Reconsidering Garbage Collection in Julia

A Practitioner Report

Luis Eduardo de Souza Amorim
Australian National University
Canberra, Australia
luiseduardo.desouzaamorim@anu.edu.au

Diogo Netto
Relational Al
Berkeley, USA
diogo.netto@relational.ai

Antony L. Hosking
Australian National University
Canberra, Australia
antony.hosking@anu.edu.au

Abstract

Julia is a dynamically-typed garbage-collected language de-
signed for high performance. Julia has a non-moving tracing
collector, which, while performant, is subject to the same
unavoidable fragmentation and lack of locality as all other
non-moving collectors. In this work, we refactor the Julia
runtime with the goal of supporting different garbage col-
lectors, including copying collectors. Rather than integrate
a specific collector implementation, we implement a third-
party heap interface that allows Julia to work with various
collectors, and use that to implement a series of increas-
ingly more advanced designs. Our description of this process
sheds light on Julia’s existing collector and the challenges
of implementing copying garbage collection in a mature,
high-performance runtime.

We have successfully implemented a third-party heap in-
terface for Julia and demonstrated its utility through inte-
gration with the MMTk garbage collection framework. We
hope that this account of our multi-year effort will be useful
both within the Julia community and the garbage collection
research community, as well as providing insights and guid-
ance for future language implementers on how to achieve
high-performance garbage collection in a highly-tuned lan-
guage runtime.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISMM °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1610-2/25/06
https://doi.org/10.1145/3735950.3735957

Yi Lin
Australian National University
Canberra, Australia
yi.lin@anu.edu.au

Gabriel Baraldi
JuliaHub
Cambridge, USA
gabriel.baraldi@juliahub.com

Kiran Pamnany
Relational AT
Berkeley, USA
kiran.pamnany@relational.ai

Stephen M. Blackburn
Google
Sydney, Australia
Australian National University
Canberra, Australia
steveblackburn@google.com

Nathan Daly
Relational AI
Berkeley, USA
nathan.daly@relational.ai

Oscar Smith
JuliaHub
Cambridge, USA
oscar.smith@juliahub.com

CCS Concepts: « Software and its engineering — Garbage
collection; Software evolution.

Keywords: Garbage Collection, Memory Management, Julia

ACM Reference Format:

Luis Eduardo de Souza Amorim, Yi Lin, Stephen M. Blackburn,
Diogo Netto, Gabriel Baraldi, Nathan Daly, Antony L. Hosking,
Kiran Pamnany, and Oscar Smith. 2025. Reconsidering Garbage
Collection in Julia: A Practitioner Report. In Proceedings of the 2025
ACM SIGPLAN International Symposium on Memory Management
(ISMM °25), June 17, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3735950.3735957

1 Introduction

Julia aims to combine productivity with performance, par-
ticularly in domains such as large-scale numeric and sci-
entific computing [4]. Julia achieves its productivity goals
by providing language features that open it to a wide audi-
ence, including scientists and others who seek an expressive,
easy-to-use language environment without compromising
performance [3]. The Julia compiler uses powerful type in-
ference to aggressively optimize code with LLVM using JIT
compilation as well as AOT compilation to system images.
Julia is garbage collected, abstracting away the complex-
ity of manual memory management. It also provides low-
overhead native interfaces that allow efficient integration
with high-performance third-party libraries. Julia’s stock
garbage collector is a highly-tuned segregated-fits mark-
sweep collector. While this has served the language well,
it is unavoidably exposed to the same problems as all non-
moving garbage collectors: fragmentation and loss of locality.
As Julia’s popularity has grown, the limitations of being tied
to a single non-moving garbage collector have been exposed,


https://orcid.org/0000-0003-3632-8940
https://orcid.org/0009-0009-9460-5468
https://orcid.org/0000-0001-6632-6001
https://orcid.org/0009-0006-3870-6019
https://orcid.org/0000-0002-0445-7329
https://orcid.org/0009-0009-3376-561X
https://orcid.org/0000-0002-4487-6923
https://orcid.org/0009-0009-2340-3658
https://orcid.org/0009-0006-2115-9119
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735950.3735957
https://doi.org/10.1145/3735950.3735957

ISMM °25, June 17, 2025, Seoul, Republic of Korea

as inevitably users encounter workloads where such a col-
lector is a poor fit.

In 2022 we embarked on what became a multi-year col-
laboration to refactor Julia to support third-party garbage
collectors. Rather than integrate a specific collector imple-
mentation, our goal was to create a pluggable API that would
support a range of collectors, including copying collectors.
This was non-trivial since the implementation of Julia’s stock
garbage collector was deeply integrated into the runtime
with pervasive optimizations, many of which are implicitly
tied to assumptions about the GC implementation itself. Most
notable among them is that no object will move. This paper
is a practitioner report describing the process of refactoring
Julia, trying to understand and untangle those assumptions,
with the final goal of supporting multiple garbage collectors,
including copying collectors. As such, it provides numerous
insights into Julia’s implementation specifically, and into the
challenges of GC+runtime integration more generally.

We have successfully refactored Julia to include a garbage
collection interface and support multiple collectors with
richer semantics, such as copying collectors. We demonstrate
this capability concretely by integrating with the MMTk
garbage collection framework. We faced many technical chal-
lenges along the way, some unique to Julia, but many that are
likely transferable to other high-performance runtimes. We
hope that this report will be useful for the memory manage-
ment community, as well as the Julia developer community
and language developers more broadly.

2 Background

In this section, we introduce Julia, especially its garbage
collector design and implementation. We also introduce the
MMTk framework.

2.1 Julia

Julia is a high-level, high-performance dynamic program-
ming language initially designed for numeric computing [2-
4]. Julia was designed to bridge the gap between the produc-
tivity of high-level dynamic languages like Python and the
execution speed of lower-level languages like C [3]. Its de-
sign centers on providing both an expressive syntax and the
performance required for demanding numeric applications.

At the heart of Julia’s performance is its JIT compiler,
backed up by LLVM, which transforms high-level code into
optimized machine code at run time. By leveraging the LLVM
framework, the compiler performs aggressive optimizations
tailored to the exact types encountered during execution.
This dynamic specialization, underpinned by powerful type
inference, allows Julia to minimize execution overhead, deliv-
ering speed that is competitive with traditionally compiled
languages like C or Fortran [3].

Julia addresses long compilation time resulting from its
sophisticated JIT by allowing a precompiled system image —
a snapshot of the runtime that includes the core language,

de Souza Amorim et al.

essential libraries, and frequently used packages. This sys-
tem image is generated ahead-of-time when building Julia,
allowing the language to bypass much of the initial type
inference and method specialization that normally occurs
during the first invocation of functions. Moreover, Julia also
allows packages to be compiled ahead-of-time, like the sys-
tem image, and allows loading precompiled package images
similar to native shared libraries. These images dramatically
reduce the overhead of JIT compilation during startup for
Julia.

The language also features modern concurrency and paral-
lelism paradigms, providing native support for multithread-
ing, coroutines, asynchronous programming, and distributed
computing. Its lightweight tasks and channels enable devel-
opers to write asynchronous code that can efficiently manage
I/O-bound operations or take advantage of multi-core pro-
Ccessors.

While initially designed for numerical computing, Julia
has evolved into a true general-purpose language. Its ex-
pressive syntax, extensive standard library, and seamless
interoperability with languages like C, Python and R allow
developers to build a wide range of applications such as web
services, scripts, command-line tools and system-level soft-
ware. This versatility, combined with the growing ecosystem
of packages and a dynamic community, positions Julia as
a powerful platform not only for high-performance scien-
tific computing but also for broader software development
challenges.

2.2 Julia’s Garbage Collector

Julia has a non-moving, partially concurrent, parallel, gener-
ational and precise mark-sweep collector [15].

2.2.1 Allocation and collection. Like many runtimes,
Julia employs different strategies for small and large objects.
Small objects are allocated with a segregated-fits free-list al-
locator, with each underlying 16 KB memory region, known
as a ‘page’, consisting of objects of the same object size class.
Memory pages that are found to be empty during a collection
may be reused for allocation before they are lazily returned
to the operating system using madvise. Metadata describ-
ing each page’s state resides outside the heap. Large objects
and some native data structures that back up certain Julia
types are allocated with malloc. Those objects are considered
part of the Julia heap, and are counted into the heap size.
Malloc’d objects are maintained in thread-local linked lists
for the collector to traverse.

Julia’s collector performs the standard mark and sweep
phases [22]. It performs marking in parallel [11]. During the
sweep, the collector identifies pages that no longer contain
live objects and can be freed, and it frees malloc’d memory.
Freed pages will be lazily returned to the operating system,
but may be reused before that happens [10].



Reconsidering Garbage Collection in Julia

2.2.2 Generational GC. As Julia’s GC is non-moving, sur-
viving objects cannot be copied, therefore an object’s age
cannot be determined by the memory region in which it re-
sides. Instead, Julia uses sticky mark bits to determine object
generation [16].

Julia implements sticky mark bits by using two bits in
each object’s header to indicate that it has one of the follow-
ing states: GC_CLEAN, GC_OLD, GC_MARKED, and GC_OLD_MARKED.
Freshly allocated objects are tagged with GC_CLEAN. During
GC, the objects that are reachable during tracing are tagged
as GC_MARKED. Julia uses the GC_OLD bit to tag objects that
have survived at least one GC cycle. The GC_OLD_MARKED tag
is used to indicate that an old object has been marked in
the current GC cycle. After each collection, it updates the
status of all GC_MARKED objects to GC_OLD, and after a full heap
GC it also resets the status of all GC_OLD_MARKED objects to
GC_OLD. Write barriers may also change the GC_OLD_MARKED
objects into GC_MARKED. This allows GC to efficiently identify
and collect young objects while preserving old objects that
are still reachable. Note that some objects, such as perma-
nent objects and objects in Julia’s boot image, are tagged as
GC_OLD_MARKED after allocation.

Julia intercepts the field write to old objects to build a
remembered set used in nursery collections. The write bar-
riers ensure that the GC can identify all objects in the old
generation that have references to the young generation,
adding those objects to a per-thread remembered set. There
are different types of write barriers optimized for specific
cases, including, for example, array copying barriers.

2.2.3 Roots. Tracing collectors define the liveness of ob-
jects in terms of their reachability from roots in the language
runtime, such as stacks and global variables. The Julia run-
time’s handling of roots is distinctive in two respects: i) it
uses shadow stacks [18], and ii) it elides ‘unnecessary’ report-
ing of dominated roots. Within the runtime, root-referenced
objects can be reported to the GC by adding them to the
global roots table, or if they have a known temporal scope,
they can be pushed to and popped from the shadow stacks.

Shadow Stacks. Because LLVM’s support for precise stack
scanning is limited, Julia uses shadow stacks to identify stack
roots [18]. The shadow stacks report a precise set of runtime
references to heap objects to the garbage collector. Although
the shadow stacks report the location of the root references,
and thus in principle allow the root references to be updated
if the collector were to move the referent, in fact the col-
lector cannot move these referents. The reason for this is
that although the shadow stacks are precise and complete
with respect to the set of root referents, they are not com-
plete with respect to the set of root references. Completeness
with respect to root referent objects ensures that liveness
can be soundly maintained. However, lack of completeness
with respect to the set of root references means that referent
objects cannot be moved since not all references to a moved

ISMM °25, June 17, 2025, Seoul, Republic of Korea

object are guaranteed to be updated. This means that stack-
referenced objects cannot be moved and must therefore be
pinned by the garbage collector.

Dominated Roots. As an optimization, Julia introduces
the concept of dominated roots and allows developers work-
ing on the runtime to elide explicitly reporting them. Unfor-
tunately, this significantly complicates the implementation
of moving garbage collection. The key idea is that some
directly root-referenced objects are also transitively root-
reachable via, and thus dominated by, some other directly
root-referenced object. In principle, in terms of liveness at
least, it is redundant to report an object as root-referenced
if the developer knows that it is dominated by some other
root-referenced object. This optimization saves the explicit
reporting of some roots, and is sound as long as all dominator
roots are reported.

In Julia parlance, ‘rooting’ means explicitly identifying a
root-referenced object to the collector (by either pushing the
reference to a shadow stack, or adding it to the global roots
table) and ‘roots’ are the subset of root-referenced objects
that are thus identified. It is a common practice in the Julia
runtime that a developer determines that an object has been
‘rooted’, and then freely uses objects that are transitively
reachable from it without explicitly ‘rooting’ them, including
storing references to them in any runtime context (runtime
data structures, globals, or code). Consequently, the root sets
do not reflect the complete set of references held by the runtime.

This approach is correct for a non-moving collector, since
it guarantees the object graph is fully traversed. However,
this means that the collector may not be aware of all refer-
ences to a given object, which would prevent such an object
from being moved. This presents a significant challenge for
a copying collector, which we discuss in detail later.

For the sake of clarity, we will use the conventional defini-
tion of ‘roots’ — the set of all non-heap locations within the
runtime that contain references into the heap [19] — rather
than Julia’s definition. When necessary, we’ll distinguish be-
tween dominant and dominated roots as per the description
above.

2.2.4 Foreign Function Interface. Julia’s Foreign Func-
tion Interface (FFI) is engineered to enable near-zero-overhead
calls and facilitates seamless integration of native code into
Julia applications. It is common practice for Julia to per-
vasively use mature and optimized native libraries where
possible, including when implementing its standard library.
A critical aspect that enables this FFI design, however, is
its underlying assumption of a non-moving garbage collec-
tor. Native code accesses Julia heap objects through direct
pointers rather than handles that could provide a level of
indirection and have sufficient information for the garbage
collector to guarantee valid access. Under the assumption
of non-moving collection, the pointer to a heap object is
considered valid as long as the object is alive, thus Julia FFI



ISMM °25, June 17, 2025, Seoul, Republic of Korea

only requires the user code to make sure that the object
exists when the pointer to it is exposed to native code. In
some scenarios, this process can be totally transparent to
the garbage collector. For example, code may store an object
in any global variable to make sure it is alive, then pass the
pointer to native code where the pointer is saved inside na-
tive data structures, and then return from the native call. The
pointer is a root for the garbage collector, but the collector is
oblivious to the reference from the native code. This is valid
Julia code.

Furthermore, Julia lacks a defined semantics for some parts
of the FFL For example, we were not able to find documen-
tation describing Julia’s GC-safe region and GC-safe calls,
leading to a very loose definition of such concepts based on
their implementation, and each specific use case. This, com-
bined with the assumption of non-moving collection, leads
to the existence of a range of gray areas where behavior is
observed to work but is not guaranteed by a formal contract.

(b) A Julia developer may elide reporting Root Y if they know
its referent, B, is reachable from Root X.

Figure 1. Julia developers may elide reporting roots when
they know that the referent is dominated by another root. The
elision of non-dominant roots added significant complexity
to the project.

de Souza Amorim et al.

Binding

Q

g ]

2 8,
Langl}age o o MMTk Core
Runtime E =

] =

2 =

Figure 2. A language runtime works with MMTk through
a binding which consists of two parts that are respectively
runtime-specific and MMTk-specific.

2.3 MMTk

The goal of our work is to refactor Julia’s memory manager
to support a third-party heap interface that will allow inte-
gration of various collectors. For concreteness, we test and
evaluate our work with respect to MMTk.

MMTk is a high-performance language-agnostic memory
management framework [5, 6]. MMTKk features an abstract
interface for garbage collection that externally suits different
languages and internally suits different garbage collection al-
gorithms (referred to as GC plans or simply plans in MMTK).
The modular internal design for GC components in MMTk
leads to easier implementation of GC algorithms and inno-
vations.

The project started as a portable garbage collector for
JikesRVM in 2004. Although the original implementation was
ported to a number of runtimes [17], it was fundamentally
limited by its use of a particular fully-static dialect of Java [6].
It was rewritten in Rust in 2016. Since then various language
runtimes have been ported to MMTk. The ports serve as
credible high-performance research platforms (OpenJDK),
proof-of-concept prototypes (Android, JikesRVM, V8 and
Haskell), or alternative GC implementations that comple-
ment the shortcomings of the original GCs (CRuby).

Immix. Immix employs a mark-region heap design that
combines the efficiency of region-based memory manage-
ment with the flexibility of mark-sweep collection, enabling
both fast allocation and effective memory reuse [7]. MMTk
includes generational variants (GenImmix with a copying nurs-
ery and StickyImmix with sticky mark bits), and is the basis
for the high performance LXR collector [28]. Object copying
in Immix is opportunistic and by default, is only performed
during defragmentation collections. Copying can be disabled
for Immix, and the collector without moving still works cor-
rectly (with performance loss). Immix naturally supports
object pinning. Pinned objects are guaranteed to stay in
place and will never be moved.

Language bindings. MMTk refers to its integration with
a language runtime as a binding, as illustrated in Figure 2.



Reconsidering Garbage Collection in Julia

Since MMTk is language-agnostic, the binding bridges the
abstract semantics of MMTk and the specific implementation
of the runtime. A binding has two components: one of which
is a logical extension of the runtime, written in the same
language as the runtime, but which is MM Tk-specific, and
the other a logical extension of MMTK, written in Rust, but
which is language-specific.

3 Reworking Julia’s GC

We now describe the journey we took to refactor Julia, as we
added support for third-party garbage collectors. We started
by implementing a simple non-collecting system called "No
GC", then gradually added more capabilities, first with a non-
moving collector, then a non-moving generational collector,
and finally by adding support for copying objects.

3.1 NoGC

A "No GC" collector supports memory allocation but does
not implement any memory reclamation mechanism. When
the heap is exhausted, the collector simply shuts down the
process with an error message. OpenJDK’s Epsilon collec-
tor [25] is a "No GC" collector. MMTk includes a NoGC plan
in its suite.

Starting a port with a "No GC" collector is generally a
good idea to avoid handling multiple complexities at once
— developers need only focus on allocation at this stage.
Getting NoGC working also provides a solid baseline for both
correctness and performance for future work.

3.1.1 Allocation. The key to supporting NoGC is to identify
the semantics of all the allocation sites. This allows third-
party collectors to provide their own implementation for
allocation. The stock Julia GC uses two allocators: a free list
allocator and malloc, which are used for multiple purposes. In
the following, we outline our understanding of the abstract
semantics of the allocations in Julia, and match these to
MMTK’s allocation semantics [26].

Small objects Julia allocates small objects up to 2 KB with
its free list allocator. This handles most of the object
allocations, and needs to be efficient. It is straightfor-
ward for us to use the Default allocation semantics
from MMTk for small object allocation. The actual
allocator used for the Default allocation semantics
is specific to the active MMTk GC plan, such as a
bump pointer allocator into a copying nursery space
for generational plans, or a free-list allocator for the
mark-sweep plan. However, the underlying allocator
mechanism is not a concern for developers. Instead,
they should find the right semantics for their allocation
needs.

Large objects Julia usesmalloc to allocate large objects, and
maintains a list of large objects in the allocator so its
collector can identify dead large objects and free the

ISMM °25, June 17, 2025, Seoul, Republic of Korea

malloc’d memory. We use the Large Object Space (LOS)
semantics to allocate large objects in MMTk.

Permanent allocation Julia allocates permanent memory
that should not be collected. It does this in two ways: by
allocating permanent raw memory (j1_gc_perm_alloc),
and by allocating permanent objects (j1_gc_permobj).
The former allocates raw memory that can be used by
runtime data structures, or as system images, and the
latter holds exactly one Julia object with a header and
related object metadata.! We forward both functions
to MMTKk using its Immortal semantics. The Immortal
semantics guarantees that the objects are allocated
within the MMTk heap and will not be reclaimed. We
selectively invoke MMTKk’s post_alloc, which initial-
izes per-object metadata, when the permanent alloca-
tion is for an object (j1_gc_permobj).

Malloc (including counted malloc) Julia both uses and
exposes malloc functions. An interesting malloc vari-
ant that Julia uses is called counted malloc, which calls
malloc and counts the allocated bytes as part of the
heap size. Julia exposes those functions to users, and
also uses them in the native libraries that back up
certain Julia types in the Julia standard library. For
example, Julia uses GMP to implement BigInt and uses
counted malloc to allocate for GMP so those native allo-
cations are accounted to the Julia heap. We maintain
a counter for the live bytes from malloc, and report
these live bytes to MMTk as “off-heap memory” (not
allocated by MMTK) that is considered as part of the
heap.

By abstracting and mapping the semantics of Julia allo-
cations, we clarify exactly what third-party collectors are
required to implement to meet Julia’s allocation needs. As
we use abstract semantics for MMTK, the allocation imple-
mentation works not only for NoGC but also for the other
collectors that will be discussed in this paper.

3.1.2 Code Generation. Julia uses LLVM as its compiler
backend, and defines a few custom LLVM passes that perform
GC-related analysis and optimizations called LateGCLowering
and FinalGCLowering. Most of the code in these passes is
GC-agnostic and can be shared among different GC imple-
mentations: for instance, when identifying live variables and
emitting GC-safe points. There is GC-specific code for which
a third-party collector needs to provide its own implemen-
tation. This includes emitting the allocation sequence and
write barriers. Allowing GC-specific code in these passes
is essential. Our refactored GC interface conditionally com-
piles different source code based on the GC in use, allowing

Interestingly, during our work we identified one particular type of per-
manent object (j1_sym_t) incorrectly allocated via j1_gc_perm_alloc
rather than j1_gc_permobj. The object’s metadata was properly initial-
ized, so it appeared to function correctly despite this error. We submitted a
pull request and fixed the inconsistency.



ISMM °25, June 17, 2025, Seoul, Republic of Korea

each GC to provide implementations for a predefined set of
GC-specific functions.

The passes emit a call to the allocation function that does
the allocation for Julia’s own GC. This is a correct implemen-
tation for third-party collectors as well, since they are re-
quired to implement their own allocation function. Nonethe-
less, we chose to directly emit the instruction sequence for
our allocator’s fast-path for better allocation throughput.
The GC plans that we support and describe in this paper all
share the same bump pointer allocation sequence which is
usually just under 20 instructions. Letting the compiler in-
line the allocation fast-path enables substantial performance
gains with a low cost in terms of its implementation.

We also use the same mechanism in code generation to
implement write barriers for the sticky Immix plan, and
different GC.@preserve semantics for copying plans as we
will see in Sections 3.3 and 3.4.

3.1.3 Thread-Local Storage. A mutator thread includes
thread-local storage for the allocators and the collectors. For
example, Julia’s stock GC includes various thread-local free
lists of different size classes, metadata for pages used by the
free list allocator, a linked list of large objects allocated by
malloc, a remembered set, and a few other data structures
used by the collector. Clearly, those are not generic enough
for a build with third-party GCs. Similar to our approach
for GC-specific code in code generation, we conditionally
include a definition of thread-local storage specific to each
GC implementation.

3.2 Non-Moving Immix

Implementation of NoGC laid a good foundation for most
aspects of the GC interface by isolating and separating GC-
specific code. We set our next goal as supporting a properly
garbage-collected plan in MMTk.

We chose a variant of Immix, non-moving Immix. Immix is
an ideal target for this stage of our work, as it is relatively
simple, yet allows practical use and leads to easier adoption
of more advanced GC algorithms based on Immix. Because
copying in Immix is opportunistic, we were able to disable
any form of copying at this stage of work, avoiding the extra
complexity from allowing object movement in Julia, since
the language was not originally implemented with copying
collection in mind (as we will discuss in more detail later).

Nonetheless, non-moving Immix is a fundamentally lim-
ited algorithm that we chose just for this early stage of the
work. Without copying, there is no defragmentation, lead-
ing to inevitable heap fragmentation. Still, this is an ideal
stepping stone for our work. We were able to mitigate the
impact of fragmentation somewhat by reducing the Immix
block size, which increases the likelihood of a block being
completely free and thus reusable by other parts of the sys-
tem.

de Souza Amorim et al.

When introducing different third-party garbage collectors
to Julia, we focused on the differences between their col-
lectors and the intrinsic semantics. We found that much of
Julia’s GC-related infrastructure can be shared and reused
among different GC implementations. We tried to reuse code
as much as possible. For example, we reuse the existing GC-
safe points, the stop-the-world mechanism, the GC disabling
mechanism, and the weak reference and finalizer implemen-
tation from Julia’s stock GC, adapting the code to work with
MMTk where necessary.

3.2.1 Root Identification and Object Scanning. Despite
the key difference in root semantics described in Section 2.2.3,
we are able to use the same list of GC roots in Julia’s stock
GC for non-moving Immix, since it does not move objects
either.

Enumerating references in an object for scanning requires
intimate knowledge about the type information of the ob-
ject. Ideally, a language runtime provides such a function
to enumerate references in an object and only calls to the
collector for recording its liveness and reporting its refer-
ences. However, Julia’s object scanning code is heavily entan-
gled with its marking mechanism, the generational behavior
from the collector and the underlying memory pages for the
pool allocator. Since object scanning is performance-critical,
refactoring the code to be general while maintaining good
performance was challenging. Furthermore, MMTk is im-
plemented in Rust while Julia’s runtime is implemented in
C/C++. Naive reuse of the runtime code would result in fre-
quently crossing the language boundary, causing overhead in
performance-critical code. In the end, we use our own imple-
mentation of object scanning. We generate Rust bindings for
the Julia runtime types that are needed for object scanning,
and reimplemented object scanning code in Rust. Although
this results in better performance, it adds considerable main-
tenance overhead, as the code has to remain synchronized
across changes to Julia’s type information. A refactoring to
expose the object scanning function from the Julia runtime
for third-party GCs remains important future work.

3.2.2 Buffers (Disjoint Objects). An unusual class of ob-
jects encountered in Julia are buffers.” Buffers are allocated
with normal allocation functions, and have the typical GC
states described previously. However, buffers only have a
tag to indicate their buffer type, and do not include any type
information for the collector to scan their payload. Thus,
when scanning an object that owns a buffer, the collector
is required to use the type information from the object that
refers to the buffer to scan the buffer payload.

2Julia initially used buffers to implement arrays when we started our work,
and buffers were pervasive then. Julia is phasing out the use of buffers,
and now uses a properly typed object j1_genericmemory_t to back up
arrays. However, Julia still uses buffers in other parts of the runtime at the
time of writing.



Reconsidering Garbage Collection in Julia

We model this as disjoint objects. A disjoint object consists
of one parent object and one or more buffer objects. Both the
parent object and the buffer objects are allocated as separate
objects and have their own GC states, although they form a
logical disjoint object with only the parent object knowing
the type information for the logical object. The parent is
responsible for identifying all the references in the disjoint
object, including the references to the buffer objects and the
references inside the buffer objects’ payload.

We implemented buffers as disjoint objects with the cur-
rent MMTK’s object scanning API with no issue. The only
caveat is that MM Tk requires the runtime to report the object
size for every object (including buffer objects) but a buffer
object has no type information to know its own size >. For
now, we allocate an extra word to store the buffer size with
the buffer object. Since buffers tend to be large, the overhead
from an extra word is insignificant.

3.2.3 Offset Slots. There are two common ways for collec-
tors to queue the edges in the object graph during transitive
closure and retrieve object references from the queued edges:
node enqueueing, and slot enqueueing. Node enqueueing
directly puts object reference values into the work queue,
while slot enqueueing stores the addresses (of object fields)
that contain object references. The obvious implication is
that if an object is enqueued as a node, it cannot be moved
by the collector, as the collector does not know where the
reference is stored and cannot update the reference when
it is forwarded. We use both enqueueing methods for Julia
in our MMTXk port while preferring slot enqueueing where
possible to facilitate the later copying collector work.

In addition, there are cases in Julia where an object X is
referenced by an internal reference R. The internal reference
is represented as a slot S for the base reference and an offset
value Off, and the collector is supposed to load the base
reference from the slot and apply the offset to compute the
internal reference R, i.e. X = load(S), R = X + Off- In a non-
moving collector, enqueueing the base reference would be
sufficient to keep the referenced object X alive. However, our
ultimate goal is copying collection. We need to supply both
the slot to the base reference and the offset to the collector,
so that if the referenced object X is moved to X’, we can
compute the new internal reference R’ as R’ = X’ + Off, and
use the slot to update the forwarded reference.

MMTk allows a binding to implement its own Slot type for
customized slot enqueueing, in addition to node enqueueing.
Thus, we support both SimpleSlot and 0ffsetSlot for Julia.
Though OffsetSlot seems unnecessary to support a non-
moving collector, we bear in mind that MMTk is a suite of
different GC algorithms, and we follow MMTK’s principles

3This is not an issue for Julia’s GC, as objects are allocated in the segregated
fit lists and an upper bound on size can be obtained by checking the freelist’s
metadata.

ISMM °25, June 17, 2025, Seoul, Republic of Korea

to be general and abstract to facilitate our later work for
different collectors (including copying collectors).

3.2.4 Heap Size Limit. Julia does not support user-defined
hard heap size limits, such as Java’s Xmx, for which the heap
size is guaranteed to be within the specified range. For the
Java case, a garbage collection is triggered when the heap size
is reached, and an out-of-memory error would be thrown if
the collector fails to reclaim memory, bringing the heap size
below the threshold. At the early stages of our work, Julia did
not implement hard heap size limits, triggering GCs mainly
based on allocation volumes and a few other heuristics. It
later switched to a tweaked variant of MemBalancer [13, 20].
Recently, Julia also introduced a command line argument
for soft heap size limit via --heap-size-hint [14] and a call-
back function named jl_gc_cb_notify_gc_pressure_t [12]
which gets called when the heap size is ‘under pressure’ if the
user registers their own callback. However, neither option
achieves precise heap size control in Julia, which is important
in performance evaluation for GCs. Performance evaluation
for Julia’s stock GC involves evaluating the combination of
the GC triggering heuristics, the heap resizing heuristics and
the GC algorithm itself.

This has two implications. First, it means that a fair com-
parison between the stock Julia GC and any other is prob-
lematic since there is no way to directly control heap size,
which is one half of the fundamental time-space tradeoff
that all collectors make. Second, attaining full compatibility
between the stock Julia GC and any other third-party GC is
significantly complicated since these heuristics are specific
to that GC.

In our work, we allow directly setting a heap size with
MMTK, bypassing Julia’s restrictions on heap size limiting.
MMTK’s built-in heap size limiting allows either setting a
fixed heap size, which is useful for determining the minimally
required heap size of workloads and for performance evalu-
ation, and setting a dynamic heap size, which is useful for
multi-tenancy systems. Furthermore, we also implemented
Julia’s GC triggering heuristics as a Delegate GC trigger
policy for MMTk in our binding side. With the delegated
triggers, MMTk behaves similarly to the stock GC in terms
of memory usage. This turned out to be very useful for us
to run MMTk-based Julia builds as a drop-in replacement
in cloud environments which are pre-configured based on
Julia’s stock GC.

3.3 Sticky Immix

To support third-party generational garbage collectors in
Julia, we need to implement a few more abstractions and
functions in the GC interface, the most important among
these are write barriers.

Certain essential aspects for generational collectors may
be encapsulated within the collector implementation — they
do not need to appear in the GC interface. For instance, the
collector needs to distinguish young objects from old objects;



ISMM °25, June 17, 2025, Seoul, Republic of Korea

it may do so by using address space separation, or metadata
such as the log bit and the sticky bit [7, 16]. However, the
runtime does not need the ability to identify object genera-
tions, and furthermore, to do so would amount to abstraction
leakage since the idea of generations is specific to particular
GC algorithms. For this reason, we only include the essential
write barrier functions in the interface.

3.3.1 Write Barriers. The GC interface we introduce de-
fines a few different write barrier functions that must be im-
plemented by a third-party GC. The barrier functions include
the canonical write barrier, such as j1_gc_wb for updating
a target reference in the source object. Some write barri-
ers carry more information for the objects and can be opti-
mized as a noop for certain collectors, such as j1_gc_wb_fresh
that guarantees the source object is always freshly allocated,
for which the write barrier can often be omitted in genera-
tional collectors. When using MMTKk, we keep these collector-
specific optimizations as noop to avoid the call overhead to
MMTK, implementing the remaining barriers.

Write barrier implementation is performance critical [27].
We use the pattern of fast-path and slow-path for write bar-
riers, similarly to what we did for allocation. For barriers
in the runtime code, we implement the fast-path as inlined
functions in C to minimize the call overhead, and only call
MMTk with the corresponding slow-path write barrier func-
tions. Note that besides the runtime write barriers, a gener-
ational collector also needs to consider write barriers that
are inserted during code generation, as seen in Section 3.1.2.
Therefore, each GC must also provide its own implementa-
tion when generating code that implements the write barrier
logic. We emit fast-path code to inline the write barriers in
code generation.

Write barrier functions also include array copying barriers
(j1_gc_wb_genericmemory_copy_ptr), which are used when
the runtime copies the generic memory that backs up an
array’s storage and may include object references. We imple-
ment MMTK’s interface of MemorySlice to represent arrays
for Julia and instruct MMTk on how to iterate through Julia
arrays, delegating the array copying barrier call directly to
MMTk.

3.3.2 Permanent and System Image Objects. Since the
write barrier must capture all references into the nursery,
references from not only promoted (mature) objects, but also
from Julia’s permanent objects must be remembered. The
semantics of the write barrier used by Sticky Immix requires
that when permanent and system image objects are initial-
ized, their log and sticky bits are set as if they were mature
objects. These semantics are specific to the Sticky Immix
plan, yet the GC interface must remain algorithm-agnostic.
We address this by adding j1_gc_permobj, jl_gc_notify_-
image_alloc, and jl_gc_notify_image_load to the GC inter-
face, which allows the collector to implement the necessary
semantics (such as setting these bits), whenever such an

de Souza Amorim et al.

object is allocated. Furthermore, the functions allow GC im-
plementations to perform this in bulk (e.g., by bulk setting
the log bits in a side table in MMTK).

3.4 Moving Plans

Adding support for moving collectors (such as (moving) Im-
mix and Sticky Immix*) in Julia is a significant leap in terms
of complexity from the GC implementations described previ-
ously. As mentioned, the stock GC is implemented as a non-
moving generational mark-sweep collector, which, despite
its specific characteristics, is not inherently different from
our non-moving Sticky Immix implementation. However,
since Julia was not designed to work with moving collectors,
we had to make several changes to the runtime to support
object movement.

One of the major challenges was to identify missing roots
(a.k.a. dominated roots discussed in Section 2.2.3). We use
different techniques for finding missing roots: e.g., by con-
servatively scanning stacks and registers at run time, or by
manually investigating the code and looking for references
that may be constructed from those roots but are not nec-
essarily passed to the GC. Note that this process is tedious
and error-prone, so ideally, we should use the help from
a static analyzer that checks for dominated roots, but that
has not been implemented yet. Nevertheless, once the set of
dominated roots is identified, we still need to decide how to
handle each root. In most cases, we use pinning as a quick
solution to avoid moving objects that may be referenced by
them. However, other strategies may be applied, for instance,
by allocating objects in a non-moving space.

For statically-known runtime types that are frequently
pinned or types that may be referenced by other Julia runtime
types that are not traced by the GC, we can simply allocate
each object into a non-moving space for efficiency. Note that
this is specific to the Julia runtime code and that we cannot
do that for user types, nor user code.

Finally, another strategy to enforce that some dominated
roots do not move is to use a level of indirection similar to
what is implemented by the Java Native Interface (JNI) [21].

3.4.1 Transitive Pinning. As mentioned in Section 2.2.3,
Julia has a definition of roots that is not compatible with
moving GCs. The Julia runtime only identifies dominant
roots, and may skip dominated roots altogether. To move an
object, the GC must identify all possible direct references to
the object, not only a subset of them. Otherwise, the missing
referents cannot be updated by the collector, resulting in
dangling pointers.

We initially introduced a mechanism, called transitive pin-
ning, to address this issue. Transitive pinning pins an object
and all objects that are transitively reachable from it. So

4Supporting moving for a generational plan such as Sticky Immix requires
little extra effort once moving is supported for Immix.



Reconsidering Garbage Collection in Julia

when supplied with a list of all the dominant roots, transi-
tive pinning guarantees that all the dominated roots will be
pinned, avoiding dangling references.

We implement transitive pinning at a very low cost by
considering the set of references that require transitive pin-
ning as a different set of roots. We then perform an initial
trace starting from these roots, keeping all visited objects in
place. A second trace starts from the remaining roots and
is allowed to move objects as usual. All objects that have
already been marked in the first trace will remain in place
and will not need to be traced again. This is an efficient way
to implement transitive pinning, since each object is still
only traced once.

While this solution is correct, in practice the set of objects
transitively reachable from the dominant roots includes most
of the heap, leaving very few objects unpinned. Nonethe-
less, it is still a useful mechanism in our implementation for
limited cases, as we will discuss in Section 3.4.3.

3.4.2 Root Identification and Conservative Pinning,.
As stated previously, for a copying collector, we must identify
all root references. Identifying all root-referenced objects is
not sufficient. An obvious solution would be to thoroughly go
through the language implementation and carefully identify
all of the dominated roots. However, such massive refactor-
ing that may affect every runtime function on a code base
with hundreds of thousands of lines of code was not only
beyond our resources, but such a change would be imprac-
tical to land in a production language. Instead, we used an
approach that only requires refactoring a small proportion
of the code base.

For the stack and registers, we implemented conserva-
tive pinning, a novel technique that finds and pins the refer-
ents of ambiguous roots [16].° This approach does not suffer
from false retention that affects traditional conservative stack
scanning (pinning does not keep objects alive), and the tradi-
tional limitation that conservatively referenced objects may
not be moved [16] is irrelevant since root-referenced objects
can’t be moved anyway (Section 2.2.3). We added support to
conservatively identify all possible references by identifying
the base reference from internal ones by using a valid object
(VO) bit that is set for the address representing the beginning
of an object [24]. By conservatively pinning potential roots
in the stack and registers, we guarantee that the references
will still remain valid after the GC. The conservative pinning
is made relatively expensive by the need to identify internal
references. However, we only need conservative pinning
for collections that may move objects for defragmentation,
which are infrequent, making the overall cost insignificant.

In principle, a compiler could hide a reference from a con-
servative collector, for example, by spilling partial registers
to the stack [8]. However, this turns out not to be a problem

> Ambiguous roots are values of unknown type that could plausibly be
pointers to heap objects.

ISMM °25, June 17, 2025, Seoul, Republic of Korea

in practice, which is why conservative collectors for C and
C++ continue to be widely used [16].

In addition to stacks and registers, Julia may also hold
dominated roots in global variables. Julia has an annotation
JL_GLOBALLY_ROOTED for global variables that are roots (those
global variables are direct references to heap objects), though
Julia’s stock GC only treats a dominant subset of them as
roots. In our case, we pass all such global roots to the collector.
Note that the objects referenced by those global roots are
still required not to move, since there is no guarantee that
there are no other references to them. To enforce this, we
can either pin those objects or use node enqueueing which
keeps these objects in place.

Julia may have dominated roots in its JIT generated code
that are not reported to the collector. Fortunately, Julia’s
code generation only emits pointers to heap objects through
several functions. We identify those functions, and make
sure the objects being referenced in the code will not move.

Finally, we also need to consider references from the native
global memory and the native heap. We undertook a simple
manual search in the codebase for native runtime types that
are stored in the global memory and in the heap, and that may
include references to the managed heap. Those references are
essentially dominated roots that have been ignored by the
stock GC. Since the uses of native global memory and native
runtime types appear only in a small part of the codebase,
manually analyzing the code for overlooked dominated roots
was tractable. Such roots could either be pinned and reported
to the collector, or handles could be introduced into the code,
allowing the collector the freedom to move the referents.
For now, we just pin them. An alternative approach to our
manual search would include conservatively scanning all
the native global memory and the heap memory, similar
to our conservative pinning for stacks, but this might be
too expensive, especially if the number of references to the
managed heap from the native heap is not that large.

With the above techniques combined, we are able to iden-
tify all missing roots in the Julia codebase. Though the ref-
erent objects must all be pinned, most of the heap remains
unpinned. The results are workload-dependent but varies
from 70% to 99%. The main reason for low movable object
ratios in some workloads was the heavy use of malloc, and
the fact that malloc’d objects are not managed by the moving
collector.

Even though we have found a practical approach to ad-
dress the missing roots as described previously, we do hope
that our efforts can encourage the Julia community to ad-
dress this issue systematically, especially as we continue
working on evaluating the benefits of moving collectors in
Julia. We have identified this aspect of the runtime as the
biggest obstacle for Julia to adopt moving collectors.

3.4.3 Object Pinning. Allowing objects to move is a sig-
nificant change. The fact that not all objects may be moved



ISMM °25, June 17, 2025, Seoul, Republic of Korea

restricts the GC algorithms that can be used in Julia, since
many algorithms, including canonical algorithms such as
semi-space and mark-compact, require moving all objects.
As mentioned in Section 3.2, using the Immix family of col-
lectors is particularly interesting since it allows us to do op-
portunistic copying and pin objects that must not be moved.

There are many different reasons why an object may need
to be (transitively) pinned. For instance, we may pin all the
dominated roots discovered using the strategies shown be-
fore, guaranteeing that those objects will not be moved. How-
ever, there are also other cases as we describe below.

Hashed objects. Julia may use the object’s address as
a seed to generate keys in hash tables. A solution to this
problem is to implement proper address-based hashing [1],
a technique that keeps track of the hash ID of the original
object when moving it. However, this requires two bits in the
object header, and an extra word in the case where a hashed
object is moved. An alternative when pinning is already well
supported is to simply pin all objects that are hashed.

3.4.4 Non-moving Allocation. Some objects of particu-
lar types may never be moved. In this case, we can simply
allocate such objects into a non-moving space. This is an
extension for the allocation semantics we discussed in Sec-
tion 3.1.1. For example, the objects of jl_datatype_t and
j1l_typename_t should never be moved, since they are used
as metadata for scanning objects. Another scenario involves
references from the native heap, which may be treated us-
ing pinning, but if we know that all the references are of a
particular type, we can ensure that all objects of that type
are allocated in a non-moving space. Doing so has the same
semantics as pinning the object indefinitely, however, it does
not require pinning each object individually, and it helps
reduce fragmentation in the moving space.

3.4.5 Impacts on Julia FFI. As discussed in Section 2.2.4,
Julia’s FFI design prioritizes seamless integration with na-
tive languages under the assumption of non-moving collec-
tion, and some aspects of Julia’s current FFI behavior are
implementation-defined. We need a solution that general-
izes the Julia FFI with explicitly specified semantics to work
with various collectors (including moving collectors) while
minimizing breaking changes and semantics to Julia user
code. We are still working with the Julia community on a
plausible FFI extension that will be acceptable to the com-
munity. This section is a mix of what we have implemented
in our prototype and what we proposed and discussed with
the community.

Pointer Validity The current FFI focuses on the liveness of
referenced objects, and uses words such as “extending
the lifetime”, or “making sure the object exists” in the
documentation. It implies that as long as an object
is alive, the pointer to it remains valid. This is fine
for non-moving collectors but is not a strong enough

de Souza Amorim et al.

guarantee when such objects may move. On top of
object liveness, we consider pointer validity, which
refers to the validity of references and pointers for
live objects. In the documentation where lifetime is
discussed, we extend the contract to cover pointer
validity.

Unsafe Pointer Conversions Julia applications may make
unsafe conversions of pointers using functions like
Base.pointer, Base.pointer_from_objref, or Base.
unsafe_convert to obtain references to objects in the
heap as raw pointers. As the description from those
functions states, “[users] must ensure that the object
remains referenced for the whole time that the pointer
will be used”, it is clear that it is the user’s responsibil-
ity to keep the object alive. However, in the context of
moving collection, the functions must also guarantee
pointer validity. Since the object is the argument for
those functions, the liveness of the object is implied
at the function call, and users may not do anything
particular to make sure the object is alive before the
call. A moving collection may happen immediately
after the unsafe pointer conversion call and invalidate
the resulting pointer. To be minimally disruptive to
user code, we require the unsafe pointer conversion
functions to guarantee pointer validity by pinning the
objects whose pointers are exposed in a moving col-
lector build.®

GC.@preserve and ccall Julia applications may root ob-
jects explicitly by calling the GC.@preserve macro. As
stated in the documentation, this macro “is used to
protect dynamically allocated objects from garbage
collection”. @preserve x can be used when for exam-
ple, passing x to a ccall to run native code, accessing
the memory pointed by x directly in Julia itself via a
Ptr (raw pointer), or when using resources of x which
would be cleaned up in the finalizer. In all of these
cases, it is also possible and common that any object
reachable from x may be accessed. For that reason,
GC.@preserve needs to guarantee not only object live-
ness, but also transitive pointer validity. We use the
mechanism in Section 3.4.1 to transitively pin the af-
fected object and all the reachable objects. Julia also
states that the arguments of ccall are guaranteed to
be GC preserved, thus transitive pointer validity is
guaranteed for ccall arguments.

GC Guarantees on Dynamic Scope GC.@preserve begins
a code block, and the GC guarantees are only effective
for the block scope. Users sometimes need to dynami-
cally extend this guarantee for objects for an arbitrary
scope. For example, a user may store the pointer of a
heap object in native data structures, then return from
the native call, which ends the GC.@preserve scope.

®Pinning is a noop for a non-moving collector build.



Reconsidering Garbage Collection in Julia

The current Julia documentation invites “[users] to
make a global variable of type Array{Ref,1} to hold
these values until the C library notifies you that it
is finished with them.” Unfortunately, this is insuffi-
cient for moving garbage collectors. In the example
above, the saved pointer is an unidentified root to the
collector, and is reached by the collector as a normal
object during a transitive closure. The collector does
not have any information to know that the pointer
needs to be kept valid and the object cannot be moved.
We propose to add a pair of functions, GC.retain and
GC.release. GC.retain guarantees object liveness and
transitive pointer validity until GC.release is called to
release those guarantees. Moving collectors can use
those objects as roots for transitive pinning. This is
a breaking change for the user code if they intend to
run with a moving collector. However, we argue that
such functions will ultimately be necessarily.

GC-Safe Regions Users may invoke @ccall gc_safe=true,
or rely on functions such as jl_gc_safe_enter and
jl_gc_safe_exit to allow some native code to run con-
currently with garbage collection. For GC-safe regions,
the runtime does not guarantee anything with respect
to object liveness. It is the users’ responsibility to make
sure the pointers and the objects they access are valid
and additionally make sure that code complies with
Julia’s definition of ‘GC-safe’. With a moving collector,
GC-safe regions are risky. The semantics of Julia’s GC-
safe regions and GC-safe ccalls are not well defined
in terms of moving collectors, thus it is hard to predict
what would work and what would not. There are a
few other options that we may consider, such as post-
poning a moving collection if any thread is running in
a GC-safe region.

Our current approach minimizes the introduction of break-
ing changes, and preserves the efficient and seamless FFI
design of Julia as much as possible. However, it heavily relies
on transitive pointer validity for FFL. Applications that use
FFI frequently and expose key objects that may reach most
objects in the heap, may end up with most objects transi-
tively pinned. However, we haven’t seen such cases among
the workloads we have evaluated, and we will be interested
evaluate more sophisticated workloads.

3.5 Summary

We presented our experience of refactoring Julia to expose
a well-defined GC interface. Our implementation leverages
MMTk along with a selected subset of its GC algorithms
to demonstrate the viability of this interface. The choice of
GCs reflects the current constraints of the Julia runtime. For
instance, Julia’s FFI semantics require efficient support for
object pinning, which excludes most copying collectors. Col-
lectors like Immix (which supports opportunistic copying)
and non-moving collectors like mark-sweep are well-suited

ISMM °25, June 17, 2025, Seoul, Republic of Korea

for integration with Julia today. Additionally, because the
Julia runtime currently supports only write barriers, GC
algorithms requiring read barriers remain unexplored.

Though we used MMTk in our work, the interface should
straightforwardly support any GC implementation that satis-
fies Julia’s constraints. The GC interface lays the groundwork
and opens up more opportunities for broader GC experimen-
tation in Julia, enabling future research into performance,
memory utilization, and latency across Julia’s characteristic
workloads.

4 Related Work

The challenges we discussed throughout the paper are par-
ticular to Julia, and follow from design decisions made as
the language and its runtime have evolved. Throughout the
project, we added relevant references to the Julia documenta-
tion, community posts, and the JuliaLang GitHub repository
to provide further context.

The use of shadow stacks [18] and conservative stack
scanning [9] are the primary approaches that have been used
in the past to implement languages when there is no easy
way to precisely identify pointers on the runtime stacks. In
our case, we leverage conservative stack scanning to perform
pinning, since Julia’s shadow stack may not contain all the
stack dominant roots.

More work has been done in the context of adding GC
features to uncooperative languages. For example, to im-
prove Ruby’s collector, RGenGC [23] devised a way of incre-
mentally introducing write barriers, conservatively scanning
those objects that remained unprotected by write barriers. In
our case, we try to support legacy code as much as possible,
but for Julia’s FFI for instance, we might need to introduce
some changes to support moving objects that are passed to
C code.

5 Conclusion

Julia is an important modern programming language. The
original Julia implementation was built with a well tuned
non-moving mark-sweep garbage collector. While this col-
lector has served the language well, like all non-moving
collectors, it is fundamentally and unavoidably exposed to
fragmentation and reduced locality. This work explores a
multi-year collaboration to extend Julia with a well defined
garbage collection interface, giving the runtime the oppor-
tunity to choose among collectors. Among the challenges
faced by this work, the largest was the provision for mov-
ing garbage collection. We have successfully implemented
strategies to manage the various challenges faced by moving
collection and have successfully implemented a binding to
the MMTk framework.

We hope that this work will serve the memory manage-
ment community, the Julia community, and the wider pro-
gramming language design and implementation community
with useful insights and lessons.



ISMM °25, June 17, 2025, Seoul, Republic of Korea

References
[1] Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G. Burke,

[10

(11

[12

(13

(14

[15

—

—

—

[t

—

— =

]

[utr}

=

—

Perry Cheng, Jong-Deok Choi, Anthony Cocchi, Stephen J. Fink, David
Grove, Michael Hind, Susan Flynn Hummel, Derek Lieber, Vassily
Litvinov, Mark F. Mergen, Ton Ngo, James R. Russell, Vivek Sarkar,
Mauricio J. Serrano, Janice C. Shepherd, Stephen E. Smith, Vugranam C.
Sreedhar, Harini Srinivasan, and John Whaley. 2000. The Jalapefio
virtual machine. IBM Syst. 7. 39, 1 (2000), 211-238. doi:10.1147/S).391.
0211

Jeff Bezanson. 2015. Abstraction in technical computing. Ph.D. Disser-
tation. Massachusetts Institute of Technology, Cambridge, MA, USA.
https://hdl.handle.net/1721.1/99811

Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Vi-
ral B. Shah, Jan Vitek, and Lionel Zoubritzky. 2018. Julia: dynamism
and performance reconciled by design. Proc. ACM Program. Lang. 2,
OOPSLA (2018), 120:1-120:23. doi:10.1145/3276490

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.
Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1
(2017), 65-98. doi:10.1137/141000671

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004.
Myths and realities: the performance impact of garbage collection.
In Proceedings of the International Conference on Measurements and
Modeling of Computer Systems, SSIGMETRICS 2004, June 10-14, 2004, New
York, NY, USA, Edward G. Coffman Jr., Zhen Liu, and Arif Merchant
(Eds.). ACM, 25-36. doi:10.1145/1005686.1005693

Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004.
Oil and Water? High Performance Garbage Collection in Java with
MMTk. In 26th International Conference on Software Engineering (ICSE
2004), 23-28 May 2004, Edinburgh, United Kingdom, Anthony Finkel-
stein, Jacky Estublier, and David S. Rosenblum (Eds.). IEEE Computer
Society, 137-146. doi:10.1109/ICSE.2004.1317436

Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: a mark-
region garbage collector with space efficiency, fast collection, and
mutator performance. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (Tucson,
AZ,USA) (PLDI *08). Association for Computing Machinery, New York,
NY, USA, 22-32. doi:10.1145/1375581.1375586

Hans-Juergen Boehm. 1996. Simple Garbage-Collector-Safety. In Pro-
ceedings of the ACM SIGPLAN’96 Conference on Programming Lan-
guage Design and Implementation (PLDI), Philadephia, Pennsylva-
nia, USA, May 21-24, 1996, Charles N. Fischer (Ed.). ACM, 89-98.
d0i:10.1145/231379.231394

Hans-Juergen Boehm. 1993. Space efficient conservative garbage
collection. SIGPLAN Not. 28, 6 (June 1993), 197-206. doi:10.1145/
173262.155109

Julia contributor: Diogo Netto. 2023. Concurrent page sweeping. https:
//github.com/JuliaLang/julia/pull/48969. Accessed: 28 Feb 2025.
Julia contributor: Diogo Netto. 2023. Run GC on multiple threads.
https://github.com/JuliaLang/julia/pull/48600. Accessed: 28 Feb 2025.
Julia contributor: Gabriel Baraldi. 2023. Add under pres-
sure callback. https://github.com/JuliaLang/julia/commit/
15b34a5768f330d581472c461be2d663b794f5fa. Accessed: 27
Feb 2025.

Julia contributor: Jameson Nash. 2023. gc: add some guard rails and
refinements to MemBalancer. https://github.com/JuliaLang/julia/pull/
52197. Accessed: 27 Feb 2025.

Julia contributor: rssdev10. 2022. added new command line option
heap_size_hint for greedy GC. https://github.com/JuliaLang/julia/
pull/45369. Accessed: 27 Feb 2025.

Julia contributors. [n.d.]. Garbage collection in Julia. https://docs.
julialang.org/en/v1/devdocs/gc/. Accessed: 28 Feb 2025.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

de Souza Amorim et al.

Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow,
and Scott Shenker. 1989. Combining generational and conservative

garbage collection: framework and implementations. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (San Francisco, California, USA) (POPL ’90). As-
sociation for Computing Machinery, New York, NY, USA, 261-269.
doi:10.1145/96709.96735

Nicolas Geoffray, Gaél Thomas, Julia Lawall, Gilles Muller, and Bertil
Folliot. 2010. VMKit: a substrate for managed runtime environments.
In Proceedings of the 6th International Conference on Virtual Execution
Environments, VEE 2010, Pittsburgh, Pennsylvania, USA, March 17-19,
2010, Marc E. Fiuczynski, Emery D. Berger, and Andrew Warfield (Eds.).
ACM, 51-62. doi:10.1145/1735997.1736006

Fergus Henderson. 2002. Accurate garbage collection in an unco-
operative environment. In Proceedings of The Workshop on Memory
Systems Performance (MSP 2002), June 16, 2002 and The International
Symposium on Memory Management (ISMM 2002), June 20-21, 2002,
Berlin, Germany, Hans-Juergen Boehm and David Detlefs (Eds.). ACM,
256-263. doi:10.1145/512429.512449

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage
Collection Handbook: The Art of Automatic Memory Management (1st
ed.). Chapman & Hall/CRC.

Marisa Kirisame, Pranav Shenoy, and Pavel Panchekha. 2022. Optimal
heap limits for reducing browser memory use. Proc. ACM Program.
Lang. 6, OOPSLA2, Article 160 (Oct. 2022), 21 pages. doi:10.1145/
3563323

Sheng Liang. 1999. Java Native Interface: Programmer’s Guide and
Reference (1st ed.). Addison-Wesley Longman Publishing Co., Inc.,
USA.

John McCarthy. 1960. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I. Commun. ACM 3, 4 (1960),
184-195. doi:10.1145/367177.367199

Koichi Sasada. 2019. Gradual write-barrier insertion into a Ruby
interpreter. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on Memory Management (Phoenix, AZ, USA) (ISMM 2019).
Association for Computing Machinery, New York, NY, USA, 115-121.
doi:10.1145/3315573.3329986

Rifat Shahriyar, Stephen M. Blackburn, and Kathryn S. McKinley. 2014.
Fast conservative garbage collection. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein
(Eds.). ACM, 121-139. doi:10.1145/2660193.2660198

Aleksey Shipilév. 2018. Epsilon: A No-Op Garbage Collector (Experi-
mental). https://openjdk.org/jeps/318. Oracle Corporation, JEP 318.
MMTk Team. 2023. AllocationSemantics (MMTk API Documentation).
https://docs.mmtk.io/api/mmtk/plan/enum.AllocationSemantics.
html. Accessed: 24 Feb 2025.

Xi Yang, Stephen M. Blackburn, Daniel Frampton, and Antony L. Hosk-
ing. 2012. Barriers reconsidered, friendlier still!. In Proceedings of the
11th International Symposium on Memory Management, ISMM 2012,
Beijng, China, June 15 - 16, 2012. ACM.

Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. 2022.
Low-latency, high-throughput garbage collection. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (San Diego, CA, USA) (PLDI 2022).
Association for Computing Machinery, New York, NY, USA, 76-91.
doi:10.1145/3519939.3523440

Received 2025-03-19; accepted 2025-05-03


https://doi.org/10.1147/SJ.391.0211
https://doi.org/10.1147/SJ.391.0211
https://hdl.handle.net/1721.1/99811
https://doi.org/10.1145/3276490
https://doi.org/10.1137/141000671
https://doi.org/10.1145/1005686.1005693
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1145/1375581.1375586
https://doi.org/10.1145/231379.231394
https://doi.org/10.1145/173262.155109
https://doi.org/10.1145/173262.155109
https://github.com/JuliaLang/julia/pull/48969
https://github.com/JuliaLang/julia/pull/48969
https://github.com/JuliaLang/julia/pull/48600
https://github.com/JuliaLang/julia/commit/15b34a5768f330d581472c461be2d663b794f5fa
https://github.com/JuliaLang/julia/commit/15b34a5768f330d581472c461be2d663b794f5fa
https://github.com/JuliaLang/julia/pull/52197
https://github.com/JuliaLang/julia/pull/52197
https://github.com/JuliaLang/julia/pull/45369
https://github.com/JuliaLang/julia/pull/45369
https://docs.julialang.org/en/v1/devdocs/gc/
https://docs.julialang.org/en/v1/devdocs/gc/
https://doi.org/10.1145/96709.96735
https://doi.org/10.1145/1735997.1736006
https://doi.org/10.1145/512429.512449
https://doi.org/10.1145/3563323
https://doi.org/10.1145/3563323
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/3315573.3329986
https://doi.org/10.1145/2660193.2660198
https://openjdk.org/jeps/318
https://docs.mmtk.io/api/mmtk/plan/enum.AllocationSemantics.html
https://docs.mmtk.io/api/mmtk/plan/enum.AllocationSemantics.html
https://doi.org/10.1145/3519939.3523440

	Abstract
	1 Introduction
	2 Background
	2.1 Julia
	2.2 Julia's Garbage Collector
	2.3 MMTk

	3 Reworking Julia's GC
	3.1 No GC
	3.2 Non-Moving Immix
	3.3 Sticky Immix
	3.4 Moving Plans
	3.5 Summary

	4 Related Work
	5 Conclusion
	References

