𝑠 then

6 if IsValid(𝑟 .tablet) then

7 /* 𝑟 ′ is to-space; 𝑡 is the new addr in 𝑟 ′ */

8 t ←Move(𝑏.𝑓 , 𝑟 ′);

9 Atomic {

10 /* only one thread can update ∗𝑒 */

11 if Region(∗𝑒)≠ 𝑟 ′ then

12 ∗𝑒 ← t ;

13 }

14 else

15 /* 𝑟 is being evacuated on a mem server */

16 while ¬IsValid(𝑟 .tablet) do

17 /* empty loop; wait until tablet

becomes valid */

18 /* not in CE or the evacuation of region 𝑟 is done */

19 𝑎 ← ∗𝑒 ;

20 Function StoreBarrier(b.f = a)

21 /* obtain the entry address from 𝑎’s header */

22 HIT entry 𝑒 ←Entry(𝑎);

23 𝑏.𝑓 ← 𝑒 ;

If the execution is in the middle of CE (i.e., Line 3 passes),
our LB performs two checks: (1) evacuation set check (Line 5)
and (2) tablet validity check (Line 6). Our CE algorithm (ğ5.3)
selects a set of regions for evacuation and performs evacu-
ation on a per-region basis. Hence, if the accessed region 𝑟

is not in the evacuation set, the mutator follows a fast path
that retrieves the address in entry 𝑒 (Line 19).

If 𝑟 is in the evacuation set, we perform the second check
to test whether the tablet containing entry 𝑒 is valid (Line 6).
IsValid(𝑟 .tablet) returns false if 𝑟 ’s tablet is invalidated by
the GC thread (Line 14 in Algorithm 2) to prevent mutator
threads from accessing 𝑟 while 𝑟 is being evacuated by a
memory server. At this moment, region 𝑟 can be in one of
two states: waiting or evacuating. First, if 𝑟 is waiting to be
evacuated, Mako still allows mutator threads to access 𝑟 . 𝑟 ’s
tablet is still valid and hence the check at Line 6 succeeds.

Before loading 𝑏.𝑓 onto the stack, the mutator must move
the object referenced by 𝑏.𝑓 to the to-space 𝑟 ′ of region 𝑟

(Line 8) and update its HIT entry 𝑒 with its new address
(Line 12). Similar to Shenandoah or ZGC, Mako allows mul-
tiple threads to compete when moving the same object in
Line 8. However, only one thread can successfully update
its entry 𝑒 to its new location (Line 12); other competing

threads, when finding that 𝑒 has already been updated to
point to an address in 𝑟 ′ (indicated by Region(∗𝑒)=𝑟 ′), give
up their object copies and directly use the updated address
in ∗𝑒 (Line 19). Here ∗𝑒 denotes the value contained in entry
𝑒 , which represents the actual object address.

Moving objects upon mutator accesses guarantees that
all objects in 𝑟 whose references are loaded onto the stack

must have been moved to 𝑟 ′ on the CPU server before the

memory-server evacuation of 𝑟 starts. These objects will not be
touched bymemory servers. Note that we cannot let memory
servers evacuate them because their references are already
on the stack; if they are still in the from-space when the
memory-server evacuation runs, moving them makes their
stack references stale, creating problems for the mutator.
If the tablet is invalid, region 𝑟 is being evacuated on a

memory server. In this case, we must block the mutator
access (Line 16-17); otherwise, the mutator could load a stale
reference onto the stack.When 𝑟 ’s evacuation by thememory
server is done, that server notifies the CPU server, which
then makes 𝑟 ’s tablet valid again; subsequently, the blocking
mutator thread proceeds to execute Line 19.

The logic for the store barrier is much simpler. Both𝑎 and𝑏
are stack references to objects that must have been moved to
the to-space, and their HIT entries must have been updated.
Hence, writing 𝑎’s entry address into the object referenced
by 𝑏 will not cause any issue.

5.2 Concurrent Tracing

Distributed SATB. The key challenge in Mako’s concur-
rent tracing is the incoherence between the CPU and mem-
ory servers, making it hard to implement the SATB algo-
rithm [68] that requires memory servers to see the latest
heap references before tracing begins. A naïve approach is
to write back all pages cached on the CPU server before
tracing during PTP. However, this approach is rather costly
as it requires swapping out gigabytes of data while mutator
threads are stopped, which can significantly increase the
pause time. To solve the problem, we use a variant of write-
through caching to amortize the swap cost. In particular, we
batch page updates during the mutator execution with a
write-through bufferÐeach reference write on a page causes
the page to be buffered. When the buffer is full, all pages in
the buffer are written back, through the control path, to their
hosting memory servers. As the same page may be added
multiple times, we deduplicate the buffer before it is flushed.
Since this is done asynchronously as the mutator executes,
it adds low overhead.

Pre-Tracing Invariant: All object references and their HIT

entries on memory servers are up-to-date; memory servers

see the latest heap snapshot; the live bits for root objects in

the HIT’s bitmap are marked.
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Due to the use of the write-through buffer, we only need
to flush the pending pages in the buffer in PTP, leading
to significantly reduced pause time. During PTP, the CPU
server scans the stack and sends root objects to their respec-
tive memory servers. Before tracing begins, the CPU and
memory servers have a consistent view of all heap references.
Given that heap locations contain the HIT references, tracing
must have access to the latest HIT as well. The HIT entries
are handled in the same way as regular data objectsÐtheir
pages are also subject to our write-through buffering and
periodically written back to memory servers.
Mako performs full-heap tracing to compute a complete

closure of live objects. To correctly implement the SATB
algorithm, the CPU server maintains an SATB buffer. Any
pointer updates made by the mutator since the last PTP are
captured in the SATB buffer. These updates represent the
changes after the heap snapshot is taken. They are sent to
memory servers and considered conservatively in CT so that
tracing is guaranteed to produce a complete closure that may
however include some dead objects [68].

Distributed Completeness Protocol. One challenge in full-
heap tracing is how to deal with cross-server referencesÐthose
whose source and target objects are on different memory
servers. Tracing in the presence of cross-server references
is essentially a distributed graph reachability problem with
known solutions [6, 49, 55]. A memory server maintains
a ghost buffer for each other memory server, which con-
tains messages to be sent to that server. Once tracing hits a
cross-server reference, it pushes the target object’s HIT entry
into the ghost buffer for the object’s hosting memory server.
Ghost buffers are flushed when they are full. Upon receiving
an incoming message, a memory server starts tracing using
the object included in the message as an additional root.
However, determining whether all memory servers have

completed their tracing work is a challenging task, which
requires a distributed protocol. To implement the protocol,
we maintain four flags on each memory server:

• TracingInProgress: indicating whether the memory
server is tracing or idle
• RootsNotEmpty: indicating whether the memory server
still has pending references received from other servers
• GhostNotEmpty: indicating whether this memory server
has a non-empty ghost buffer
• Changed: indicating whether any of the above three
flags changes between the two polls in each cycle

Tracing-Completeness Invariant: For eachmemory server, all

four flags are false.

The CPU server constantly polls those flags on memory
servers. In each polling cycle, two rounds of polling are
conducted. Upon seeing false values in all four flags on all
memory servers in both rounds, the CPU server instructs
memory servers to terminate the tracing loop. Note that a

memory server does not clear the GhostNotEmpty flag until it
receives acknowledgments from the receivers, and hence, it
is impossible that all flags are false but there are still messages
on the go.

The goal of maintaining the last flag (changed) and polling
twice in each cycle is to avoid the problem of premature ter-

mination. This problem occurs when the polling of different
memory servers happens at different times. For example,
memory server 1 receives the poll and tells the CPU server it
does not have any work to do while at the same time, mem-
ory server 2 is sending references to server 1. By the time the
poll arrives at 2, these references have already reached 1 and
been acknowledged. In this case, server 2 would respond
that it is also idle, making the CPU server falsely believe
that tracing has finished. We solve this problem using the
flag Changed on each memory serverÐfor example, if the
problem occurs during the first round of polling, the value
of RootsNotEmpty changes and Changed would become true.
The second round of polling will detect that and inform the
CPU server that tracing is still in progress.
During CT, each memory server marks (its own portion

of) the HIT bitmap as live objects are visited. These bitmaps
will be sent back to the CPU server at the end of PEP.

5.3 Concurrent Evacuation

Pre-PEP Invariant: All HIT bitmaps on the CPU and memory

servers are consistent and up-to-date.

PEP.When PEP starts, the CPU server sends values recorded
in the SATB buffer to memory servers, which use them to fin-
ish the final mark. The CPU server combines the HIT bitmaps
collected from all memory servers, producing a complete
bitmap that reflects the up-to-date liveness information.

Algorithm 2 describes our algorithm for PEP and CE. Dur-
ing PEP, the CPU server selects regions (Line 3) for object
evacuation based upon each region’s live object ratio, which
is collected during CT by memory servers. The fewer the live
objects, the higher priority a region has for evacuation. This
is because evacuating objects in regions with more garbage
can reclaim more memory.
Once the CPU server determines the evacuation set 𝑠 , it

first evacuates root objects in this set without offloading
them to memory servers (Lines 5ś7). We update two kinds
of references right away in the pause: (1) stack references
are direct object references, which are updated to the new
locations of the objects; and (2) HIT entries that point to
those root objects should also be updated with the new lo-
cations. These entries’ addresses can be retrieved from the
object headers. Note that root objects will not be touched by
memory servers after evacuation starts.
One additional constraint here is that objects from the

same from-space 𝑟 must be evacuated into the same to-space
𝑟 ′. This is because when those objects were allocated, their
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Algorithm 2: PEP and CE.

1 Function PreEvacuationPause

2 /* PEP on the CPU server*/

3 𝑠 ← SelectRegionsForEvacuation();

4 foreach Region 𝑟 ∈ 𝑠 do

5 𝑟 ′ ←CreateToSpace(𝑟 );

6 /* Evacuate root objects and update all their

references*/

7 EvacuateRoots(𝑟 , 𝑟 ′);

8 CE_RUNNING ← true; // Set the flag

9 ResumeMutator();

10 Function ConcurrentEvacuation

11 /* GC thread on the CPU server to begin CE*/

12 foreach Region 𝑟 in 𝑠 do

13 WriteBack(𝑟 );

14 InvalidateAtomic(𝑟 .tablet);

15 /* Wait until all mutator threads accessing 𝑟 leave */

16 WaitForAccessingThreads(𝑟 );

17 /* Block mutator’s access to 𝑟 from this point on */

18 Evict(𝑟 .tablet .entryarray); // Evict HIT entries of 𝑟

19 Evict(𝑟 ′); // Evict to-space

20 MsgToMemServer(łStartEvacž, ⟨𝑟, 𝑟 ′⟩);

21 /* Wait here until receiving the ack */

22 while true do

23 if there is a msg ⟨𝑟, 𝑟 ′⟩ from a memory server

then

24 𝑟 .tablet .region← 𝑟 ′;

25 𝑟 ′.tablet ← 𝑟 .tablet;

26 ValidateAtomic(𝑟 .tablet);

27 Unregister(𝑟 );

28 𝑠 ← 𝑠 \ 𝑟 ; // remove 𝑟 from evacuation set

29 if 𝑠 = ∅ then

30 CE_RUNNING ← false;

31 Break;

32 /* Evacuation on each memory server*/

33 Evacuate(𝑟 , 𝑟 ′);

34 MsgToCPUServer(łEvacuation Donež, ⟨𝑟, 𝑟 ′⟩);

HIT entries were obtained from the same tablet. Since the
HIT entries must stay immobile in the same tablet (otherwise
all heap pointers must be updated after evacuation), their
corresponding objects must also stay in the same region
(although their offsets can change). Finally, PEP sets the
CE_RUNNING flag (Line 8), notifying mutator threads that
concurrent evacuation is starting. This flag will be checked
by LB, Algorithm 1.

CE. When PEP finishes, the CPU server resumes the mu-
tator execution. To prepare for CE, the CPU server runs a
separate GC thread. For each region 𝑟 in the evacuation set

𝑠 , this thread writes back all its pages to its hosting mem-
ory server (Line 13). The mutator is allowed to concurrently
access objects in 𝑟 during its write-back: the load barrier in
Algorithm 1 at Line 5 will capture the accesses and move
the accessed objects to 𝑟 ′. Next, we invalidate 𝑟 ’s HIT tablet
atomically (Line 14); from this point on, mutator accesses
are blocked. At the point of invalidation, there may be mu-
tator threads accessing 𝑟 . Consequently, we must wait until
these threads leave 𝑟 (Line 16) before letting evacuation be-
ginÐMako invokes WaitForMutatorThreads that iterates in
an empty loop until no mutator thread is accessing 𝑟 .

After all mutator threads are blocked, we evict the entire
HIT entry array for 𝑟 (Line 18) and all pages in the to-space
𝑟 ′ (Line 19). Note that eviction is different from write-back

in that eviction not only writes back the contents of a dirty
page to a memory server but also unmaps the page from the
CPU server; the next access to the page will have to swap it
in from the memory server. We evict 𝑟 ’s entry array because
the memory server will update these entries during CE and
hence those on the CPU server will become stale; eviction
essentially forces a łrefreshž for its future accesses. Similarly,
we evict 𝑟 ′ because the memory server will move objects into
𝑟 ′ and hence its pages on the CPU server will become stale.
After the evictions, this thread sends a command, instructing
the memory server to start evacuating 𝑟 .

Pre-Memory-Server-Evacuation Invariant: Right before a re-

gion 𝑟 is evacuated on a memory server, objects that remain

in 𝑟 must not have any stack references; none of the pages in

𝑟 .tablet .entryarray are cached on the CPU server.

Once each memory server receives such commands, it
evacuates the remaining objects in the selected regions (from
𝑟 to 𝑟 ′, Line 33). As stated earlier, our treatment guarantees
that objects moved by memory servers must not have any

direct references from the stack. Further, it is impossible for
the mutator to turn a non-root object into a root object
because mutator accesses have all been blocked during the
evacuation. After evacuation is done, memory servers update
the HIT entries for the evacuated regions.

Non-root Invariant during CT: Non-root objects that are in

the from-space 𝑟 right before 𝑟 ’s evacuation remain non-root

throughout the evacuation.

The memory server sends a message to the CPU server
acknowledging the completion of 𝑟 ’s evacuation (Line 34).
Upon receiving a message (Line 23), the GC thread on the
CPU server unregisters 𝑟 (Line 27) and makes 𝑟 ′ use 𝑟 ’s tablet.
𝑟 is then zeroed out for future allocations. Next, we remove 𝑟
from the evacuation set 𝑠 and clear CE_RUNNING when 𝑠 is
empty. Mako also validates the tablet for region 𝑟 (Line 26) so
that mutators threads blocking on 𝑟 can continue (Line 16).
We modify the object allocator to not allocate into regions
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Table 2. Systems and applications used to evaluate Mako.

DaCapo [17] Size

Tradesoap (DTS) DaCapo/huge

Tradebeans (DTB) DaCapo/huge

H2 (DH2) DaCapo/huge

Apache Cassandra [4] Operation Composition #Ops

Insert Intensive (CII) Insert 60%, Update 20%, Read 20% 10M ops

Update & Insert (CUI) Update 60%, Insert 40% 10M ops

Apache Spark [69] Dataset & Size

PageRank (SPR) Wikipedia Polish [5] (1 GB)

Transitive Closure (STC) Generated Graph (1.5M edges, 384K vertices)

in the evacuation set. Hence, allocation will never block on
concurrent evacuation.

6 Evaluation

To thoroughly evaluate Mako’s performance, we selected
five cloud applications with large heaps from various sources:
H2 (in-memory database), Tradebeans, and Tradesoap (J2EE
workloads) from DaCapo [17], and several applications on
Cassandra [4] (a NoSQL columnar database) and Spark [69]
(a de-facto big data analytics engine), as shown in Table 2.
These are all widely deployed in industry and represent a
wide spectrum of memory-intensive enterprise workloads
that dominate the modern cloud. DaCapo programs were
executed with huge sizes; For Cassandra, we executed two
query workloads (CII andCUI) with 10 million operations of
various types over the popular YCSB [67] dataset. For Spark,
we executed PageRank (SPR) as well as transitive closure
(STC) under Hadoop 3.2.1 and Scala 2.12.11.

We compared Mako against two baselines: Shenan-
doah [30], a modern concurrent collector in OpenJDK, and
Semeru [66], a G1-based generational GC for disaggregated
memory. Semeru subsumes the vanilla G1 by offloading trac-
ing to memory servers. It was not possible to compare with
ZGC [1], another concurrent collector, because ZGC in Open-
JDK 13 does not support extending memory to swap parti-
tions, and thus is incompatible with disaggregated memory.
In particular, it does not launch when the local memory size
is not large enough to hold the heap. Further, in the pure local
memory setting (i.e., the entire heap is in the CPU server’s
local memory), ZGC is slower than Shenandoah for 6 out of
7 applications, making Shenandoah a better baseline choice.

We ran our experiments with three machinesÐone CPU
server with two Xeon(R) CPU E5-2640 v3 processors, and
two memory servers, each with two Xeon(R) CPU E5620 pro-
cessors. All of them are equipped with one 40 Gbps Mellanox
ConnectX-3 InfiniBand network adapter. They are connected
by one Mellanox 100 Gbps InfiniBand switch. One machine
runs the JVM process, while the other two machines are used
as memory servers. Our experiments used a 32GB heap for
Spark and Cassandra and a 16GB heap for DaCapo work-
loads due to their smaller working sets. Each application
was run with three local memory configurations: 50%, 25%,
and 13%, representing the percentage of the application’s
heap that can fit into the CPU server’s local memory. These

configurations are enforced with Linux cgroup and consis-
tent with the setting used for other memory disaggregation
systems [10, 56, 59, 66].

For all applications and all the three configurations, appli-
cations used remote memory via swapping. Note that we did
not follow the conventional way of selecting heap sizes (i.e.,
multiples of the minimum size that can run the application)
because under memory disaggregation, performance of both
the mutator and GC depends more on the local memory size

than the heap sizeÐmemory servers can often provide suf-
ficient (remote) memory; hence the heap size is often not a
concern. Consequently, we used a fixed heap size for each
application but varied local-memory ratios, and ensured that
different GCs are compared under the same configurations.

6.1 Throughput (End-to-End Performance)

Figure 4 reports the end-to-end application time (the lower
the better) under Mako, Shenandoah, and Semeru for the
three memory configurations. On average, Mako’s through-
put is 1.75×, 2.57×, and 4.10× higher than Shenandoah
under the three ratios.

We observe that the smaller the local memory, the higher
the throughput improvement Mako can provide. This is be-
cause small local memory implies strong interference be-
tween application and GC threads, which compete for lo-
cal memory and remote memory access bandwidth, leading
to severe performance degradation. By moving tracing and
evacuation completely off the CPU server, Mako significantly
reduces such competition and hence the degradation.

Another important reason for Shenandoah’s poor perfor-
mance is the poor locality of tracing and evacuation; Shenan-
doah cannot quickly finish a GC cycle on the CPU server,
before the heap is full, at which point an expensive full-heap
STW GCmust run to collect memory. Mako lets both tracing
and evacuation run on memory servers, where data is lo-
cated. Hence, Mako can finish tracing and evacuation quickly
and reclaim memory before the heap is full.
Semeru [66] is a G1-based generational GC that offloads

tracing on memory servers, but its STW phase on the CPU
server for evacuation is rather long. As shown in Figure 4,
Mako’s throughput is on par with (and slightly lower than)
that of Semeru. This is consistent with the community’s un-
derstanding that concurrent collectors achieve lower pause
at the cost of reduced throughput (due to the use of an expen-
sive load barrier, lack of STW phases that can move related
objects together to improve locality, etc.). To be discussed in
ğ6.2, Mako’s pause time is up to 1000× lower than Semeru’s.
For certain applications such as CUI (for the 25% and

13% configurations), Mako achieves higher throughput than
Semeru, because Semeru triggers full-heap collections. Se-
meru performs continuous region-based tracing on memory
servers by recording inter-region references into a per-region
remembered set. However, these remembered sets quickly
grow and contain many stale references, leading to large
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Figure 4. End-to-end time under Shenandoah GC [30], Semeru [66] and Mako for 50%, 25% and 13% local memory ratios.
Semeru crashed when running STC so its bars are not shown.

Table 3. Pause time statistics of Mako (Ma), Shenandoah
(Sh), and Semeru (Se) under 25% local memory ratio.
Pause DTS DTB DH2 CII CUI SPR STC

Avg (ms)

Ma 6.06 5.54 10.37 4.63 5.34 10.13 9.90

Sh 7.24 3.67 1.40 8.24 5.48 15.40 26.28

Se 113.10 345.13 1627.95 1699.54 2463.27 1303.00 701.82

Max (ms)

Ma 15.34 13.78 21.11 11.84 13.55 37.74 69.48

Sh 86.22 21.03 8.81 74.97 118.91 78.21 183.73

Se 190.52 502.78 3266.01 4323.30 3599.70 5988.406 3066.45

Total (ms)

Ma 181.78 183.249 66.99 333.31 272.45 658.38 1544.71

Sh 188.12 117.27 33.61 1639.21 1614.33 1524.07 5519.67

Se 2374.96 4486.61 11395.59 79877.97 86214.51 56028.832 N/A

inefficiencies. In these cases, Semeru’s nursery collections
cannot reclaim enough memory, and hence expensive full-
heap GC is triggered.

Finally, the larger the working set, the more improvement
Mako can provide. Mako’s improvement is more significant
on Spark and Cassandra thanDaCapo, because DaCapo appli-
cations have a relatively small set of live objects throughout
the execution. As such, Shenandoah can run both tracing
and evacuation efficiently on the CPU server.

6.2 GC Latency

This section compares Mako’s pause time with Shenandoah
and Semeru. Table 3 reports the average and total pause times
of Mako, Shenandoah, and Semeru for all seven workloads
under the 25% local memory ratio. As shown, Mako and
Shenandoah’s pause times are comparable and both at the
level of milliseconds, while Semeru’s pauses can be orders
of magnitude longer. Again, Semeru crashed on STC, so we
have no total pause time to report (N/A); for its average and
max pause time, we report the statistics before crashing.
To have a close examination of Mako and Shenandoah’s

pauses, we measure the cumulative distributions of their
pause times for the 25% local memory ratio on DTB and
SPR (Figure 5). Similar results are observed for the other
programs and configurations; these results are omitted due
to space constraints.
Shenandoah has more short pauses than Mako due to

Mako’s synchronizations between the CPU and memory
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Figure 5. Pause time CDF for DTB and SPR.

servers, which are not needed for Shenandoah. However,
Mako’s pause times are much more stable than those of
ShenandoahÐas shown, the 90th-percentile pause times
for Mako for the two applications are 11ms and 18ms

vs. Shenandoah’s 14ms and 42ms respectively. This is be-
cause during tracing and evacuation, Shenandoah touches
many uncached pages, triggering page faults and swaps. On
the contrary, Mako’s tracing and evacuation run on memory
servers and have much shorter access time.

To better understand the distribution of collection pauses,
we additionally report the bounded minimum mutator uti-

lization (BMU) for DTB and SPR in Figure 6. The minimum
mutator utilization (MMU) was defined by Cheng and Blel-
loch [22] as the minimum fraction of the mutator’s execution
time within any window of a specified size. Sachindran et

al. [58] extended the definition of MMU to BMU. The BMU
for a given window size is the minimum mutator utilization
for all windows of that size or greater. BMU measures the
fraction of the mutator’s execution time over the total run
time. For example, if the garbage collector divides a long
pause into many short pauses, the impact of these short
pauses cannot be captured by just measuring the maximum
pause timeÐwe need BMU to understand this impact.
Figure 6 depicts the BMU for DTB and SPR. The X-axis

represents different window sizes and the Y-axis shows the
percentage of the time spent on the mutator for a given size.
For example, the starting point of each curve corresponds to
the maximum pause time (i.e., the BMU for any window of a
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Figure 6. Bounded minimum mutator utilization.

size smaller than this time is 0). As shown, Mako and Shenan-
doah have similar BMU curves; neither of them has many
pauses in a given window (otherwise, the curves would have
been much flatter). The BMUs of both Mako and Shenandoah
are much higher than those of Semeru due to reduced latency
although Semeru outperforms both of them in throughput.

6.3 HIT Overhead

This section measures the HIT-incurred overheads.

Load Barrier Overhead. First, the HIT incurs time overhead
for address translation on each reference load. It is hard to
measure this time directly because (1) load barrier has to run
for Mako to work (i.e., there is no way to turn it on and off)
and (2) multiple threads run barrier code in parallel, making
it impossible to isolate the overhead incurred by one-hop
indirection. To overcome these challenges, we ran an em-
ulation: we add the same address-translation logic into an
unmodified JVM running Shenandoah, and compared the
end-to-end performance between the modified and unmod-
ified JVM. Given that Mako and Shenandoah use the same
load barrier, performance differences between these two ver-
sions should capture the overhead incurred by indirection.

Table 4 reports the additional overhead incurred byMako’s
load barrier logic on top of Shenandoah’s load barrier. This
overhead varies with programs. It is particularly large for
DTB and DH2, where heap reference loads take a signifi-
cant fraction of the executed instructions. Despite the over-
head, running tracing and evacuation on memory servers
significantly reduces the mutator-GC interference, improv-
ing the performance of both the mutator and GC. As shown
in ğ6.1, these improvements are much larger than the barrier-
incurred overheads.

Table 4. Address translation time overhead.

DTS DTB DH2 CII CUI SPR STC

9.41% 16.19% 21.73% 9.69% 6.18% 7.23% 8.81%

HIT Entry Allocation Overhead. The second source of
overhead comes from the time needed to find and set up
an HIT entry at each object allocation. We used the same
emulation-based approach (i.e., using a modified allocator
from the unmodified JVM) to measure this overhead. As

shown in Table 5, for most programs, the entry allocation
overhead is much smaller than the address translation over-
head, because object allocations are less frequent than heap
reference reads. Mako’s thread-local entry buffer usage and
preloading reduce this allocation overhead.

Table 5. HIT entry allocation time overhead.

DTS DTB DH2 CII CUI SPR STC

3.53% 2.41% 1.33% 0.71% 0.83% 1.48% 2.34%

Memory Overhead. Given that each object requires a word-
size entry, the HIT incurs memory overhead. Maintaining
the HIT’s metadata such as freelists and bitmaps requires
extra memory. However, the per-object HIT entry pointer in
each object’s header does not contribute to this overhead, as
this header space existed but was unused before. To measure
memory overhead, we modified Mako to keep track of all
extra memory usage discussed above.

Table 6. Memory overhead of Mako.

DTS DTB DH2 CII CUI SPR STC

8.64% 14.33% 14.35% 13.62% 14.66% 14.78% 25.61%

As shown in Table 6, the overhead varies with workloads
and generally falls in the range of 8-15%. The HIT incurs a
25% memory overhead on STC, because STC must maintain
a large number of intermediate results for transitive closure
computation, often creating a sea of small objects. The over-
head of the per-object entries cannot be easily amortized
when the average object size is small. On average, the HIT
incurs a 14.7% space overhead, which is often not a concern
in a memory-disaggregated datacenter due to a large amount
of memory available offered by multiple memory servers.

6.4 Collection Effectiveness

The goal of this experiment is to compare the memory recla-
mation effectiveness of Shenandoah, Semeru, and Mako. Fig-
ure 7 shows the pre-GC and after-GC memory footprints
under the 25% local memory ratio of SPR and CII for the
first 350 and 600 seconds of the execution, respectively.
As shown, Mako reclaims memory more efficiently than

Shenandoah by offloading tracing and evacuation to memory
servers. Due to the concurrent and incremental nature of
concurrent GCs, the memory footprints under both Mako
and Shenandoah are much more stable than those under
Semeru.
For SPR, Semeru’s heap usage keeps increasing as nurs-

ery collections run and long-lived objects are continuously
promoted to the old generation. Once nursery collections
cannot reclaim enough memory, Semeru triggers a full GC
and reclaims a significant amount of memory (i.e., the sharp
decline of heap usage in Figure 7(a)). For CII, Semeru does
not encounter any full-heap GC; as shown, each nursery
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collection reclaims a small amount of memory. Mako and
Shenandoah can reclaim more memory due to concurrent
full-heap tracing and reclamation. Mako finishes much faster
than Shenandoah (which actually runs much longer) due to
the GC offloading.
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Figure 7. GC effectiveness under 25% cache ratio.

6.5 Heap Region Size

To understand the impact of the region size, we ran Mako
on SPR under 25% local memory with two other sizes: 8MB
and 32MB. Since evacuation is done on a per-region basis
and the pause time depends on the region size, reducing the
region size (from 32MB to 8MB) leads to a reduction of the
average pause time (from 15.32ms to 8.13ms). However, us-
ing a smaller region increases the end-to-end running time
(i.e., reduces throughput) by a small margin from 270.99s to
281.59s. This is because a smaller region can lead to higher
intra-region fragmentation, resulting in a lower object allo-
cation rate. Figure 8 depicts the intra-region fragmentation
ratio for SPR under three different region sizes, 8MB, 16MB,
and 32MB. As shown, the average size of the free space is
roughly proportional to the region size.
Additionally, in OpenJDK, when allocating an object

whose size is larger than the free space of the current region,
the allocator simply retires the current region and continues
to search for free space whose size is larger than the alloca-
tion request in other regions. The free space in the current
region is thus wasted. The smaller the region size, the larger
the wasted free space.
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Figure 8. The average size of the intra-region contiguous
free space for different region sizes.
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Figure 9. Ratio of wasted free space over total heap usage
for different region sizes.

To quantify this waste, we report the ratio between the
sizes of the wasted space and the used heap in Figure 9. It
is clear that using 8MB regions leads to more space wasted
due to severe intra-region fragmentation. These results moti-
vated our choice of using 16MB as the region size, leading to
an overall of 10.1ms GC pause time and 272.71s throughput.

7 Conclusion

This paper presents Mako, the first concurrent evacuating
collector that provides low pause times for the emerging
datacenter architecture with memory disaggregation. Mako
offloads both tracing and evacuation to memory servers that
host the Java heap and leverages the HIT to simplify pointer
updating and provide synchronization mechanisms. An eval-
uation of Mako on a set of modern cloud applications demon-
strates that Mako significantly outperforms Shenandoah in
both latency and throughput, making it a promising candi-
date for real-world deployment.
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