
Concurrency—The fly in the ointment?

Stephen M. Blackburn and John N. Zigman�

Department of Computer Science
Australian National University
Canberra ACT 0200 Australia

fSteve.Blackburn,John.Zigman g@cs.anu.edu.au

Abstract

Concurrency is a central pillar of the Java programming language, is implicit in the transactional
model of computation adopted by most persistent systems, and has been widely studied in the context
of orthogonal persistence. We argue that despite the substantial literature on concurrency control and
transaction models for orthogonal persistence, a basic question as to the interaction between concur-
rency and orthogonal persistence has yet to be adequately addressed.

The demands of orthogonality appear to place orthogonal persistence at odds with more general
approaches to concurrency control. Given its stated objective of providing a ‘complete’ computational
environment, the future of the orthogonal persistence vision in general, and persistent Java in particu-
lar, will depend, to some extent, on the release of this tension through the realization of new approaches
to the integration of concurrency and persistence.

This paper addresses both strict transactional and more ‘open’ approaches to managing concur-
rency in face of persistence, and examines difficulties with each approach. A simple transaction model
that relieves some of these difficulties is presented and its limitations briefly examined.

1 Introduction
The challenge of building orthogonally persistent systems is highlighted by the ambitious design rules
prescribed by Atkinson and Morrison [1995]—parsimony of concepts; orthogonality of concepts and
completeness of the computational environment. The magnitude of this challenge is reflected by the
absence of any orthogonally persistent system that properly fulfills these design rules. Of particular
note is the failure of orthogonally persistent systems to adequately accommodate concurrency. This is
made conspicuous by the sophistication of modern database systems and programming languages with
respect to concurrency, because it is database systems and programming languages that orthogonal
persistence brings together.

The role of concurrency as part of any computational environment is well established. Concurrency
facilitates speedup by hiding latencies; is fundamental to scaleup (as product of distribution); and is
intrinsic to the semantics of cooperative computations. Inadequate support for concurrency therefore
constitutes a clear violation of the third of the above design rules: ‘completeness of the computational
environment’. The importance of the orthogonal persistence research community resolving this inade-
quate support for concurrency is therefore quite clear.

The key focus of this paper is identifying the problems that arise from the intermix of persistence
and concurrency, and establishing why many of these problems are exacerbated by the orthogonality of
persistence. Both strict transactional and more ‘open’ approaches to managing concurrency in the face
of persistence are addressed, and difficulties with each approach are examined. A simple transaction
model that relieves some of these difficulties is then presented and its limitations briefly examined.

Before addressing the problems that arise from the intermix of persistence and concurrency, we will
briefly review persistence and concurrency in the following sections.

�The authors wish to acknowledge that this work was carried out within the Cooperative Research Center for Advanced
Computational Systems established under the Australian Government’s Cooperative Research Centers Program.

1

1.1 Persistence
The problem of managing data that outlives computations that operate over it is significant in both the-
oretical and practical dimensions. The binding of short-lived computations to long-lived persistent data
raises fundamental questions about identity and type. On the other hand, a range of significant engi-
neering issues are raised by the problem of efficient and coherent movement of data between volatile
and stable storage. Among the various approaches to persistence, database systems, database program-
ming languages, and orthogonally persistent systems are prominent. Each of these are briefly characterized
below.

Database Systems The database field’s approach to persistence has, since the early 70s, been domi-
nated by the relational model [Codd 1970], in which the basis for data storage and management is the
mathematical concept of relations. That the database industry is now worth around $US10 billion an-
nually and is growing at about 35% p.a. [Silberschatz and Zdonic 1996] is evidence that the relational
model has served it very well. However, there exists an enormous and rapidly growing volume of
data in need of management to which the relational model is ill-suited. The database community re-
sponded to this need in the 80’s and 90’s with a new data model based on object-oriented programming
principles—a response that led to the development of object-oriented database management systems
(ODMS). However, the success of the ODMS push has been equivocal [Carey and DeWitt 1996]. More
recently a hybrid of the two approaches has emerged. The object-relational model adds object-oriented
features such as inheritance, complex object support, and an extensible type system to the relational
data model. Current expectations among some in the database community are that the object-relational
model is set to become ‘the next great wave’ in the database world [Stonebraker and Moore 1996].

Database Programming Languages Since the early days of database research, attempts have been
made to reconcile the divergent programming language and database paradigms. One approach has
been to try to integrate database functionality into programming languages, either by adding to existing
languages or by designing new languages with database functionality. The product of such marriages,
which, for want of a better term will be referred to here as database programming languages (DBPLs), is
something that provides programmers with a more integrated approach to persistent data, but typically
does so at the cost of data type orthogonality (only some types can be made persistent) and/or persis-
tence identification (the persistence of an object is not defined in terms of reachability—leading to the
problem of dangling pointers) [Atkinson and Morrison 1995].

Orthogonal Persistence The third member of the persistence family is orthogonal persistence. Orthog-
onally persistent systems are distinguished by an orthogonality between data use and data persistence.
This orthogonality comes as the product of the application of the following principles of persistence
[Atkinson and Morrison 1995]:

Persistence Independence The form of a program is independent of the longevity of the data which it
manipulates.

Data Type Orthogonality All data types should be allowed the full range of persistence, irrespective of
their type.

Persistence Identification The choice of how to identify and provide persistent objects is orthogonal to
the universe of discourse of the system.

Some of the challenges that confront the designer of an orthogonally persistent programming lan-
guage include the unification of type systems and data models, the development of mechanisms for
binding to persistent data, and dealing with system evolution. The efficient engineering of orthogonally
persistent languages raises a separate set of challenges, including: transparent and efficient movement
of data between stable media and memory; efficient implementation of persistence by reachability; and
efficient implementation of flexible recovery and concurrency control with respect to persistent data.

1.2 Concurrency
The study of interacting, concurrently executing computations remains fundamental to computer sci-
ence, intersecting with and impacting upon a diverse range of fields within the discipline. Key issues
faced by those researching concurrency relate to control over the interactions between concurrently exe-
cuting computations, and efficient and correct facilitation of concurrent computation through provision

2

of appropriate resources. The first of these issues leads to the development of mechanisms by which inter-
actions can be conducted in a meaningful (as opposed to haphazard or chaotic) way. The second relates
particularly to the management of shared resources.

The first key issue, the control of interactions between concurrent computations, has traditionally
been approached very differently by the database and programming language communities. On one
hand, the database community has tended to focus on what could be termed ‘throughput’ solutions,
where concurrency is primarily a means for speeding up the processing of otherwise serialized, inde-
pendent computations. The focus has therefore been on controlling interactions between concurrent
computations so as to facilitate concurrent access to resources while maintaining the appearance of se-
rializable independence and isolation. On the other hand, the programming language community used
concurrency to address a broader set of problems and has included more strongly a role for concurrency
as a means of improving the responsiveness of logically unified, concurrent computation. A product of
the view of concurrency that has tended to dominate in the database community is the prominence of
the transactional computational framework, which emphasizes atomicity and isolation.

Concurrent Programming Models A range of programming constructs have been developed to fa-
cilitate coordination between cooperating concurrent processes. Included among these are constructs
such as monitors, semaphores, and mutexes, which are used to control interactions between computations
through shared values. Mechanisms such as remote procedure call (RPC) and message passing facilitate
interactions between computations in the absence of shared values.

Transactions Transactions have been and continue to be the mainstay of the database community.
Given the (simplistic) view of concurrency as being a means of speeding up the processing of otherwise
serialized independent computations, it is natural that serializability and isolation are the key properties,
from a concurrency standpoint, of (simple) transactions. Härder and Reuter [1983] characterized the
most fundamental transactional model in terms of ACID properties—atomicity, consistency, isolation,
and durability.

Atomicity is a powerful device for altering the granularity of interaction. In the absence of atomic-
ity, the maintenance of coherency between concurrent computations requires continuous fine-grained
interaction. With atomicity, coherency checks need in principle only occur at the transactional grain
(temporally and morphologically). Atomicity also facilitates optimistic computation. Optimism is a
powerful computational device—amongst other things it is a means of combating latency.

To the extent that isolation is desirable in a concurrent system, the ACID transaction model has
served the database community well. However, such an approach is often too limiting. For example,
long lived transactions, intra-transaction parallelism, and hierarchical transactional relationships are all
curtailed by the rigidity of the ACID model [Elmagarmid 1992]. The database community has responded
to this inflexibility with a range of transaction models that selectively break the ACID properties [Moss
1981; Elmagarmid 1992; Anfindsen 1997].

Intra-transactional concurrency may arise either as a product of a single transaction being distributed
across multiple processes/processors, or through the use of an intra-process concurrency mechanism
such as threads. By allowing concurrent intra-transactional computations to be isolated from each other
by means of ACI (non-durable) sub-transactions, advanced transaction models provide one approach
to intra-transactional concurrency. Alternatively, ‘cooperative’ programming language constructs such
as monitors, semaphores and mutexes can be used, giving a quite different intra-transactional program-
ming model.

2 Integrating Concurrency and Persistence
The task of efficiently and coherently moving data between volatile and stable storage, which is central
to persistence, is complicated by concurrency. This is manifest in two distinct domains: concurrency
between data movement and computation over the volatile data; and concurrency between separate
computations operating over the volatile data. In the case of the former, the possibility exists of the
coherency of the stable image of the data being corrupted by updates made by the computation while
the transfer is underway. In the case of the latter the consistency of the volatile image of the data is
a function of all of the concurrent computations, so there exists a need for coordination between the
various computations in order for a consistent image of the volatile data to be determined for capture
on stable storage.

3

Given the centrality of concurrency as a computational tool, persistent systems must provide effec-
tive means for dealing with the complexity that arises from the intermix of concurrency and persistence.
The many approaches that have been taken in addressing this issue can be classified in terms of those
that have the requirement that all computation over persistent data occur within a transactional context,
and those that do not have this constraint. We will refer to these as ‘transactional’ and ‘open’ approaches
respectively. In the following sections we will outline these alternatives, and will argue that neither has
addressed the concurrency/persistence issue adequately to provide a general solution for orthogonal
persistence.

2.1 Transactional Approaches
The bulk of the literature on transactions and transaction models has been driven by the problems of
persistence and concurrency, so it should be no surprise that transactions provide a good solution to
these problems. The key to this solution is the use of atomicity and serializability with respect to (con-
current) computations over persistent data so as to guarantee the consistency of the persistent image.
All computations over persistent data must occur within a transactional context, and their results are
only made visible outside of that transactional scope upon termination and only if the computation
can be serialized with respect to prior ‘successful’ computations over the persistent data. An unseri-
alizable computation is ‘aborted’, any changes made by it being discarded. Transactions may execute
concurrently as long as their effects are serializable—true inter-transactional concurrency is thus only
seen between independent computations.

While the basic transactional model described above is somewhat restrictive, various ‘advanced’
transaction models have been developed that allow controlled relaxation of various constraints while
maintaining guarantees about the coherency of persistent data, thereby providing much greater oppor-
tunities for concurrency without sacrificing coherency (see section 1.2).

The semantic impact of atomicity and serializability along with the requirement that all computation
over persistent data occur within a transactional context, has meant that any use of transactions within a
programming language has tended to impinge heavily on the underlying programming model1. On the
other hand isolation, which is implicit in the atomicity property of transactions, allows the programmer
to write transactional code in the knowledge that it will be isolated from the effects of any concur-
rent computation, thereby relieving the programmer of the need to explicitly account for concurrency
of computation. The almost universal adoption of the transactional model for database systems and
database programming languages suggests that these tradeoffs with respect to programmability have
been accepted as reasonable in those domains.

By contrast, the transactional model has not been widely adopted within the orthogonal persis-
tence community, most orthogonally persistent systems opting instead for ‘open’ approaches based on
checkpointing and explicit synchronization (see section 2.2). The best known counter example is PJama
[Atkinson et al. 1996], which embodies a sophisticated transaction model [Daynès et al. 1997].2

2.1.1 Transactions and Orthogonality of Persistence

Perhaps the reason for this aversion to transactional approaches within the orthogonal persistence com-
munity stems from the challenge to orthogonality inherent in the transactional model. Implicit to the
transactional model is a notion of two worlds, one a world of persistent data, and the other an (external,
non-persistent) world that issues transactions over the first. This dichotomy between persistent and
external worlds is manifest in most database systems in the distinction between client application com-
putation and embedded database computation, the latter typically taking the form of queries which are
dispatched to a database server.

This duality is a fundamental product of the impossibility of the basic transactional construct—the
ACID transaction—being invoked from within (atomic) transactions, and more particularly, the inca-
pacity for the ACID transaction to be the basis for its own (nested) invocation. The property of atomicity
ensures that any transaction (ACID or not) invoked within a transaction will, by definition, be subject
to the atomicity of its parent. The durability (irrevocable stability) of any child transaction is thus at

1The proposed transactional framework for PJama[Atkinson et al. 1996] introduces the concept of a TransactionShell class,
which allows ‘runnable’ objects to be invoked transactionally by simply passing them as an argument to a TransactionShell
instance. The result is what Daynès, Atkinson, and Valduriez [1997] describe as a high degree of ‘transactional transparency’.

2It is important to distinguish between PJama as presented in [Atkinson et al. 1996; Daynès et al. 1997], and PJama as currently
implemented (versions � 0.4), which provides only a global stabilization method (stabilizeAll()) and so fits better in the
‘open’ approaches category.

4

odds with the atomicity of the parent. Consequently, ACID transactions must be invoked not within
transactions, but from within some external non-transactional computation.

The premise that all computation over persistent data occur within a transactional context and the
need for a non-transactional context for the invocation of transactions leaves few alternatives for trans-
actional orthogonally persistent systems.

One approach is to use computation over non-persistent data as the platform for invoking trans-
actions over persistent data, the non-persistent invocation environment remaining non-transactional.
However, such a demarcation of persistent and non-persistent computation is in clear violation of the
principle of persistence independence (see section 1.1). Furthermore, we do not believe it would be pos-
sible to prevent leakage of references to persistent data into the non-transactional computation without
changes to the Java language.

The alternative is that all computation occur within a transactional context, the operating system
providing the non-transactional invocation environment. This analysis, when considered in light of
the abovementioned restrictions of ACID transactions, gives rise to the following conundrum for those
wishing to develop transactional orthogonally persistent systems:

The principle of persistence independence and the impossibility of invoking the basic transac-
tional construct—the ACID transaction—from within transactions appears to bind the gran-
ularity of transactions to process invocations. However, such a limitation would severely
curtail opportunities for concurrency and so is clearly at odds with a key design objective
for orthogonally persistent systems, ‘completeness of the computational environment’ [Atkinson
and Morrison 1995]. Transaction based concurrency control and orthogonal persistence thus
appear to be at odds.

This conundrum appears not to have been addressed by proponents of transactional orthogonally
persistent systems (other than by disregarding the concurrency issue and opting for the single transac-
tion per invocation approach). The authors know of three proposals for orthogonally persistent systems
that aim to support multiple transactions per invocation. The first, from the University of Massachusetts,
is not confronted by the problem because it is essentially the single transaction per-process approach
with an optimization whereby the cost of process invocation is saved through the reuse of process re-
sources for the execution of a subsequent (identical) transaction. Although this model is not general, it
is likely to find applications in the commercially important domain of (bulk) ‘transaction processing’.
The second is proposed by Garthwaite and Nettles [1996], who reported that they had not yet begun im-
plementing ‘multiple top level transactions’ and omitted any discussion of the design for such a facility.
The third system is PJama [Atkinson et al. 1996], and although a sophisticated transactional environ-
ment has been proposed [Daynès et al. 1997], there is no evidence that the above conundrum has been
addressed in either [Atkinson et al. 1996] or [Daynès et al. 1997], although the conundrum is clearly
present, as ‘all code must be run within the scope of a transaction’ [Daynès et al. 1997] and the objective
of supporting multiple transactions per program invocation is fundamental to the PJama design.

2.2 ‘Open’ Approaches
While the transactional model was developed with the express purpose of managing persistent data
in the face of concurrency and has become the dominant approach in database systems, more open
approaches with a closer affinity to concurrent programming models have a strong appeal in the context
of orthogonal persistence, where persistence is an implicit facet of a programming language rather than
explicit adjunct. Prominent examples of the use of open approaches include the Napier88 persistent
programming language [Morrison et al. 1996] and the Grasshopper persistent operating system [Dearle
et al. 1994].

The key challenge for proponents of open models lies in providing practical and efficient means for
identifying consistent cuts through computation in order to facilitate coherent stabilization of data. The
problem of identifying consistent cuts has been the focus of considerable attention in the distributed
systems community, and for which general solutions are difficult [Schwarz and Mattern 1994].

Of the solutions available, the most simple is to provide a global stabilization mechanism and
leave the problem of synchronization to the programmer. This approach is used in implementations
of Napier88 [Morrison et al. 1996], Tycoon [Matthes et al. 1995], and current implementations of PJama
[Atkinson et al. 1996]3. While it is quite adequate for persistent applications such as those that require

3See footnote 2.

5

only coarse-grained stabilization guarantees, the complexity of synchronization and the global scope of
stabilization make it an inappropriate choice for many applications.

A more refined approach is used in Grasshopper [Jalili and Henskens 1995], where causality depen-
dence is used to minimize the effects of synchronous stabilization—only those computations and data
which are causally interdependent are checkpointed synchronously, thus bounding the temporal and
morphological scope of the checkpoint operation. Dearle and Hulse [1995] build upon this approach
by using timestamps to facilitate an ‘optimistic’ causal dependency checkpoint scheme that does not
require the synchronization of all interdependent computations. However, this approach depends on
the concurrent processes taking their checkpoints at times that can provide consistent cuts—it will only
find consistent cuts, not enforce them [Hulse 1998]. It is therefore necessary for the programmer or
some other agent, such as an operating system daemon, to ensure that checkpoints are taken in such
a fashion as to guarantee consistent cuts and therefore guarantee recoverability. Both approaches are
implemented within the operating system kernel and are page-grained and therefore subject to various
‘phantom’ effects that are the product of morphological grain mismatch.

Stemple and Morrison [1992] foreshadow what is perhaps the most general and flexible ‘open’ ap-
proach, the communicating actions control scheme (CACS). CACS is a method for specifying systems of
concurrency control that allows multiple models, including transactional models, to be specified. Stem-
ple and Morrison [1992] do not address the issue of how CACS can, in general, be used to provide users
with efficient and practical means of identifying consistent cuts through computation for the purposes
of coherent stabilization. In the absence of such a capability or reports of implementation experience
with CACS, it is hard to see CACS as a solution in itself to the problems that arise from the intermix of
persistence and concurrency.

2.3 Persistence and Concurrency: Conclusions
It is clear that unlike cousins in the database and database programming language domains, orthogonal
persistence research has struggled to integrate persistence and concurrency.

Transactional solutions appear to be limited by the conundrum resulting from the requirement that
computation only occur within (ACID) transactional contexts and the impossibility of invoking ACID
transactions from within a transaction. This appears to severely curtail the possibilities for concurrency
in transactional persistent computation and so limits the generality of any such approach to orthogonal
persistence.

Despite the attraction of approaches that do not impose the rigidity of the transactional model, there
is yet to be published an account of an implemented system that provides an efficient framework for ex-
ploiting the flexibility of the ‘open’ approach while offering a sufficiently general solution to the problem
of providing consistent stabilization of data in the face of concurrent computation.

Although these analyses of the two major approaches to dealing with persistence and concurrency
suggest a rather bleak outlook for orthogonal persistence with respect to concurrency, the following
section outlines a transaction model that, although not providing an ‘ultimate’ solution, addresses the
pertinent issues in the transactional domain, and therefore provides a way forward.

3 A workable model
The most straightforward response to the problem of providing a control environment for the initi-
ation of (ACID) transactions, where all computation in that control environment is itself contained
within a transactional context, is to allow new ACID transactions to be spawned at the point of ter-
mination of another ACID transaction. The non-transactional ‘glue’ that launches new transactions
could, in such a solution, be captured within an atomic call to CommitAndSpawn() and the require-
ment that all user computation occurs within a transactional context would thus be met. Such a
CommitAndSpawn() call could take an arbitrary number of new transactions as arguments and be
matched by an AbortAndSpawn() call for user-initiated aborts.

Inter-transactional isolation induces a dislocation of control flow which is at odds with familiar pro-
gramming language semantics. Thus a simple linkage of an ad hoc series of transactions by such calls
would not in general lead to a particularly usable programming model. However, by combining the
CommitAndSpawn() mechanism with the chain transaction model [Gray and Reuter 1993]4, more ele-

4The ‘chain transaction’ presented by Gray and Reuter [1993] and referred to here is quite distinct from the ‘chain transaction’
described by Chrysanthis and Ramamritham [1994] as a special case of the joint transaction model. The latter does not give each
transaction in the chain ACID properties, which is important to our model.

6

gant solutions begin to emerge.
The chain transaction model allows a series of transactions to be ‘chained’ together, the environment

held by each transaction passed on to its successor along with any locks held. Modeling a (long) compu-
tation as a chain transaction is thus similar to modeling it as a single ACID transaction with checkpoints.
Both have continuity and a relatively fine-grained recovery capacity, but they are distinguished by the
former being composed of N discrete atomic parts in contrast to the latter’s complete atomicity. Conse-
quently the chained transaction foregoes rollback capacity and atomicity of the whole, but opens up the
possibilities for more fine-grained concurrency and the possibility of invoking new transactions at each
of the ‘windows’ delivered by CommitAndSpawn() .

Within the broad family of chain transactions, concurrency opportunities can be traded off against
programmability. At one extreme, strict two-phase locking can be maintained across the life of a chain of
transactions—thus guaranteeing read-write semantics with respect to all operations within the scope of
the chain. Locking conflicts can be resolved in favor of chain transactions, ensuring that no chain is bro-
ken for the sake of a non-chained transaction. With such a model, the chain transaction approaches the
behavior of a single ACID transaction with checkpoints. At the other extreme, all locks could dropped
at each chaining point, forsaking read write semantics within the chain for increased concurrency op-
portunities.

The combination of CommitAndSpawn() with the chain transaction model offers a workable solu-
tion to the problem at hand. The chain and spawn transaction model trivially extends the chain model
[Gray and Reuter 1993] with a ChainAndSpawn() construct that replaces the Commit() implicit in
ChainWork with CommitAndSpawn() .

public static void main(String[] args) f
// implicit tx begin
. . .
TXRequest ra = null;
while((rq = nextRequest()) != null) f

switch (rq.rid) f
case TXRequest.DEPOSIT:

tx.start(new Deposit(rq));
tx.claim();
break;

case TXRequest.WITHDRAWAL:
tx.start(new Withdrawal(rq));
tx.claim();
break;

case TXRequest.BALANCE:
tx.start(new Balance(rq));
tx.claim();
break;

g
g
. . .
// implicit tx commit

g

Figure 1: The invocation of (ACID) transactions from within the program main().

The chain and spawn transaction model should fit well into the concurrency control framework for
PJama proposed by Daynès et al. [1997]5. This is illustrated by the simple example in figure 1, which
places the aforementioned conundrum in the PJama context. The control code that comprises the main
program must exist within a transaction, and yet each of the transactions to be invoked by the control
code are classic examples of transactions that must be ACID. If the tx object were of a chain transaction
type, then each tx.start() would in fact be a ChainAndSpawn() , the new transaction being invoked
and the control computation being broken up into many small ACID transactions—one for each loop

5In keeping with the framework outlined by Daynès et al. [1997], when applying the chain and spawn model to Java, we
assume that transactions are Java objects and are composed with Java code via runnable objects.

7

iteration. If two phase locking were ensured across the transactions composing the chain, normal read
write semantics would be preserved throughout the execution of the outer loop. If, as in the above
example, the control computation is primarily over non-persistent data, the cost of the Commit , Begin
pair implicit in each ChainAndSpawn() will be small.

3.1 Limitations of the Chain and Spawn Model
The ‘chain and spawn’ transaction model provides a workable solution to the problem at hand. Although
the example in figure 1 suggests that via the PJama transaction framework ‘chain and spawn’ transac-
tions can provide a syntacticly transparent solution, in fact the semantic impact on the ‘control code’ is
significant. The basis for decomposing the control computation into multiple transactions is imposed by
the placement of ChainAndSpawn() calls, rather than being derived from the natural semantics of the
computation. The simplicity of the example given renders this imposition barely noticeable, however
if more general examples of control computation are considered, the potential for difficulty should be
clear. The objective of transaction independence [Daynès et al. 1997] is therefore met syntactically, but
perhaps not semantically.

4 Conclusions
Concurrency is a fundamental computational tool, it is central to the Java programming language, and
it is implicit to the transactional model of computation that underpins most persistent systems. Yet de-
spite the sophistication of modern database systems and programming languages with respect to con-
currency, orthogonally persistent systems, which bring together database and programming language
principles, are underdeveloped in this respect. This underdevelopment can be explained in part by
the problem of the intermix of concurrency and persistence, which is largely avoided by programming
languages through the absence of persistence mechanisms, and is limited in database systems by the
relatively restrictive notions of concurrency and persistence they embody.

The requirement that all computation over persistent data occur within a transactional context and
the impossibility of invoking ACID transactions from within transactions produces a conundrum for
those wishing to develop transactional orthogonally persistent systems (where all computation may, by
definition, be over persistent data).

On the other hand, allowing computation outside of any transactional context introduces the chal-
lenge of providing practical and efficient means of identifying consistent cuts through concurrent com-
putation in order to facilitate coherent stabilization of data. The absence of any published account of
orthogonally persistent systems that have provided an efficient and general solution to the problem
through either transactional or ‘open’ approaches suggests problems for the future of orthogonal per-
sistence as a platform for general computation.

Having identified a stumbling block for the development of generalized concurrency support in
orthogonally persistent systems, we have outlined commit and spawn as a simple means of unlocking the
conundrum facing the transactional approach to the problem. While on its own commit and spawn does
not deliver a particularly usable programming model, its combination with the chain transaction model
[Gray and Reuter 1993] leads to the chain and spawn transaction model, which facilitates the maintenance
of control-flow across ACID transactions and so delivers a workable model. This solution, despite its
limitations, indicates that the problem is not insoluble, and therefore provides some hope for a future,
more general, resolution of this quite fundamental problem.

Acknowledgements
The authors wish to thank Robin Stanton, Graham Kirby, Ron Morrison, and David Sitsky for helpful
suggestions and comments on this work.

Bibliography
ANFINDSEN, O. J. 1997. Apotram - an Application-Oriented Transation Model. PhD thesis, University of

Oslo. Available online at: http://www.fou.telenor.no/apotram .

ATKINSON, M. P., DAYNÈS, L., JORDAN, M. J., PRINTEZIS, T., AND SPENCE, S. 1996. An orthogo-
nally persistent java. SIGMOD Record 25, 4 (Dec.), 86–75.

8

ATKINSON, M. P. AND MORRISON, R. 1995. Orthogonally persistent systems. The VLDB Journal 4, 3
(July), 319–402.

CAREY, M. J. AND DEWITT, D. J. 1996. Of objects and databases: A decade of turmoil. In T. M.
VIJAYARAMAN, A. P. BUCHMANN, C. MOHAN, AND N. L. SARDA Eds., VLDB’96, Proceedings of the
22th International Conference on Very Large Data Bases (Mumbai (Bombay), India, Sept. 3–6 1996), pp.
3–14. Morgan Kaufmann.

CHRYSANTHIS, P. AND RAMAMRITHAM, K. 1994. Synthesis of extended transaction models using
ACTA. ACM Transactions on Database Systems 19, 3 (Sept.), 450–491.

CODD, E. F. 1970. A relational model for large shared databanks. Communications of the ACM 13, 6
(June), 377–387.

DAYNÈS, L., ATKINSON, M. P., AND VALDURIEZ, P. 1997. Customizable concurrency control for
Persistent Java. In S. JAJODIA AND L. KERSCHBER Eds., Advanced Transaction Models and Architectures,
Chapter 7. Kluwer.

DEARLE, A., DI BONA, R., FARROW, J., HENSKENS, F., LINDSTRÖM, A., ROSENBERG, J., AND
VAUGHAN, F. 1994. Grasshopper: An orthogonally persistent operating system. Computing Sys-
tems 7, 3 (Summer), 289–312.

DEARLE, A. AND HULSE, D. 1995. On page-based optimistic process checkpointing. In Proceedings of
the Fourth International Workshop on Object Orientation in Operating Systems (Lund, Sweden, Aug. 14–15
1995), pp. 24–32. IEEE.

ELMAGARMID, A. K. Ed. 1992. Database Transaction Models for Advanced Applications. Morgan Kauf-
mann series in Data Management Systems. Morgan Kaufmann, San Mateo, CA, U.S.A.

GARTHWAITE, A. AND NETTLES, S. 1996. Transactions for Java. In M. JORDAN AND M. ATKINSON
Eds., First International Workshop on Persistence and Java (Drymen, Scotland, Sept. 16–18 1996).

GRAY, J. AND REUTER, A. 1993. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
San Mateo.

HÄRDER, T. AND REUTER, A. 1983. Principles of transaction-oriented database recovery. ACM Com-
puting Surveys 15, 4 (Dec.), 287–317.

HULSE, D. 1998. Store Architecture in a Persistent Operating System. PhD thesis, University of Adelaide.

JALILI, R. AND HENSKENS, F. 1995. Using directed graphs to describe entity dependency in stable
distributed persistent stores. In H. EL-REWINI AND B. D. SHRIVER Eds., Proceedings of the 28th Hawaii
International Conference on Systems Sciences, Volume 2 (Hawaii, U.S.A., Jan. 3–6 1995), pp. 665–674.
IEEE Computer Society Press.

MATTHES, F., SCHRÖDER, G., AND SCHMIDT, J. 1995. Tycoon: A scalable and interoperable persis-
tent system environment. In M. ATKINSON Ed., Fully Integrated Data Environments. Springer-Verlag.

MORRISON, R., BROWN, A. L., CONNOR, R. C. H., CUTTS, Q. I., DEARLE, A., KIRBY, G. N. C., AND
MUNRO, D. S. 1996. The Napier88 reference manual (Release 2.2.1). Technical report, University
of St Andrews. Available online at: http://www-ppg.dcs.st-andrews.ac.uk/Publications/ .

MOSS, J. E. B. 1981. Nested Transactions: An Approach to Reliable Distributed Computing. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

SCHWARZ, R. AND MATTERN, F. 1994. Detecting causal relationships in distributed computations:
In search of the Holy Grail. Distributed Computing 7, 3, 149–174.

SILBERSCHATZ, A. AND ZDONIC, S. 1996. Strategic directions in database systems—breaking out of
the box. ACM Computing Surveys 28, 4 (Dec.), 764–778.

STEMPLE, D. AND MORRISON, R. 1992. Specifying flexible concurrency control schemes: An abstract
operational approach. In 15th Australian Computer Science Conference (Hobart, Australia, Jan. 1992), pp.
873–891.

STONEBRAKER, M. AND MOORE, D. 1996. Object-Relational DBMSs : The Next Great Wave. Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann.

9

