
Better Understanding the Costs and Benefits of Automatic
Memory Management

Kunal Sareen
kunal.sareen@anu.edu.au

Australian National University
Canberra, Australia

Stephen M. Blackburn
steveblackburn@google.com

Google and Australian National University
Canberra, Australia

ABSTRACT
Automatic memory management relieves programmers of the bur-
den of having to reason about object lifetimes in order to soundly
reclaim allocated memory. However, this automation comes at a
cost. The cost and benefits of garbage collection relative to man-
ual memory management have been the subject of contention for
a long time, and will likely remain so. However, until now, the
question is surprisingly under-studied. We examine the costs and
benefits of garbage collection through four studies, exploring: (i) the
space overheads of garbage collection; (ii) the effects of garbage
collection on the execution time of a mutator using a free-list al-
locator; (iii) how proximity to garbage collection events affects
mutator performance; and (iv) the effects of the delay in memory
reuse on manually managed workloads. We conduct this study in
a contemporary setting using recent CPU microarchitectures, and
novel methodologies including a mark-sweep collector built upon
off-the-shelf free-list allocators, allowing us to shed new light on
garbage collection overheads in a modern context.

We find that: (i) simple, fully-copying collectors such as semi-
space have average space overheads of 65-80%, while immix has an
overhead of 11-17% over a baseline approximating manual mem-
ory management; (ii) for the collection frequencies we evaluate,
garbage collection has little impact on mutator time when using an
optimized free-list allocator; (iii) the proximity of mutator work to
the nearest collection has little impact on its performance, unless a
free-list allocator is used; and (iv) postponing the reuse of memory
generally has little effect on performance, but is allocator-specific,
and is noticeable if the delay is significant relative to the work-
load’s footprint. The costs and benefits of garbage collection are
likely to remain subject to contentious discussion. However, the
methodologies and evaluations we present here provide a deeper
understanding of the differences in costs between manual memory
management and garbage collection.

CCS CONCEPTS
• Software and its engineering → Garbage collection; Gen-
eral programming languages.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9696-7/22/09.
https://doi.org/10.1145/3546918.3546926

KEYWORDS
Garbage Collection, Memory Management, Manual Memory Man-
agement, Automatic Memory Management

ACM Reference Format:
Kunal Sareen and Stephen M. Blackburn. 2022. Better Understanding the
Costs and Benefits of Automatic Memory Management. In Proceedings of
the 19th International Conference on Managed Programming Languages and
Runtimes (MPLR ’22), September 14–15, 2022, Brussels, Belgium. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3546918.3546926

1 INTRODUCTION
Automatic memory management (garbage collection) provides an
abstraction over memory that delivers memory safety, reducing
opportunities for memory leaks and avoiding use-after-free bugs.
By avoiding the need to reason about object lifetimes, garbage
collection reduces cognitive load for programmers, and by allowing
objects to be moved, it introduces spatial optimization opportunities
for language implementers. Bugs such as use-after-frees, out-of-
bounds reads and writes are commonplace in languages such as C
and C++ and still dominate vulnerability databases [11].

The idea that garbage collection confers a productivity benefit is
widely accepted, although hard to quantify [9]. On the other hand
the costs associated with garbage collection are much less well
understood. Zorn [29] compared conservative collection to manual
memory management, finding that the principal overhead was due
to the memory system, not the CPU load of performing collections.
Huang et al. [18] showed that garbage collection can offer locality
benefits to programs. Hertz and Berger [17] explored the question
in depth, using a simulation framework to model an ideal (oracular)
collector, suggesting that the overheads are substantial. Recently,
Cai et al. [10] developed a methodology for creating a baseline that
allowed a lower bound on the collector overhead to be established.

A fundamental challenge that any such comparison faces is that
programs written for manually and automatically managed lan-
guages respectively tend to be applied to different problem domains
and will have a different style, as a direct consequence of the avail-
ability / absence of automatic memory management. Retrofitting
garbage collection into a manually managed language is problem-
atic as unless that language is memory safe, the collector will not
be able to move objects, which is one of the most important perfor-
mance opportunities available to a garbage collector [18], and it will
necessarily be conservative [8]. On the other hand, adding explicit
free() operations to a garbage collected language is problematic
both because of the effort associated with correctly doing so in any
non-trivial code base, and because of the question of whether their
placement reflects choices that would have been made natively by
a programmer.

https://doi.org/10.1145/3546918.3546926
https://doi.org/10.1145/3546918.3546926


MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

We introduce new methodologies with which we conduct four
studies, three of which analyze different aspects of the impact of
garbage collection on a garbage collected language and one which
analyzes the effect of delaying object reuse in a manually managed
language: (i) the space overheads of garbage collection relative to
manually managed languages; (ii) the effects of garbage collection
on the execution time of the mutator (application); (iii) the effects of
garbage collection on the locality of the mutator; and (iv) the effects
of inserting garbage collection-like behavior in manually managed
applications. The new methodologies we introduce include using
a mark-sweep collector that is built upon off-the-shelf free-list al-
locators [25], using large scale event-based workloads to explore
the effect of proximity to collections, and using a quarantine [1]
to model reclamation delays in unmanaged programs. These new
methodologies allow us to deepen the understanding of the over-
heads and benefits of garbage collection in comparison to manual
memory management, and we hope this will allow language devel-
opers and implementers to make an informed decision regarding
their choice of whether to use automatic memory management. Our
work also informs GC developers by identifying areas where GC
introduces overheads. We conduct our study in a contemporary set-
ting using modern hardware allowing us to reevaluate overheads
and benefits of garbage collection in the face of rapid CPU and
microarchitectural advancements.

2 BACKGROUND AND RELATEDWORK
There is an extensive literature on manual and automatic memory
management dating back to McCarthy’s seminal 1960 paper [24].
Here we just cover a few concepts important to this paper.

2.1 Background
Lifetimes and Delayed Reclamation. Garbage collectors use reach-

ability as a conservative approximation to liveness, so in general,
an object will be reclaimed some time after its last use. This delay
in reclamation is referred to as heap drag [26]. Tracing garbage
collectors [24] and deferred reference counting collectors [12] re-
claim garbage periodically, which means that there is generally
an additional delay between when an object becomes unreachable
and when the space it occupies becomes available for reuse. On
the other hand, a non-deferred reference counting collector will
reclaim an object immediately when the last reference to the object
is (transitively) removed.1 Because there are fixed costs associated
with garbage collection, a longer period between collections will
generally reduce collection costs, but comes at the cost of further
delaying reclamation.

On the other hand, manual memory management relies on a
programmer identifying the closest point in a program, statically,
to where a object will no longer be used. This can be difficult to get
right, particularly in the face of concurrency. If the object is freed
too early, it may lead to a use-after-free error, which is a significant
source of bugs and security vulnerabilities. On the other hand, if
the object is freed too late, space will be wasted, and if it is not
freed at all, the program will leak memory.

1Cyclic garbage can’t be collected by direct reference counting, so in general it will
suffer similar heap drag to an object in a system with tracing collection.

In Section 7, we directly examine the costs of delayed reclamation
in the context of a manually managed system by placing objects in
a ‘quarantine’ [1] for some time after they are freed before allowing
their space to be reclaimed.

Sources of Space Overheads. Three sources of space overhead are
relevant to our study: (i) space held in reserve by a collector into
which objects may be copied; (ii) fragmentation intrinsic to the heap
organization used by the memory manager; and (iii) space used for
metadata that is essential to the memory manager, such as free lists,
mark bits, and work queues.

At one end of the space efficiency spectrum, a simple semi-space
copying collector [14] holds exactly half of the heap in reserve
because it copies live objects into the reserved space and must
account for the worst case where all objects survive. At the other
end of the spectrum, a mark-compact collector moves objects in
place [16, 27], and each time it collects it fully compacts the heap,
so it suffers no fragmentation or copy reserve overheads. Free-list
allocators, whether used for manual memory management or mark-
sweep, suffer internal fragmentation, where an object does not
fully occupy the available memory cell, and external fragmentation,
where unused memory cells are not available for other purposes
(such as other sized objects or for return to the operating system)
because they share a memory region (e.g. a page) with some used
cells.

Large Objects. Because the operating system and hardware al-
ready perform memory management at the page granularity, many
garbage collection systems handle objects larger than a page differ-
ently to smaller objects. This detail is relevant to our study since
this means that in practice most collectors are hybrids. For example,
a semi-space collector uses the semi-space algorithm for all objects
smaller than some threshold, and a simpler, non-moving strategy
for larger objects.

2.2 Related Work
The question of how much garbage collection costs compared to
manual memory management is longstanding and contentious.
However, there are surprisingly few studies that directly address it.

Zorn [29] evaluates the costs of conservative garbage collection
with respect to manual memory management. They compare the
Boehm-Weiser conservative collector [8] against domain-specific
and general purpose memory allocators for a variety of C bench-
marks. They find that the execution time performance of conser-
vative GC is often comparable and sometimes better than the per-
formance of manual memory management. However, the space
overheads in comparison to manual memory management range
from 30% to 150% more space. They find that this high space over-
head is due to internal fragmentation of the heap, increased heap
size due to delayed reclamation, and due to the conservative nature
of the collector they evaluated.

Huang et al. [18] describe an approach to exploit data locality
by using copying garbage collection, the key insight being that
a copying GC can reorder objects such that the most frequently
accessed objects are located together. The authors introduce Online
Object Reordering (OOR), a copying order that is based on the ap-
plication’s traversal patterns, into a generational copying collector



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

in JikesRVM [2]. The authors compare the execution time of OOR
against an idealized manual memory management approximation.
They model their approximation by using a mark-sweep collector
with a free-list allocator and only measuring the mutator time (cal-
culated as the difference of total execution time and time spent
garbage collecting). This is an imperfect approximation as on one
hand the mutator time does not include the cost of freeing objects,
while on the other hand memory reclamation is delayed compared
to manual memory management. They find that the OOR collector
is generally comparable to, if not better, than the idealized manual
memory management approximation even at small heap sizes.

Hertz and Berger [17] develop a framework comparing the costs
of garbage collection to manual memory management. Using Dy-
namic SimpleScalar (an architectural simulator) and JikesRVM, they
create an “oracular memory manager” which uses malloc and free
to allocate and deallocate objects in Java programs. To avoid the
costs of instrumentation affecting themeasurement of the programs,
their framework runs programs on the cycle-accurate simulator and
injects calls to free from within the simulator whenever the trace
indicates the death of an object. They describe a reachability-based
oracle, which frees objects just before they become unreachable;
and a liveness-based oracle, which uses object lifetimes to free ob-
jects just after their last use. These oracles are trace-based and
require three preconditions to work: (i) deterministic program exe-
cution; (ii) fixed object allocation order; and (iii) a pre-computed list
ordered by allocation time that indicates which objects should be
freed at that time. Hence, when an application allocates an object in
this framework, the simulator first checks whether any objects are
due to be freed. If some objects need to be freed then it calls free
on them explicitly before it passes control onto malloc to actually
service the allocation request.

Using the Lea allocator [19], and MMTk’s explicit free-list allo-
cator, MSExplicit, Hertz and Berger compare the space- and time-
overheads for various garbage collectors in JikesRVM with MMTk
[4, 5]. An often-cited result from this paper is that garbage collec-
tion is much slower than explicit memory management, requiring
at least 5× more memory in order to provide the same execution
time performance. However, automatic versus manual memory
management is just one of three differences between the two sys-
tems compared in this headline result; the other two being the free
list design (Lea versus MMTk’s), and the method for accounting for
memory usage. In Figure 6 they show an approximately 1.6× differ-
ence between Lea and MMTk’s free lists. Ignoring the difference
in space accounting, this suggests a 3.1× (5/1.6) space overhead to
achieve the same performance when holding the free list design
constant. For space overheads, they find (Table 4) that the best
garbage collector in MMTk at that time, GenMS (a generational
collector with a mark-sweep mature space) requires at least 2–2.5×
the heap size of the explicit memory manager using the Lea alloca-
tor (which, again, normalizing to MMTk’s explicit memory manger,
is a 1.25–1.56× space overhead). Our results in Section 4 suggest
a space overhead of about 11-17% for a modern GC compared to
manual memory management.

Cai et al. [10] recently presented a new methodology for empiri-
cally deriving a lower bound on the overhead imposed by garbage
collection, relative to a hypothetical ideal garbage collector that
bestows all the benefits of garbage collection and none of the costs.

They reported a lower bound of 3–9% total time overheads for
production OpenJDK collectors in heap sizes from 1.9–6.0× the
minimum, and 124% for a heap 1.4× the minimum size. They did
not explore the question of how garbage collection costs compare
to manual memory management.

3 METHODOLOGY
Each of the four experiments uses a distinct methodology, with a
number of elements in common, which we outline here.

Hardware and Operating System. All of the systems used in our
experiments ran Ubuntu 18.04.6 LTS with Linux 5.4.0-105 kernels.
All CPUs operate in 64-bit mode and use 64-bit kernels.

We used the following hardware platforms:
(i) Intel Xeon Gold 5118 Skylake with a 2.3 GHz clock, a 12 x 32

KB, 64 B/line, 8-way L1 cache, a 12 x 1 MB, 64 B/line, 16-way
L2 cache, and 512 GB DDR4 RAM.

(ii) Intel i7-6700K Skylake with a 4 GHz clock, a 4 x 32 KB, 64
B/line, 8-way L1 cache, a 4 x 256 KB, 64 B/line, 4-way L2
cache, and 16 GB DDR3 RAM.

(iii) Ryzen 9 5950X Zen 3 with a 3.4 GHz clock, a 16 x 32 KB, 64
B/line, 8-way L1 cache, a 16 x 512 KB, 64 B/line, 8-way L2
cache, and 64 GB DDR4 RAM.

The results for Section 4, which only measures space, and does not
measure performance, were gathered on the Intel Xeon Gold 5118
machine. All other results were gathered on the Ryzen 9 5950X,
including Section 6 which also used the Intel i7-6700K machine to
explore microarchitectural sensitivity.

OpenJDK. When evaluating Java (Sections 4, 5, 6), we use Open-
JDK 112 (the latest LTS release at the time). All experiments use
the HotSpot C2 JIT compiler with pre-compilation enabled and ex-
plicit GCs disabled. Measurements were captured using the DaCapo
benchmark harness. If we are measuring time-sensitive values, we
perform four warmup iterations before starting our timing iteration
in order to reduce any experimental noise due to JIT compilation
or other VM operations.

Benchmarks. We use a snapshot of the Chopin evaluation ver-
sion3 of the DaCapo benchmarks [6]. The DaCapo benchmark suite
is a suite of real-world open source Java applications each with
different levels of parallelism, data access patterns, and memory re-
quirements etc. The Chopin update to the DaCapo benchmark suite
adds new benchmarks and updates previous ones to their latest
releases (i.e. from 2012 to 2022). The benchmark suite is available
on the DaCapo Chopin GitHub repository. Section 7 describes the
set of unmanaged benchmarks we use.

4 SPACE OVERHEADS OF GARBAGE
COLLECTION

In our first study, we examine the claim that garbage collection is
significantly less space efficient than manual memory management
using a baseline that approximates a manually managed or naively-
reference counted heap. This study does not examine the space-time
trade-off inherent to garbage collection. For this study we introduce

2OpenJDK 11 version jdk-11.0.15+8
3Git hash f480064



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

avrora batik eclipse fop jython luindex lusearch pmd sunflow xalan zxing geomean
Benchmark

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
in

he
ap

 R
eq

ui
re

d 
(N

or
m

al
iz

ed
 t

o 
B

es
t 

V
al

ue
)

mark-sweep, tc (32 KB Stress)
mark-sweep, tc (64 KB Stress)
mark-sweep, tc (128 KB Stress)
mark-sweep, mi (32 KB Stress)
mark-sweep, mi (64 KB Stress)
mark-sweep, mi (128 KB Stress)
immix
semi-space
gen-copy

Figure 1: Minimum heap size required to complete a benchmark for the semi-space, gen-copy, and immix collectors compared
to the 32KB, 64KB, and 128KB mark-sweep baseline collectors on the Xeon Gold Skylake.

a methodology which uses a baseline that: (i) manages memory us-
ing TCMalloc and mimalloc, two modern high performance free-list
allocators [15, 22]; and (ii) reclaims objects promptly, by identifying
unreachable objects via very frequent heap traces.

4.1 Methodology
The basis for our evaluation is a mark-sweep collector that uses
a conventional malloc/free library as its underlying free-list allo-
cator [25]. This collector uses malloc to allocate each object. Like
other collectors, the heap size is measured and specified in terms
of used pages. Garbage collection is triggered automatically when
the specified number of pages have been used, and may also be
explicitly triggered by the user (e.g. System.gc()). The collector
can be configured to use any standard malloc library. The collector
only differs from an idealized manual memory management system
on account of the delay in reclamation due to the periodicity of
collection. We further configure the collector to perform collections
at arbitrarily periodicity (as measured in bytes allocated), and in the
limit can perform a collection at every allocation, thus eliminating
heap drag [26] due to collection delay.

In practice, some of the DaCapo benchmarks perform so many
allocations that collecting at every allocation would lead to im-
practical execution times, so we collect at coarser granularities.
Collecting at a coarser granularity simply bounds the precision of
our space analysis. We find that 64 KB is practical, so use this as our
default. We also evaluate with 32KB and 128KB to establish the
sensitivity of our methodology to this choice. In Section 7 we show
in the context of an unmanaged language that delaying reclamation
by these amounts leads to negligible space overheads, which gives
us confidence that these provide good, fair baselines with respect
to space overheads.

We used the TCMalloc [15] and mimalloc [22] allocators in our
mark-sweep implementation. TCMalloc is widely used particularly
for large-scale applications, notably within Google [15]. Mimalloc
is a relatively new free-list allocator that is designed for use cases

including highly parallel and concurrent applications as well as
predictable performance overheads. Reeves [25] compares different
free list implementations — such as jemalloc [13], Hoard [3], mi-
malloc, and glibc 2.27 — for the DaCapo Java benchmarks [6] and
finds that mimalloc consistently outperforms the other allocators
on those workloads in terms of the mutator performance.

We exclude cassandra, h2o, and tomcat due to internal errors or
timeouts from the excessive GCs; biojava and h2 as they failed to
complete in a reasonable timeout of 2 days; and graphchi and jme
which refuse to initialize with small heaps.4

We measure the minimum heap size required to run the bench-
marks for collectors such as semi-space, generational copying with
a semi-space mature space (‘gen-copy’), and immix [7] and compare
them with the heap footprint as reported by the approximation of
manual memory management as discussed above. The minimum
heap size for each collector is measured by performing a bisection
search over heap sizes.

4.2 Results and Analysis
Figure 1 shows the minimum heap required to run a benchmark
for different GC algorithms in comparison to the 32 KB, 64 KB, and
128KB mark-sweep baselines. The results are normalized to the
best value for each benchmark. In a few cases, benchmarks did not
complete, such as luindex and pmd for the gen-copy collector due
to an internal VM crash, and sunflow for immix, which behaved
inconsistently.

The two fully copying collectors, semi-space and gen-copy, must
always hold half of the heap in reserve, so it is unsurprising that
their space overhead approaches 100%. However, large objects do
not require a copy reserve (Section 2.1) and have little fragmenta-
tion, and furthermore, the copying collectors have no fragmenta-
tion, which explains why the overhead is less than 100%. Taking the
geometric mean over all benchmarks, immix has space overheads

4For example, jme only performs 5 GCs with the immix collector, suggesting that it
could run on a smaller heap.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

avrora
batik

cassandra

fop jme jython
luindex

tomcat
xalan

zxing
min max

mean
geomean

M
ut

at
or

 T
im

e 
(N

or
m

al
iz

ed
 t

o 
C

ol
le

ct
io

n 
pe

ri
od

 =
 8

 M
B

)

(mark-sweep, mi) Collection period = 8 MB

(mark-sweep, mi) Collection period = 16 MB

(mark-sweep, mi) Collection period = 32 MB

Figure 2: The impact of three collection periods on mutator execution time when using the mimalloc-based mark sweep
collector. Results were gathered on the Zen 3 machine. Results are averaged over 10 invocations, and normalized to the 8MB
collection period.

of 17% and 11% relative to the TCMalloc and mimalloc baselines re-
spectively. On xalan and zxing, immix is slightly more efficient than
TCMalloc and mimalloc. To better understand this behavior, we ran
those benchmarks with the mark-sweep collectors collecting every
16 KB. On zxing, TCMalloc is 0.6% more space efficient than immix,
while mimalloc remains 3.5% less efficient. At 16 KB on xalan, TC-
Malloc and mimalloc are both 1.1% more space efficient than immix.
For benchmarks such as batik, fop, jython, and pmd, the number of
pages allocated for the three mark-sweep baseline collectors (per
allocator) are within < 1% of each other, suggesting that these values
are close to the space requirements for these benchmarks, had the
memory been reclaimed with zero delay. On both luindex, and sun-
flow TCMalloc’s space efficiency has a non-monotonic relationship
to reclamation delay.

Summarizing, this study shows average space overheads for a
modern whole-heap garbage collector [7] of 17% and 11% rela-
tive to TCMalloc [15] and mimalloc [22] respectively with near-
immediate (32 KB) reclamation. This result is not directly com-
parable with Hertz and Berger because of the simulation-based
methodology, slightly different collectors, and older workloads they
used [17]. Nonetheless, our finding is much lower than the 2–2.5×
space overhead often cited, but not so far from the 1.25–1.56× that
their data appears to show.5

5It is sometimes reported that Hertz and Berger [17] show that garbage collection
has a best case 2–2.5× space overhead compared to manual memory management.
However that figure, taken from Table 4, is not Hertz and Berger’s measure of the
overhead of garbage collection (MS v MSExplicit), but a comparison between two
different memory managers, using two different free-list allocators (MS v Lea). We
refer to their MS v MSExplicit results, which hold the allocator constant, leaving GC
versus manual as the only difference, as we describe in Section 2.2.

5 MUTATOR PERFORMANCE: GC
FREQUENCY

In our second study we examine claim that garbage collection in-
directly affects mutator performance by measuring the impact of
collection frequency on mutator performance. For this study we
develop a methodology that: (i) focuses on the costs imposed by
garbage collection on the mutator; (ii) uses a non-moving collec-
tor to avoid conflating the established benefits of copying collec-
tion [18]; (iii) uses established high-performance explicit memory
management libraries [15, 22] to allow costs to be viewed from
the frame of explicit memory management; and (iv) allows us to
issue non-reclaiming full heap traces, so we can separate the ef-
fects of delayed reclamation from the disturbance due to periodic
stop-the-world traces of the heap by garbage collection.

5.1 Methodology
We use the mark-sweep collector developed by Reeves [25], as we
did in the first evaluation (Section 4). The collector uses mimal-
loc [22] and TCMalloc [15] to allocate objects using malloc, and
to reclaim dead objects, it uses free. By using this allocator, the
mutator’s memory management behavior is as close as possible
to a high performance manual memory managed system, modulo
the effects of garbage collection, which we will study. Specifically,
we explore effects due to delayed reclamation, and the microarchi-
tectural effects of periodic stop-the-world collection. We focus our
discussion on mimalloc since Reeves showed it to perform better
for these workloads.

By using a simple stop-the-world collector, there are no read or
write barriers, so the only direct costs associated with garbage col-
lection are stop-the-world pauses. We measure the GC pauses and



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

avrora
batik

cassandra

fop jme jython
luindex

tomcat
xalan

zxing
min max

mean
geomean

M
ut

at
or

 T
im

e 
(N

or
m

al
iz

ed
 t

o 
R

ec
la

m
at

io
n 

pe
ri

od
 =

 1
)

(mark-sweep, mi 8 MB) Reclamation period = 1

(mark-sweep, mi 8 MB) Reclamation period = 4

(mark-sweep, mi 8 MB) Reclamation period = 16

Figure 3: The impact on mutator execution time of three reclamation periods when performing collections at a fixed 8MB
period, using the mimalloc-based mark-sweep collector. Results were gathered on the Zen 3 machine. Results are averaged
over 10 invocations, and normalized to the case where reclamations occur at every collection.

subtract from the total execution time to reveal the mutator time.
The remainder of our methodology targets revealing the indirect
costs of garbage collection imposed upon the mutator. We use two
basic techniques to tease out those costs: (i) we carefully control the
periodicity of garbage collections; and (ii) we selectively perform
full heap traces that do not reclaim garbage so that we can sepa-
rate out the impact on the allocator through delayed reclamation
from the broader impact of microarchitectural perturbation due to
periodic full heap traces.

Just as we did in Section 4, we force collections with a controlled
frequency. In our first experiment we vary the collection frequency
so that we can see the combined impact of delayed reclamation and
periodic stop-the-world collections on the mutator. We then con-
duct a second experiment to tease apart reclamation from the rest
of collection by only performing reclamation every 𝑁 th collection.
We exclude eclipse, lusearch, pmd, and sunflow because they do
not complete within a timeout of 1 day (for all invocations).

5.2 Results and Analysis
Figure 2 shows the average mutator execution time for the DaCapo
benchmarkswith collections every 8, 16, and 32MB,with each result
normalized to 8MB. Three benchmarks, fop, batik, and jython show
small performance improvements greater than 1% as the collection
period increased from 8MB, which point to frequent collections
degrading performance. The other benchmarks saw little change,
and zxing saw its best performance when collections were frequent.

There are two clear trends: (i) overall, mutator performance is
largely insensitive to collection frequency; and (ii) with one excep-
tion (zxing), in the cases where there are changes, more frequent
collections lead to small slowdowns.

In order to tease apart whether these effects were simply due to
themicroarchitectural displacement caused by a full heap collection,

or due to the more timely reclamation of objects, we conducted two
more experiments. In these experiments we modified the collector
to separate identification, in which the collector traces the heap
to identify live objects from reclamation, in which the collector
sweeps the heap to reclaim unreachable objects, adding them to
free lists. This methodology allows us to separate the microarchitec-
tural displacement caused by the full heap trace performed during
identification, from the effects such as improved locality due to
more or less promptly reusing memory.

In the second experiment, we simply repeated the experiment
illustrated in Figure 2, but only performed reclamation every six-
teenth collection. The results (not shown) were very similar to those
for the first experiment shown in Figure 2.

Figure 3 shows the results of the third experiment, where we per-
formed collections every 8MB but varied the frequency of reclama-
tion. These results show that for fop and batik, and to a lesser extent
jython, the speedups observed in Figure 2 occur here too, indicating
that they were not due to collection frequency but to reclamation
frequency. Interestingly, this shows that for these benchmarks,
there is a small performance advantage in delayed reclamation, and
for the other benchmarks there is no statistically significant change
due to delayed reclamation.

Summarizing, our second study shows that for a mark-sweep collec-
tor based on the mimalloc free-list allocator, when evaluated with
a collection of DaCapo benchmarks, collection frequency does not
appear to have a significant impact on mutator performance in the
range 8MB to 32MB, and for three benchmarks there appears to
be a small mutator performance advantage in delaying reclamation.
Our evaluation with TCMalloc was remarkably similar, revealing
the same lack of sensitivity to GC frequency as we see here for
mimalloc.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

6 MUTATOR PERFORMANCE: GC
PROXIMITY

In our third study, we again examine the claim that garbage col-
lection events negatively and/or positively affect the performance
of the mutator. We do this by applying an entirely new approach.
This evaluation: (i) focuses on the indirect costs of garbage collec-
tion; (ii) uses five garbage collectors with distinct locality patterns
and allocation behaviors; (iii) uses a single widely-used highly–
tuned multithreaded workload comprised of a large number of
small queries; and (iv) evaluates how proximity to a garbage collec-
tion event impacts mutator performance.

6.1 Methodology
Our insight is that we can observe the effect of proximity to garbage
collection on the mutator by using a workload comprised of a large
number of individually measurable events. We can see how a given
event’s proximity to a GC affects its performance. We use the Da-
Capo lusearch benchmark, which issues 512 K search queries in the
Apache Lucene search framework. We control garbage collections
so that they occur at regular intervals, and do so at three distinct
resolutions (10, 100, and 1000 GCs per benchmark iteration). We
then analyze the relationship between each query’s execution time
and its proximity to the most recent collection.

In this evaluation we are not examining the direct effects of
garbage collection on an application (e.g. we explicitly ignore queries
interrupted by a collection), but rather our focus is on the indirect
effects of garbage collection. Intuitively, one might expect that code
that executes soon after a garbage collection will be negatively
affected due to the GC perturbing machine state such as caches and
branch predictors, and perhaps gain some positive effects due to
improved locality among older objects [18] and in the allocator.

We instrument lusearch to gather start and end timestamps for
every query, and we record the start and end of every garbage col-
lection. We perform 35 invocations of the benchmark, gathering the
data from the fifth, warmed up iteration in each case. This produces
approximately 18M timing data points. We analyze the data offline,
calculating the proximity of each query to the preceding collection,
discarding each query that was interrupted by a collection. We then
perform an analysis of the correlation between query performance
and the query’s proximity to the nearest preceding collection.

We repeat this experiment for five simple stop-the-world whole
heap collectors and we configure heap sizes so as to trigger 10, 100
and 1000 collections per benchmark iteration. We use simple whole
heap collectors because we do not want to conflate other concerns
such as write barrier overheads, and we are explicitly not concerned
in this experiment with the cost of the collection itself. By using
canonical collectors rather than more complex ones, we may be
better able to reason about the impact of particular collector types
on mutator performance. These lessons can then be applied to a
variety of concrete collector designs.

6.2 Results and Analysis
Figure 4 shows the results for three temporal resolutions (columns)
and two architectures (rows). The left graphs show results for 1000
forced garbage collections which, given execution times of approxi-
mately 2.5 s and 10 s for the Zen 3 and Skylake respectively, means

that garbage collections are approximately 2.5ms and 10ms apart
respectively, longer for the mark-sweep collectors which are slower.
The middle graphs have 100 forced collections (25ms and 100ms),
and the right graphs have 10 forced collections (250ms and 1 s).

For each line in each graph, we take 35×512K search queries,
and discard those that were interrupted by a collection, sorting
the remainder by the distance from their start to the most recent
garbage collection. We then divide the ordered data left to right
into 1000 groups, each containing roughly 18K queries, and find
the mean execution time for that group. We then normalize these
means to the fastest group from among all three time scales for
that collector, and plot the results. The leftmost group is the 1000
queries closest to a GC, the rightmost is the 1000 queries furthest
from the preceding GC. We repeat this for each garbage collector.
Note that because each collector’s results are normalized separately,
the graphs in Figure 4 do not reveal the relative execution times
between the different GC strategies (which is not our focus).

Figure 4(a) plots results for the Zen 3 with 1000 collections and,
given a total execution time of about 2.5 seconds, the collections are
approximately 2.5ms apart, so we expect the furthest (rightmost)
queries in this graph to start roughly 2.5ms after the prior collection.
Thus the scale of the x-axis in Figure 4(a) is approximately 0–2.5ms.
The average query runs for about 150 𝜇s on the Zen 3, or roughly
1/16 the width of the x-axis in Figure 4(a). Survivor bias appears
to be responsible for the downward spike on the far right. Search
queries naturally have a distribution of execution times. Among
the queries that are close to the next GC, long running ones will
be interrupted by the GC, and are therefore discarded. Those that
appear in the rightmost groups are thus naturally biased toward
the shortest running queries. If this spike were not an observation
artifact, we should expect to see it appear at the 10% and 1% marks
of the graphs to the right which have respectively 10× and 100×
longer observation periods. However, the spike does not appear at
those points, but rather, a similar spike is visible at the far right
of in Figure 4(b) on a much more compressed scale, and likewise
for Figure 4(d) and Figure 4(e). These observations confirm that the
downward spike is an observational artifact, which we can explain
by survival bias.

Putting aside the right-most results, we see in Figure 4(a) a num-
ber of trends. First, for the three collectors that use a bump allocator
(all aside frommark-sweep), the queries are slowest in the tenth per-
centile closest to the preceding collection (left). This suggests that
the microarchitecturally disruptive effect of the collectors degrades
mutator performance for about 200 𝜇s or so after each collection by
5-10% on the Zen 3. By contrast, the two collectors with the free-list
allocators get a brief boost from the collection. Between the 20th
and 80th percentiles (roughly 500 𝜇s to 2ms) we see three different
trends. Non-moving immix and semi-space are stable, while immix
shows a small, steady improvement in performance of about 10%,
while the mark-sweep collectors degrade sharply for a brief time
and then continues to degrade at a modest but steady rate.

Figure 4(d) shows similar trends on the Skylake. The disruptive
effect of the collection is far more pronounced than for the Zen
3, demonstrated by the very large spike at the lowest percentiles
for all five collectors. On the Skylake each query is completing
in approximately the same time as on the Zen 3, approximately
150 𝜇s. Because the machine has one quarter as many hardware



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

0 20 40 60 80 100

Percentile Distance from GC

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(a) Zen 3 1000 GCs (∼2.5ms period)

0 20 40 60 80 100

Percentile Distance from GC

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(b) Zen 3 100 GCs (∼25ms period)

0 20 40 60 80 100

Percentile Distance from GC

1.0

1.2

1.4

1.6

1.8

2.0

2.2

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(c) Zen 3 10 GCs (∼250ms period)

0 20 40 60 80 100

Percentile Distance from GC

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(d) Skylake 1000 GCs (∼10ms period)

0 20 40 60 80 100

Percentile Distance from GC

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(e) Skylake 100 GCs (∼100ms period)

0 20 40 60 80 100

Percentile Distance from GC

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

N
or

m
al

iz
ed

 M
ea

n 
Ex

ec
ut

io
n 

Ti
m

e

semi-space
immix
immix, non-moving
mark-sweep, mi
mark-sweep, tc

(f) Skylake 10 GCs (∼1 s period)

Figure 4: Performance of Lucene queries as a function of proximity to the most recent garbage collection. The three columns
depict three orders ofmagnitude inGC frequencies, and thus three very different temporal resolutions. Each collector’s results
are normalized to the best performing percentile for that collector. Each experiment has 35×512K queries. Queries interrupted
by a GC are discarded. The remainder are sorted by the distance of their start time from the preceding GC. We plot the nor-
malized mean execution time for each percentile (∼18K queries per percentile). Queries closest to the GC are on the left of
each graph, those furthest are on the right. Survivor bias is visible in the rightmost percentiles (long-running queries are
interrupted by the next GC).

threads, the benchmark runs for approximately four times as long.
As a result each query is approximately 1/64 the width of the x-axis
of Figure 4(d). The downward spike due to survivor bias seen in
Figure 4(a) appears here, but is time-compressed by a factor of about
four. Putting aside the results of the furthest and closest queries,
all five collectors show a slow degradation in performance as they
move further from the GC, however, the effect is small, about 5% in
semi-space and barely observable in both mark-sweep collectors.

The flat lines in Figure 4(e) and Figure 4(f) show that at larger
temporal granularities on Skylake proximity to the collection has
very little effect.

Figure 4(b) and Figure 4(c) are similar to their Skylake coun-
terparts with two notable differences. Since the timescale is com-
pressed by a factor of four relative to Skylake, the features at the
limits are more pronounced. Otherwise, the three bump pointer
allocator collectors show a very similar trend, with almost uniform
query performance as the distance from the GC changes. However,
the collectors using TCMalloc and mimalloc free-list allocators re-
spectively show much more interesting and hard-to-explain behav-
ior. Figure 4(b) shows a steady degradation in query performance
with a sharp step at about the 25th percentile. Figure 4(c) shows a
sharp degradation below the 10th percentile, followed by a gradual

improvement and then another sharp degradation around the 60th
percentile. The mark-sweep results are difficult to interpret, but
strikingly similar for both TCMalloc and mimalloc. We suggest two
broad findings: (i) the free-list allocators are more sensitive to prox-
imity to collections, due to the collections’ direct impact on the free
lists; (ii) the impact on free-list allocators is complex and is likely
highly dependent on the particular free list design, the allocation
pattern (w.r.t. size class) of the benchmark, and conspicuously, the
microarchitecture.

Summarizing, this study suggests that: (i) the microarchitectural
disruption due to garbage collection is observable but fleeting on
modern machines, affecting the mutator only very briefly after
the collection; (ii) for the three bump-pointer based collectors we
studied, the impact of proximity to collections is barely observable;
and (iii) for both malloc-based collectors we studied, proximity
to the collection had little impact on the Skylake, but complex
and significant impacts on mutator performance on the Zen 3,
with variations of up to 40%. This study was designed around one
workload. While Lucene is an important widely-used industrial-
strength benchmark, it has distinctive allocation patterns which
will color these results. Applying this methodology to other very
different workloads is an interesting avenue for further work.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

ti
m

e

tc

ql-tc (1 B)

ql-tc (4 KB)

ql-tc (8 KB)

ql-tc (16 KB)

ql-tc (32 KB)

ql-tc (64 KB)

ql-tc (128 KB)

ql-tc (256 KB)

ql-tc (512 KB)

ql-tc (1 MB)

ql-tc (2 MB)

(a) SPEC CPU2006, time (TCMalloc).

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

ti
m

e

tc

ql-tc (1 B)

ql-tc (4 KB)

ql-tc (8 KB)

ql-tc (16 KB)

ql-tc (32 KB)

ql-tc (64 KB)

ql-tc (128 KB)

ql-tc (256 KB)

ql-tc (512 KB)

ql-tc (1 MB)

ql-tc (2 MB)

(b) Mimalloc ‘real’ benchmarks, time (TCMalloc).

Figure 5: Time overheads due to delayed reclamation with the TCMalloc allocator, for delays between 4KB and 2MB, all nor-
malized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3machine. Only six benchmarks
show time overheads of more than 5%: omnetpp, xalancbmk, cfrac, espresso, leanN, and redis.

7 EFFECTS OF DELAYED RECLAMATION
In our final study we examine the claim that delaying reclamation
reduces performance and increases space consumption. Garbage
collection algorithms typically trade immediacy for efficiency, while
manual memory management returns space as soon as the program-
mer’s carefully-placed call to free is executed. This evaluation:
(i) uses a quarantine to delay reclamation in C and C++ work-
loads [1]; (ii) uses three state of the art allocators [15, 22, 23]; and
(iii) measures how delayed reclamation affects time and space perfor-
mance in manually managed languages.

7.1 Methodology
Our methodological insight is that we can model delayed reclama-
tion in an unmanaged setting via a quarantine, a mechanism used
to identify and mitigate use-after-free bugs [1].

We use TCMalloc [15], mimalloc [22], and snmalloc [23], and
add a thread-local quarantine buffer to their implementations of
free. When the program calls free, instead of being freed imme-
diately, the object is added to the quarantine buffer, and a global
atomic variable that tracks the volume of quarantined objects is



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

0.95

1

1.05

1.1

1.15

1.2

1.25

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

m
ax

_r
ss

tc

ql-tc (1 B)

ql-tc (4 KB)

ql-tc (8 KB)

ql-tc (16 KB)

ql-tc (32 KB)

ql-tc (64 KB)

ql-tc (128 KB)

ql-tc (256 KB)

ql-tc (512 KB)

ql-tc (1 MB)

ql-tc (2 MB)

(a) SPEC CPU2006, RSS (TCMalloc).

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

m
ax

_r
ss

tc

ql-tc (1 B)

ql-tc (4 KB)

ql-tc (8 KB)

ql-tc (16 KB)

ql-tc (32 KB)

ql-tc (64 KB)

ql-tc (128 KB)

ql-tc (256 KB)

ql-tc (512 KB)

ql-tc (1 MB)

ql-tc (2 MB)

(b) Mimalloc ‘real’ benchmarks, RSS (TCMalloc).

Figure 6: Space overheads associated with delayed reclamation with the TCMalloc allocator, for delays between 4KB and
2MB, all normalized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3 machine. Most
benchmarks show little space sensitivity, with gobmk, hmmer, omnetpp, cfrac, and espresso as notable outliers.

incremented by the size of the freed object. We declare the quaran-
tine to be full when a specified threshold of quarantined bytes is
reached, and each thread returns their quarantined objects to their
respective free lists. This mechanism emulates the effects of peri-
odic reclamation. We measure the execution time and maximum
RSS of standard benchmarks. Regardless of which threshold we use,
we pre-allocate a fixed-size 2MB quarantine buffer for each thread,
sufficient to accommodate the volume thresholds we evaluate with
the benchmarks we use. The baseline in each of our evaluations
uses the quarantine with a threshold of 1 B which means objects are

freed immediately. Hence, this baseline quantifies the overheads
of incrementing the global atomic variable as well as allocating
and accessing the thread-local quarantine buffer. The quarantine
with no delay introduces an overhead of 0.7% and 6.7% compared
to the unmodified TCMalloc allocator for the SPEC and mimalloc
benchmarks respectively.

Benchmarks. We use the SPEC CPU 2006 benchmarks6 and each
of the ‘real world’ benchmarks used by mimalloc [21, 22].7 We

6We do not have a license to SpecMark 2019 benchmarks used by Leijen et al. [21, 22].
7Git hash 5126dc8.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

evaluated, but don’t include the microbenchmarks used by mimal-
loc, since they don’t contain meaningful computation on which to
evaluate the effects of delayed reclamation.

Among these, leanN is multi-threaded while the remaining mi-
malloc benchmarks and the SPEC CPU benchmarks are single-
threaded. We use the same inputs as those used by the authors [21],
with the exception of z3. We changed the input of z3 from their
small test example, test1 [20], to EntryCP from the z3 public test
suite [28] because with the test1 input, z3 did not perform signif-
icant allocation and freeing. We exclude larson since it is a mi-
crobenchmark which only allocates and deallocates, while barnes
and sed perform no deallocations, so we exclude them. We run each
benchmark 10 times and report the average in order to reduce the
effect of experimental noise in our measurements. For leanN, we
fix the number of threads to be 8 as per the mimalloc authors [21].

Among the SPEC CPU benchmarks, we excluded bzip2, mcf,
sjeng, and libquantum since they perform almost no dynamic mem-
ory management, all perform less than one free per second. By
contrast, omnetpp performs 2M frees per second.

7.2 Results and Analysis
We use TCMalloc [15] as the focus for our analysis here because it
exhibited the most sensitivity and substantially larger overheads.
Results for mimalloc [22] and snmalloc [23] appear in the appendix.

Figure 5 and Figure 6 respectively show the time and space
impact of delayed freeing with TCMalloc for the SPEC CPU and
mimalloc benchmarks, for quarantine sizes ranging from 1 byte to
2MB.

Figure 5(a) and Figure 5(b) reveal an overall trend of time degra-
dation as frees are delayed. For the SPEC benchmarks, there’s a
2.7% slowdown on average when the delay is 2MB, and for the
mimalloc benchmarks it is 9.2%. These averages are driven up by
omnetpp (6.2%), xalancbmk (10.5%), cfrac (26.4%), espresso (10.3%),
leanN (8.2%), and redis (8.6%). The remaining benchmarks show
very little change in execution time. Four of the benchmarks see
worst case slowdowns of 1% or less due to delayed reclamation.
Overall, these results indicate that for some benchmarks delayed
reclamation introduces an observable slowdown, but in many cases
there is none and in only six benchmarks is the worst case more
than 5%.

Figure 7 and Figure 8 show that mimalloc and snmalloc are
substantially less sensitive than TCMalloc with respect to time.
They show averages for SPEC at 2MB of 0.3% and 1.0% respectively
(TCMalloc was 2.7%), and for the mimalloc benchmarks at 2MB of
1.0% and 2.1% respectively (TCMalloc was 9.2%). The worst case
results were similarly less sensitive for these allocators: 5.0% and
5.7% for redis on mimalloc and snmalloc respectively, both with
substantial error bars, while for TCMalloc the worst was 5× greater,
at 26.4% for cfrac.

Figure 6(a) shows that on SPEC, TCMalloc sees similar overheads
for time and space, with an average worst case space overhead
of 6.6% (when the delay is 2MB) and with the highest overhead
being 19.3% for hmmer. Four of the SPEC benchmarks have space
overheads of 4.0% or less. On the mimalloc benchmarks, TCMalloc
shows a more noticeable impact on space (Figure 6(b)). However,
only two benchmarks, cfrac and espresso show substantial change,

1.34× and 2.4× respectively. These benchmarks have very small
heap footprints in absolute terms: 3.5MB and 4.4MB respectively
as compared to 492MB for leanN. So the 2MB delay in reclamation
in this experiment is very substantial for these two benchmarks in
relative terms, explaining their disproportional space overhead.

Figure 9 and Figure 10 show that mimalloc and snmalloc are also
substantially less sensitive than TCMalloc with respect to space
on the SPEC benchmarks, while showing similar sensitivity on the
mimalloc benchmarks. They show averages for SPEC at 2MB of 1.0%
and 2.8% respectively (TCMalloc was 6.6%), and for the mimalloc
benchmarks at 2MB of 27.4% and 28.8% respectively (TCMalloc was
24.7%). Interestingly, on hmmer, mimalloc sees a striking reduction
in space overhead of as much as 17.6% as reclamation is delayed. We
have not established exactly why mimalloc behaves this way, but
believe that it is due to hmmer inducing a fragmentation pathology
that is relieved when reclamation is consolidated into less frequent
episodes.

In summary, this study shows that the overheads induced by delay-
ing reclamation are generally very small, but are also very depen-
dant on the choice of allocator, with TCMalloc being substantially
more sensitive than the other allocators we evaluate. Overall on
the C and C++ benchmarks we evaluate, delayed reclamation has
little impact on time and modest, allocator-specific impact on space,
except in a few cases, notably cfrac (3.5MB) and espresso (4.4MB),
where the reclamation delay (2MB) is a substantial fraction of the
total RSS footprint of the workload.

8 CONCLUSION
The relative cost of garbage collection compared to manual memory
management is a longstanding and often contentious question.
Although there is a large literature comparing amongst garbage
collection algorithms and evaluating specific garbage collection
mechanisms, there are few papers that directly explore how garbage
collection compares to manual memory management.

In this paper we conduct four studies, each using a novel method-
ology to shed different light on the question.We find that: (i) relative
to a baseline approximating manual memory management using
a modern malloc/free library with frequent reclamation, the im-
mix garbage collector has a space overhead of 11-17%, while fully
copying collectors have an overhead of 65-80%; (ii) when using a
mark-sweep collector based on a modern malloc library, the perfor-
mance of the mutator is not very sensitive to delays in reclamation;
(iii) when executing a large number of short queries, the proximity
of those queries to the most recent garbage collection has little
impact for systems that use a bump pointer allocator, except in
the immediate aftermath of the collection, while having complex
and significant microarchitecturally-sensitive impact on a free list
based system; and (iv) delaying reclamation on C and C++ bench-
marks generally results in negligible overheads in time and space
but is allocator-dependent and can be substantial if the delay is a
substantial fraction of the workload’s footprint.

Our hope is that these analyses will help paint a richer picture
of the relationship between manual memory management and
automatic memory management performance, and that these new
methodologies will provide others with new ways in which to
examine the performance of automatic memory management.



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

ACKNOWLEDGMENTS
This material is based upon work supported by the Australian Re-
search Council under award DP190103367. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the
Australian Research Council.

A ADDENDUM TO DELAYED RECLAMATION
This appendix extends Section 7 with results for mimalloc (Figure 7
and Figure 9) and snmalloc (Figure 8 and Figure 10).

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

ti
m

e

mi

ql-mi (1 B)

ql-mi (4 KB)

ql-mi (8 KB)

ql-mi (16 KB)

ql-mi (32 KB)

ql-mi (64 KB)

ql-mi (128 KB)

ql-mi (256 KB)

ql-mi (512 KB)

ql-mi (1 MB)

ql-mi (2 MB)

(a) SPEC CPU2006, time (mimalloc).

0.8

0.85

0.9

0.95

1

1.05

1.1

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

ti
m

e

mi

ql-mi (1 B)

ql-mi (4 KB)

ql-mi (8 KB)

ql-mi (16 KB)

ql-mi (32 KB)

ql-mi (64 KB)

ql-mi (128 KB)

ql-mi (256 KB)

ql-mi (512 KB)

ql-mi (1 MB)

ql-mi (2 MB)

(b) Mimalloc ‘real’ benchmarks, time (mimalloc).

Figure 7: Time overheads due to delayed reclamation with the mimalloc allocator, for delays between 4KB and 2MB, all
normalized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3 machine.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

ti
m

e

sn

ql-sn (1 B)

ql-sn (4 KB)

ql-sn (8 KB)

ql-sn (16 KB)

ql-sn (32 KB)

ql-sn (64 KB)

ql-sn (128 KB)

ql-sn (256 KB)

ql-sn (512 KB)

ql-sn (1 MB)

ql-sn (2 MB)

(a) SPEC CPU2006, time (snmalloc).

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

ti
m

e

sn

ql-sn (1 B)

ql-sn (4 KB)

ql-sn (8 KB)

ql-sn (16 KB)

ql-sn (32 KB)

ql-sn (64 KB)

ql-sn (128 KB)

ql-sn (256 KB)

ql-sn (512 KB)

ql-sn (1 MB)

ql-sn (2 MB)

(b) Mimalloc ‘real’ benchmarks, time (snmalloc).

Figure 8: Time overheads due to delayed reclamation with the snmalloc allocator, for delays between 4KB and 2MB, all nor-
malized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3 machine.



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

0.8

0.85

0.9

0.95

1

1.05

1.1

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

m
ax

_r
ss

mi

ql-mi (1 B)

ql-mi (4 KB)

ql-mi (8 KB)

ql-mi (16 KB)

ql-mi (32 KB)

ql-mi (64 KB)

ql-mi (128 KB)

ql-mi (256 KB)

ql-mi (512 KB)

ql-mi (1 MB)

ql-mi (2 MB)

(a) SPEC CPU2006, RSS (mimalloc).

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

m
ax

_r
ss

mi

ql-mi (1 B)

ql-mi (4 KB)

ql-mi (8 KB)

ql-mi (16 KB)

ql-mi (32 KB)

ql-mi (64 KB)

ql-mi (128 KB)

ql-mi (256 KB)

ql-mi (512 KB)

ql-mi (1 MB)

ql-mi (2 MB)

(b) Mimalloc ‘real’ benchmarks, RSS (mimalloc).

Figure 9: Space overheads associated with delayed reclamation with the mimalloc allocator, for delays between 4KB and 2MB,
all normalized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3 machine.



Better Understanding the Costs and Benefits of Automatic Memory Management MPLR ’22, September 14–15, 2022, Brussels, Belgium

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

400_perlbench

403_gcc
445_gobmk

456_hmmer

464_h264ref

471_omnetpp

473_astar

483_xalancbmk

min max
mean

geomean

m
ax

_r
ss

sn

ql-sn (1 B)

ql-sn (4 KB)

ql-sn (8 KB)

ql-sn (16 KB)

ql-sn (32 KB)

ql-sn (64 KB)

ql-sn (128 KB)

ql-sn (256 KB)

ql-sn (512 KB)

ql-sn (1 MB)

ql-sn (2 MB)

(a) SPEC CPU2006, RSS (snmalloc).

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

cfrac
espresso

gs leanN
redis

z3 min max
mean

geomean

m
ax

_r
ss

sn

ql-sn (1 B)

ql-sn (4 KB)

ql-sn (8 KB)

ql-sn (16 KB)

ql-sn (32 KB)

ql-sn (64 KB)

ql-sn (128 KB)

ql-sn (256 KB)

ql-sn (512 KB)

ql-sn (1 MB)

ql-sn (2 MB)

(b) Mimalloc ‘real’ benchmarks, RSS (snmalloc).

Figure 10: Space overheads associated with delayed reclamationwith the snmalloc allocator, for delays between 4KB and 2MB,
all normalized to the base case with quarantine but no delay (1B). Results were gathered on the Zen 3 machine.



MPLR ’22, September 14–15, 2022, Brussels, Belgium Kunal Sareen and Stephen M. Blackburn

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-in use-after-free

prevention for low-level languages. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 578–591.
https://doi.org/10.1109/SP40000.2020.00058

[2] Bowen Alpern, C. Richard Attanasio, John J. Barton, Anthony Cocchi,
Susan Flynn Hummel, Derek Lieber, Ton Ngo, Mark F. Mergen, Janice C.
Shepherd, and Stephen E. Smith. 1999. Implementing Jalapeño in Java. In
Proceedings of the 1999 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages & Applications, OOPSLA 1999, Denver,
Colorado, USA, November 1-5, 1999, Brent Hailpern, Linda M. Northrop, and
A. Michael Berman (Eds.). ACM, 314–324. https://doi.org/10.1145/320384.320418

[3] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
2000. Hoard: A Scalable Memory Allocator for Multithreaded Applications. In
ASPLOS-IX Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA,
USA, November 12-15, 2000, Larry Rudolph and Anoop Gupta (Eds.). ACM Press,
117–128. https://doi.org/10.1145/378993.379232

[4] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Myths and
realities: the performance impact of garbage collection. In Proceedings of the
International Conference on Measurements and Modeling of Computer Systems,
SIGMETRICS 2004, June 10-14, 2004, New York, NY, USA, Edward G. Coffman Jr.,
Zhen Liu, and Arif Merchant (Eds.). ACM, 25–36.
https://doi.org/10.1145/1005686.1005693

[5] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. 2004. Oil and
Water? High Performance Garbage Collection in Java with MMTk. In 26th
International Conference on Software Engineering (ICSE 2004), 23-28 May 2004,
Edinburgh, United Kingdom, Anthony Finkelstein, Jacky Estublier, and David S.
Rosenblum (Eds.). IEEE Computer Society, 137–146.
https://doi.org/10.1109/ICSE.2004.1317436

[6] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. 2006. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (Portland, OR, USA). ACM Press, New York, NY,
USA, 169–190. https://doi.org/10.1145/1167473.1167488

[7] Stephen M. Blackburn and Kathryn S. McKinley. 2008. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator performance.
In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and
Saman P. Amarasinghe (Eds.). ACM, 22–32.
https://doi.org/10.1145/1375581.1375586

[8] Hans-Juergen Boehm and Mark D. Weiser. 1988. Garbage Collection in an
Uncooperative Environment. Softw. Pract. Exp. 18, 9 (1988), 807–820.
https://doi.org/10.1002/spe.4380180902

[9] Albion M. Butters. 2007. Total Cost of Ownership: A Comparison of C/C++ and
Java. Technical Report. Evans Data Corporation. http://docplayer.net/24861428-
Total-cost-of-ownership-a-comparison-of-c-c-and-java.html

[10] Zixian Cai, Stephen M. Blackburn, Michael D. Bond, and Martin Maas. 2022.
Distilling the Real Cost of Production Garbage Collectors. In International IEEE
Symposium on Performance Analysis of Systems and Software, ISPASS 2022,
Singapore, May 22-24, 2022. IEEE, 46–57.
https://doi.org/10.1109/ISPASS55109.2022.00005

[11] Common Weakness Enumeration. 2021. 2021 CWE Top 25 Most Dangerous
Software Weaknesses.
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

[12] L. Peter Deutsch and Daniel G. Bobrow. 1976. An Efficient, Incremental,
Automatic Garbage Collector. Commun. ACM 19, 9 (1976), 522–526.
https://doi.org/10.1145/360336.360345

[13] Jason Evans. 2006. Jemalloc. In Proceedings of the 2006 BSDCan Conference,
BSDCan’06, May 2006, Ottawa, CA.
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf

[14] Robert Fenichel and Jerome C. Yochelson. 1969. A LISP garbage-collector for
virtual-memory computer systems. Commun. ACM 12, 11 (1969), 611–612.
https://doi.org/10.1145/363269.363280

[15] Google. 2014. tcmalloc. https://github.com/google/tcmalloc
[16] Bruce K. Haddon and William M. Waite. 1967. A Compaction Procedure for

Variable-Length Storage Elements. Comput. J. 10, 2 (1967), 162–165.
https://doi.org/10.1093/comjnl/10.2.162

[17] Matthew Hertz and Emery D. Berger. 2005. Quantifying the performance of
garbage collection vs. explicit memory management. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA, Ralph E. Johnson and Richard P. Gabriel (Eds.). ACM, 313–326.
https://doi.org/10.1145/1094811.1094836

[18] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J. Eliot B. Moss,
Zhenlin Wang, and Perry Cheng. 2004. The garbage collection advantage:
improving program locality. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada, John M.
Vlissides and Douglas C. Schmidt (Eds.). ACM, 69–80.
https://doi.org/10.1145/1028976.1028983

[19] Doug Lea. 1998. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html

[20] Daan Leijen. 2019. test1.smt2. https://github.com/daanx/mimalloc-
bench/blob/8ee8911c02b7ee688d79a8a54effbf20ed52eede/bench/z3/test1.smt2

[21] Daan Leijen. 2021. mimalloc-bench: Suite for benchmarking malloc
implementations. https://github.com/daanx/mimalloc-bench

[22] Daan Leijen, Benjamin Zorn, and Leonardo de Moura. 2019. Mimalloc: Free List
Sharding in Action. In Programming Languages and Systems - 17th Asian
Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11893), Anthony Widjaja Lin
(Ed.). Springer, 244–265. https://doi.org/10.1007/978-3-030-34175-6_13

[23] Paul Liétar, Theodore Butler, Sylvan Clebsch, Sophia Drossopoulou, Juliana
Franco, Matthew J. Parkinson, Alex Shamis, Christoph M. Wintersteiger, and
David Chisnall. 2019. snmalloc: a message passing allocator. In Proceedings of the
2019 ACM SIGPLAN International Symposium on Memory Management, ISMM
2019, Phoenix, AZ, USA, June 23-23, 2019, Jeremy Singer and Harry Xu (Eds.).
ACM, 122–135. https://doi.org/10.1145/3315573.3329980

[24] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM 3, 4 (1960), 184–195.
https://doi.org/10.1145/367177.367199

[25] Paige Reeves. 2021. MallocMS.
https://www.mmtk.io/assets/videos/summer-2021-reeves.mp4

[26] Niklas Röjemo and Colin Runciman. 1996. Lag, Drag, Void and Use - Heap
Profiling and Space-Efficient Compilation Revisited. In Proceedings of the 1996
ACM SIGPLAN International Conference on Functional Programming, ICFP 1996,
Philadelphia, Pennsylvania, USA, May 24-26, 1996, Robert Harper and Richard L.
Wexelblat (Eds.). ACM, 34–41. https://doi.org/10.1145/232627.232633

[27] P. Styger. 1967. LISP 2 Garbage Collector Specifications. Technical Report
TM-3417/500/00 1. System Development Cooperation, Santa Monica, CA.

[28] Z3 Theorem Prover. 2013. EntryCP.smt2. https://github.com/Z3Prover/z3test/
blob/ad655e68bb118d7ba44d504d9b4cd7b5eb57ab70/regressions/verve/
EntryCP.smt2

[29] Benjamin G. Zorn. 1993. The Measured Cost of Conservative Garbage Collection.
Softw. Pract. Exp. 23, 7 (1993), 733–756. https://doi.org/10.1002/spe.4380230704

https://doi.org/10.1109/SP40000.2020.00058
https://doi.org/10.1145/320384.320418
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/1005686.1005693
https://doi.org/10.1109/ICSE.2004.1317436
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1375581.1375586
https://doi.org/10.1002/spe.4380180902
http://docplayer.net/24861428-Total-cost-of-ownership-a-comparison-of-c-c-and-java.html
http://docplayer.net/24861428-Total-cost-of-ownership-a-comparison-of-c-c-and-java.html
https://doi.org/10.1109/ISPASS55109.2022.00005
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://doi.org/10.1145/360336.360345
http://people.freebsd.org/~jasone/jemalloc/bsdcan2006/jemalloc.pdf
https://doi.org/10.1145/363269.363280
https://github.com/google/tcmalloc
https://doi.org/10.1093/comjnl/10.2.162
https://doi.org/10.1145/1094811.1094836
https://doi.org/10.1145/1028976.1028983
http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/daanx/mimalloc-bench/blob/8ee8911c02b7ee688d79a8a54effbf20ed52eede/bench/z3/test1.smt2
https://github.com/daanx/mimalloc-bench/blob/8ee8911c02b7ee688d79a8a54effbf20ed52eede/bench/z3/test1.smt2
https://github.com/daanx/mimalloc-bench
https://doi.org/10.1007/978-3-030-34175-6_13
https://doi.org/10.1145/3315573.3329980
https://doi.org/10.1145/367177.367199
https://www.mmtk.io/assets/videos/summer-2021-reeves.mp4
https://doi.org/10.1145/232627.232633
https://github.com/Z3Prover/z3test/blob/ad655e68bb118d7ba44d504d9b4cd7b5eb57ab70/regressions/verve/EntryCP.smt2
https://github.com/Z3Prover/z3test/blob/ad655e68bb118d7ba44d504d9b4cd7b5eb57ab70/regressions/verve/EntryCP.smt2
https://github.com/Z3Prover/z3test/blob/ad655e68bb118d7ba44d504d9b4cd7b5eb57ab70/regressions/verve/EntryCP.smt2
https://doi.org/10.1002/spe.4380230704

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Methodology
	4 Space Overheads of Garbage Collection
	4.1 Methodology
	4.2 Results and Analysis

	5 Mutator Performance: GC Frequency
	5.1 Methodology
	5.2 Results and Analysis

	6 Mutator Performance: GC Proximity
	6.1 Methodology
	6.2 Results and Analysis

	7 Effects of Delayed Reclamation
	7.1 Methodology
	7.2 Results and Analysis

	8 Conclusion
	Acknowledgments
	A Addendum to Delayed Reclamation
	References

