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Abstract
Write barriers are a fundamental mechanism that most pro-
duction garbage collection algorithms depend on. They in-
form the collector of mutations to the object graph, enabling
partial heap collections, concurrent collection, and reference
counting. While in principle, write barriers remember only
the pointers within the object graph that were changed and
do so just once, widely-used write barriers are less precise,
sacrificing temporal and/or spatial precision to performance.
The idea of precisely remembering just the pointers that
were changed is not new, however implementing perfor-
mant field-precise barriers has proved elusive. We describe a
technique for efficiently implementing field-logging barriers.
We implement a number of barriers and evaluate them on a
range of x86 hardware. A generational field-logging barrier
performs with 0.1% to 1% mutator overhead compared to
a highly tuned object-logging barrier, while a preliminary
implementation of a reference counting field-logging bar-
rier performs with around 1% to 2% overhead compared to
a highly tuned object-logging reference counting barrier.
These results suggest that garbage collection algorithms that
require the precision of exactly remembering field muta-
tions without sacrificing performance may now be possible,
adding a new mechanism to the design toolkit available to
garbage collection researchers.

CCSConcepts • Software and its engineering→Garbage
collection; Runtime environments.
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1 Introduction
Write barriers are small code fragments that mediate run-
time stores to memory, allowing a garbage collector to be
informed of changes to the heap made by the mutator. They
have thus become an essential part of most modern garbage
collector implementations.
One motivation for write barriers is that because tracing

collectors depend on global knowledge to determine live-
ness, unless informed of changes made to the heap by the
mutator, they must perform a trace of the entire heap before
they can collect any garbage [10, 16, 23]. Such algorithms
are non-performant and are therefore not widely used. On
the other hand, a write barrier allows generational collectors
to preferentially collect just recently allocated objects by
informing the collector of new objects reachable from old
objects by remembering when the mutator creates a pointer
from an old object to a new object [22, 28].Write barriers also
allow reference counting collectors to continuously track the
creation and removal of pointers to objects [12] and concur-
rent collectors to ensure correctness while they concurrently
collect the heap [15, 26].

Widely-used write barriers are spatially and/or temporally
imprecise. Such imprecision is unhelpful. A barrier that only
reports that ‘something’ was changed ‘some time’ would be
of little use. Conversely, a barrier that reports precisely what
reference changed at exactly the first time it was changed
would be ideal. However in systems engineering, the goals
of precision and performance are generally in tension, and
this holds true in the design of barriers. For example, a card
marking barrier [30] will imprecisely mark as dirty a 2n-byte
region of memory containing the pointer field updated by
the mutator. The collector must subsequently scan the dirty
regions of memory to discover relevant pointer/s within
them. Similarly, an object-remembering barrier [2, 6] will
imprecisely remember an object in which a pointer was up-
dated, and the collector must subsequently scan the object to
discover the relevant pointer/s within it. Both are spatially
imprecise, requiring the collector to later refine the informa-
tion. On the other hand, a traditional boundary barrier [6]
will remember the address of an updated pointer field, but
may remember the same field many times, so it is temporally
imprecise. Both the card-marking and object-marking bar-
riers avoid duplicates by setting a remembered bit/byte. In
the case of the card marking, a byte is unconditionally set by
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the write barrier. Subsequently re-setting the byte adds no
further work to the collector. On the other hand, an object-
remembering barrier conditionally sets a bit in the object’s
header, only remembering the object if it has not already
done so since the last collection. The challenge addressed
by this paper is to be able to remember with temporal and
spatial precision: remembering a mutated field only the first
time it is changed, which implies a check against a per-field
remembered bit.

Levanoni and Petrank [21] raised the possibility of a field-
logging barrier. They described a coalescing reference count-
ing barrier that worked by remembering only the first change
to a given pointer in a given mutator epoch, whereas previ-
ous reference counting algorithms generated an increment
and decrement operation for every pointer update. How-
ever, although the algoritm was described abstractly in terms
of field-logging, in practice Levanoni and Petrank used an
object-logging barrier which gave the same behavior but at
the cost of spatial precision.
Our insight is that a field-logging barrier can be imple-

mented using a very similar approach to an object-logging
barrier, a widely used low-overhead write barrier [31]. The
field barrier can use bits in the object header to recordwhether
the field has been remembered, just as an object barrier does.
If more bits are required, additional bytes before the object
can be used to store the necessary state. When the field loca-
tion is statically known, such as a field access in a statically-
typed language, the instruction sequence for testing and
setting a field-remembering bit is identical to that for an
object barrier. Many Java objects have few, or no reference
fields, so the space overhead for recording the requisite state
is just 3.3% in practice (Table 5).

We implement two variations of a field-logging barrier in
Jikes RVM [1] and evaluate them on six x86 microarchitec-
tures. We show that their overhead is very low compared to
the object barrier and slot barrier, which have been highly
tuned for well over a decade, demonstrating that the idea
is feasible. We present a detailed evaluation and analysis of
the barrier, providing the memory management community
with deeper insights into how this new barrier works.

The primary contributions of this paper are: (i) the design
of a practical field-logging write barrier, (ii) implementation
of two instances of a field-loggingwrite barrier, (iii) a detailed
evaluation of the barriers on six x86 microarchitectures.

2 Background and Related Work
Generally, awrite barrier only tracks reference updates (point-
er stores), however some collectors, such as Sapphire [20],
use write barriers to track non-pointer stores too. In this
work we focus on write barriers on reference updates (only),
as used in most production garbage collection algorithms
today. We develop the idea in a Java virtual machine, but the
design is applicable to other languages, particularly those

that are statically typed (which some of our optimizations
exploit).
Java has two important bytecodes for reference updates,

putfield and aastore, which respectively update a pointer
field within a scalar (non-array) object, and a field within a
reference array. There exist other paths by which references
within heap objects get updated in a JVM, including compare
and swap operations and array copy operations. We address
each of those cases in our implementation, but they are fairly
uninteresting engineering problems, so we focus our discus-
sion on the putfield and aastore bytecodes which dominate
all performance considerations for most workloads.

Generational and Inter-Region Write Barriers Genera-
tional collectors [22, 28] preferentially collect recently allo-
cated objects. They are able to do this without scanning the
whole heap by using a write barrier that maintains a remem-
bered set of pointers from the old generation to the newly
allocated objects. The write barrier intercepts each update
of a heap reference and checks whether the reference points
from an old object to a young object. More generally, algo-
rithms that selectively collect regions of the heap use write
barriers to track inter-region pointers and remember them
in remembered sets which identify all inter-region pointers
into any given region.

Multiple strategies have been used for remembering inter-
region pointers. The most simple is to test each pointer store
and if it points from old to young, remember the address
of the written field. Wilson and Moher [30] introduced the
idea of card marking, whereby the barrier unconditionally
marks a card indicating the 2n-byte region of memory in
which the updated pointer field resides. The collector must
then scan a card table which is proportional to the size of
the heap to discover recently stored pointers and determine
whether they point to new objects. The card marking barrier
was subsequently refined [3, 11, 17, 18] and remains widely
used, despite significant pathologies [14], and its inherent
lack of scalability (the work of card scanning is proportional
to heap size, not nursery size).

In this paper we focus on the object-logging write barrier
because it is a well-known high-performing barrier [2, 31],
has design similarities to the field barrier, and has similari-
ties to other barriers we consider, including a snapshot-at-
the-beginning (SATB) barrier [32] and a high performance
reference counting barrier [21].

The object-logging barrier has some similarity to the card
marking barrier. It remembers objects (rather than 2n-byte
cards) that contain updated pointer fields. It does so by
adding the address of the object to a buffer for processing
by the collector, and marking a bit in the object header to
indicate that it has been remembered. The mark of the ob-
ject header bit usually requires a compare-and-swap (CAS)
because other threads may be modifying the same object’s
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header. The garbage collector processes all remembered ob-
jects, scanning them for relevant pointers, and resetting the
bit in their header.
The object barrier avoids the pathology of card marking

described by Dice [14] because the remembered bit is per-
object, not in a side-structure, and it is only remembered
once per mutator cycle. It also avoids the scalability problem
of the card marking barrier because the collector’s work is
proportional to the number of updated objects rather than
the size of the heap.

We are unaware of any prior attempt to implement a field-
logging generational barrier.

Concurrent Collector Barriers Concurrent garbage col-
lectors use barriers to ensure that the mutator and collector
cooperate [15, 26, 27, 32]. Among the barriers used by con-
current collectors, two are directly relevant to this work.

The first is the snapshot-at-the-beginning (SATB) barrier
by Yuasa [32]. Conceptually, this barrier creates a snapshot
of the heap as it was at the beginning of a mutator epoch.
It does this by remembering (preserving) any pointer field
the mutator overwrites immediately before the pointer is
overwritten. The SATB barrier can be implemented with an
object-remembering barrier that conservatively remembers
the previous values of all reference fields of any object which
has a pointer field updated. The same algorithm could more
precisely perform the SATB work by using a field-logging
barrier that just remembered the fields that were updated.

The second is the class of algorithms that use pointer col-
oring to record state within a pointer [27]. This can be done
either with low bits, which must be checked before use, or
with high bits which can exploit the TLB, mapping multiple
pointers to the same physical pages (note that masking of
these bits is still necessary in order to ensure correct behav-
ior for pointer equality etc.). Most pointer coloring barriers
require a simple read barrier. Yang et al. [31] performed a
detailed analysis of conditional read barriers and found that
across a wide range of benchmarks the overhead of the two-
instruction (TEST, JNE) barrier was 10.3%, significantly higher
than the overheads we observe here.

Reference Counting Write Barriers Write barriers are
fundamental to reference counting because they are used to
generate increments and decrements when references are
created and overwritten (respectively).
Levanoni and Petrank [21] use a barrier that motivates

this work. Their reference counting barrier happens to be
very similar to the object-remembering SATB barrier but
additionally remembers the address of the updated object.
The first time a pointer field within an object is updated, the
barrier will remember all of the pointer fields in the object
(before the new update is installed). This captures a before-
image of the object. The barrier also remembers the address
of the updated object, so at collection time, the collector can

establish an after-image of the object by examining the point-
ers in the object. The collector then applies an increment to
each object referenced by the after-image, and a decrement
for each object referenced by before-image. A field-logging
barrier would increase the spatial precision of this barrier.
In particular, it would ensure that the collector workload
was proportional to pointer field updates, avoiding patholo-
gies associated with large, sparse reference arrays, which
otherwise generate unnecessary collector and mutator work.

Hardware Support There have been numerous attempts
to provide hardware support for garbage collection. The (soft-
ware) bit-stealing barrier evaluated by Yang et al. [31] and
the LVB barrier used by Tene et al. [27] might benefit from
hardware that offered instructions that mask low-order bits.
Such instructions have been available on past architectures
such as the SPARC, but to the best of our knowledge are not
supported by any mainstream current hardware. If such an
instruction were available, a per-reference field logged bit
could be stored in the low order bits of each pointer. The
write barrier would check the bit on the to-be-overwritten
value and conditionally log the field, before unconditionally
storing the pointer with the bit set. Regular pointer reads
would mask the bit, avoiding the need for a read barrier in
the common case.

Barrier Performance There are a number of studies of
barrier performance in the literature [6, 7, 19, 31, 34]. We
build upon the work of Yang et al. [31], using the same virtual
machine, and where appropriate follow similar methodolo-
gies. We focus on the same object logging and boundary
barriers included in their study.

Barrier Elision Given sufficient information, a compiler
may be able to elide barriers [13, 29, 33]. The semantics (and
thus correctness) of barrier elision are dependent on the
intended semantics of the barrier. Barrier elision is orthog-
onal to this work, but relevant to the broader objective of
minimizing barrier overhead.

3 Field-Logging Barriers
Our design of field-logging barriers rests on the following
insights: (i) in most statically typed languages, the identity of
a field is statically known, allowing aggressive optimization;
(ii) empirically, frequently allocated scalar types are small [4],
so have few reference fields; (iii) the semantics of an aastore
include an array bounds check, potentially absorbing some
of the cost of a field barrier, such as access to the array header.
These insights led to the idea of using a vector of logging
bits prepended to an object containing reference fields.

Basic Design The basic design is that each object contain-
ing reference fields is prepended with one or more words
containing logging bits that the barrier will use to check and
record whether a particular field needs remembering. Just as
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1 boolean isUnlogged(Obj src)

2 {

3 return load(obj , -8) & MASK == 0;

4 }

5

6 /* .... */

7

8 if (ObjectBarrier.isUnlogged(src)) {

9 ObjectBarrier.logOutOfLine(src)

10 }

1 TEST -8[EBX] -128

2 JEQ 45

3

4

(a) Object

1 boolean isUnlogged(Obj src , FID fid)

2 {

3 int off , msk;

4 if (fid < HEADER_FIELDS) {

5 off = HDR_OFF;

6 mask = BASE_MSK <<fid;

7 } else {

8 fid -= HEADER_FIELDS;

9 off = BASE_OFF - (fid / 32);

10 msk = 1<<(fid & 31);

11 }

12 return load(obj , off) & msk == 0;

13 }

14

15 /* .... */

16

17 if (FB.isUnlogged(src , fieldID )) {

18 FB.logOutOfLine(src , fieldID );

19 }

1 TEST -8[EBX] -64

2 JEQ 45

3

4

(b) Field putfield

1 boolean isUnlogged(Obj src , int idx)

2 {

3 int off = BASE_OFF - (idx / 32);

4 int msk = 1<<(idx & 31);

5 return load(obj , off) & msk == 0;

6 }

7

8 /* .... */

9

10 if (FB.isUnlogged(src , index)) {

11 FB.logOutOfLine(src , index);

12 }

1 ..

2 ..

3 TEST ...

4 JEQ ...

(c) Field aastore

Figure 1. Object and field barriers, showing Java source for the barrier and x86 assembler for the fast path. The key insight
here is that in a statically-typed language such as Java, the field identifier used in a putfield operation will be known statically.
Thus the 13 lines of code used to test for a putfield field barrier (b) reduce to just a test and branch, just as for the object barrier
(a). Because array indicies are generally not known, the aastore barrier cannot be optimized the same way. The putfield field
barrier above will use bits in the object header for the first HEADER_FIELDS reference fields in any object. We also include in our
evaluation the slot barrier described by Yang et al. See [31] for details of its implementation.

the object logging barrier does [2, 6], we apply the simple op-
timization of ‘inverting’ the sense of the logging bits, using
1 to indicate a field that requires logging (unlogged), and 0 to
indicate a field that has been logged. This saves explicit ini-
tialization of new objects since new (nursery) objects don’t
need to be logged. We discuss a number of refinements and
optimizations over this basic design below.
We considered an alternative design where logging bits

were stored in side metadata. That approach simplifies a
number of aspects of the design, but complicates others, re-
duces locality, and removes the opportunity for three impor-
tant optimizations (static optimization of putfield barriers,
object-level atomic logging bits, and the stealing of header
bits, both discussed below). Side metadata does have the nice
property of a fixed space overhead (1/32 when remembering
32-bit fields). In practice we find that the space overhead
of our system is similar (3.3%, Section 5.3). We chose to use
per-object prepended metadata because of the optimization
opportunities that it offers.
Figure 1 shows pseudocode for the fast paths of our put-

field and aastore barriers alongside that for the default object
logging barrier. It is important to note that the object log-
ging barrier and the putfield barrier are compiled to exactly
the same instruction sequence. This is because they both
require the test of a single bit at a fixed offset from the object

pointer, and in both cases the bit mask and offset are fixed
at compile time. In the case of the object-logging barrier
this is because the offset and bit mask are constants, while
in the putfield field barrier, it is because the field identifier
is statically known, so the mask and offset can be partially
evaluated by the compiler. This is not true for the aastore
barrier since the index is not generally known at compile
time.

Resetting of Log Bits The use of a log bit ensures that a
field is only logged once.1 However, the log bit must be reset
once the collector has consumed the logged information.
There are manyways this could be approached. If the logging
bits were stored in side meta-data, then the side meta-data
could be reset by the collector in bulk.
When the bits are embedded in per-object metadata as

they are in our design, one might reset all fields for an object;
reset just the bit that was logged; or reset the entire word
containing the affected bit. If the barrier just logs the address
of the updated field, then there needs to be a way of finding
the associated log bit from the address of the field, which
will be difficult or impossible in the absence of additional
metadata. In our initial implementation, we log a tuple of
the updated field address and the address of the word that

1See discussion about atomicity for precise guarantees.
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contains the log bit. We then reset the entire log bit word
when processing each log entry. (The bit stealing optimiza-
tion described below introduces a small complication which
we step around by using the low order bit of the address of
the log bit word to record whether it is a regular log bit word
or an object header. This allows us to reset the whole word
or reset just the log bits, respectively.)

Atomicity Requirements In any language that supports
mutator concurrency, the concurrency semantics of barriers
need to be carefully considered. We consider this two ways:
first, ensuring the correctness of the barrier mechanism, and
second, ensuring that the barrier semantics are correctly
observed.We implemented the field barrier for a generational
collector and a reference counting collector. The semantics
of the first are sound in the face of a race because when two
threads race to remember a field, the race is benign since
remembering an old-to-young pointer more than once is
not incorrect, just marginally inefficient. On the other hand,
the semantics of the reference counting barrier depend on
strong concurrency guarantees because the barrier must log
both the before-value of the to-be-updated field, as well as
the field’s address. At collection time, the field’s address
is dereferenced to determine the after-value of the field. If
the barrier fires twice, it will likely remember two different
before-values, but will only see one after-value, leading to
incorrect reference counts being generated.

For the generational barrier, this means that the fast path
can perform an unsynchronized check of the relevant logging
bit. If logging is required, the barrier remembers the address
of the modified field and then sets the logging bit. Because
there may be a race to update the word holding the logging
bit, a compare-and-swap (CAS) is required when setting that
bit. As noted above, it is not incorrect for this barrier to log
a field twice.
For the reference counting barrier, it is essential that the

entire logging operation is performed only once, and is per-
formed atomically. This means that another thread: (i) must
not log an already logged field, and (ii) must not write to a
field while it is being logged. Note that these semantics apply
equally to the object-logging reference counting barrier.
These atomicity requirements mean that the reference

counting slow path logging operation needs to be performed
in a critical section. It is sufficient to guard the logging with
a per-object logging bit, just as is done by the object-logging
reference counting barrier.
The reason that a per-object bit is sufficient is that any

mutator that attempts to write to a field being logged will
see the field as unlogged and thus enter the slow path, at
which point it will be locked out by the per-object logging bit.
The per-object logging bit obviates the need for a CAS when
setting the per-field logging bit (because the lockout is per-
object, there is no longer a race to update any other logging

bits). The fast path remains unsynchronized, identical to the
generational field-remembering barrier.

Stealing Header Bits We observe that the two bits in the
object header used by the default object-remembering bar-
rier (Section 2), could as an optimization, be repurposed
for field-logging bits. We furthermore observe that (for the
generational barrier) only a single bit is required per remem-
bered field, allowing two reference fields to have their state
recorded in the object header. More generally, if there are
more available bits in the object header, for example, in a
64-bit implementation, these bits can be used for logging
field state, (significantly) reducing the need for prepended
logging state.
The bit-stealing optimization is shown in Figure 1(b), in

lines 4-6, where HEADER_FIELDS indicates the statically-determ-
ined number of reference fields that may have their state in
the object header. In our experiments, we set this constant to
2 for the generational collector, corresponding to the num-
ber of bits previously committed to the object barrier. We
evaluated this optimization on both the putfield and aastore
barriers and found that while there was a significant advan-
tage for the putfield, there was no advantage for the aastore,
and sometimes a slowdown. This is explained by two factors.
First, because the calculation of offsets in the aastore barrier
cannot generally be statically evaluated (since the index is
generally unknown at compile time), the space-saving op-
timization would introduce a new conditional into the fast
path of the aastore barrier. Second, reference arrays gen-
erally have more reference fields in them, so the marginal
space-saving advantage of the optimization is greatly dimin-
ished anyway. Consequently, we only apply the optimization
to the putfield barrier.

Optimizing aastoreMore Aggressively While in general,
the array index is not known statically, there is a substantial
literature on compiler optimizations for arrays, including ar-
ray bounds check elimination [9]. In principle, such targeted
optimizations could be used to more aggressively optimize
the aastore barrier. We have not explored such optimizations,
but see that as an important consideration if the aastore field
barrier is to be used in a production setting.

Coarser Array Remembering One of the motivations for
the field-logging barrier was to avoid the pathology of re-
membering large, sparsely updated reference arrays. The
field barrier takes that objective to an extreme, remembering
exactly the set of modified fields. In principle, the same de-
sign could be coarsened to remember 2n fields at a time. The
effect would be to logarithmically reduce the rate at which
the aastore slow path is taken. We have implemented this
optimization, but as we report in Section 5.4, found that it
made no significant impact on the overall performance of
our aastore barrier on the workloads we evaluated.
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Threshold For Field Remembering A simpler variation
on the barrier design is to conditionally apply it to large
arrays, leaving scalars and small arrays to use the object-
remembering barrier. This approach introduces a size test
in the aastore fast path. We explored this approach with
the reference counting collectors, and found that was effec-
tive at reducing the overhead, but in doing so, the common
case barrier is less precise. This technique thus introduces a
‘bounded precision’ as opposed to the full precision of the
field barrier.

Impact on Free List Implementations Some free list al-
locators, including the one used by one of our reference
counting collectors, require the ability to map from an ob-
ject instance to the region of memory (cell) into which the
object was allocated, which may be larger than the object,
and may or may not have the same alignment. This is rela-
tively straightforward with a fixed-sized object header. How-
ever, the introduction of logging bits prepended to the object
complicates this reverse lookup, adding an additional type-
dependent step to the calculation. We found engineering an
efficient solution to this problem to be tedious.

4 Methodology
In this section, we present the software, hardware, and mea-
surement methodologies we use. We use as our method-
ological starting point the barrier analysis work introduced
by Yang et al. [31].

We implement the barriers in version 3.13 of Jikes RVM [1],
with a production configuration that uses a stop-the-world
generational Immix [8] collector, a free list-based reference
counting collector, and an instance of RCImmix [24] and a
high performance free list-based reference counting collec-
tor.2

Measurement Methodology We hold heap size constant
for each benchmark, but because our focus is not the per-
formance of the garbage collector itself, we use a generous
6× minimal heap size for each benchmark use a fixed 32MB
nursery for the generational collector and force collections
every 32MB for the reference counting collectors.

We use Jikes RVM’s profile-based two-stage builds which
maximize performance of the runtime by profiling the run-
time before recompiling the runtime with compiler advice
gathered during that profile run.When executing each bench-
mark, we use the warmup replay methodology to remove
non-determinism inherent to the adaptive optimization sys-
tem. Before running any experiment, we first gather com-
piler optimization profiles from the best performance run
from a set of runs for each benchmark. Then, when we run
each experiment, the benchmark is first completely executed,
allowing the run-time to warm up (allowing all the class

2Our source code is available on github: https://github.com/steveblackburn/
jikesrvm-fieldbarrier-ismm/.

loading and method resolving work to be done), and then
the compiler uses the pre-collected optimization profiles to
aggressively compile the benchmark and disallows further
recompilation, before executing a second, timed iteration
of the workload. This methodology greatly reduces non-
determinism from the adaptive optimizing compiler. Note
that we use the compiler optimization advice gathered from
the status quo build. However, since our different builds im-
pose little change in the run-time system, we expect the bias
introduced by using the same advice to be minimal as well.
We execute most benchmarks 50 times but we execute

noisy benchmarks many more times in order to reduce the
measurement error. We report means and 95% confidence in-
tervals for each such measurement. In Section 5.2, we briefly
discuss the architecture-sensitive nature of the variability in
workload performance.

The variability in the workloads is a function of both
workload and microarchitecture. For example, 50 iterations
of luindex yield a 95% confidence interval of 4.5% on the
i7-6700K, but well under 1% on the i7-920 and FX-8320. On
the i7-6700K, we executed luindex 600 times to yield 95%
confidence intervals of under 1%.

Hardware and Software Environment Table 1 lists the
characteristics of the machines used in our evaluation. Our
principal experiments are conducted on the 14 nm Intel Core
i7-6700K processor (Skylake, 4GHz) with 16GB of 1866MHz
DDR4 RAM. To evaluate the impact of microarchitecture,
we also use three other Intel processors and two AMD pro-
cessors, listed in Table 1. We use Ubuntu 18.04.2 LTS server
distribution running a 64 bit (x86_64) 4.15.0-21 Linux kernel
on all of the machines.

Benchmarks Weuse the SPECjvm98 [25], DaCapo [4], and
JBB2005 [5] benchmark suites. Unfortunately some bench-
marks from the DaCapo suites do not run with the version
of Jikes RVM we base our work on, because it relies on the
old Classpath class libraries. Consequently we use all of the
benchmarks from the dacapo-2006-10-MR2 suite plus avrora
and sunflow from the dacapo-9.12-bach suite.
Table 2 outlines the characteristics of these benchmarks

with respect to the behavior of the default object-remembering
barrier, when executed with a modest 32MB nursery. The
first column gives the mutator running time in milliseconds.
The next three columns show the rate at which the fast path
is taken for putfield (stores to non-array reference fields),
aastore (stores to reference arrays) bytecodes, and both com-
bined, expressed in fast path executions per microsecond.
The next three columns show how often the respective slow
paths are taken per millisecond. The final column shows how
many bytes are logged per microsecond by the write barrier.
Note that there is considerable variation in each of these

measures among the benchmarks. In particular, SPECjvm98
benchmarks, which are much simpler workloads [4], execute
the fast path at about half the rate of the other benchmarks,
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Table 1. Processors used in our evaluation.

Vendor Intel AMD
Architecture i7-6700K D-1540 E3-1270 i7-920 A10-7850 FX-8320

Model Core i7-6700K Xeon D-1540 Xeon E3-1270 Core i7-920 A10-7850K FX-8320
Family Skylake Broadwell Sandy Bridge Bloomfield Steamroller Piledriver

Technology 14 nm 14 nm 32 nm 45 nm 28 nm 32 nm
Clock 4.0 GHz 2.0 GHz 3.4 GHz 2.6 GHz 3.7 GHz 3.5 GHz

Cores × SMT 4 × 2 8 × 2 4 × 2 4 × 2 4 × 1 8 × 1
LL Cache 8 MB 12 MB 8 MB 8 MB 4 MB 8 MB
Memory 16 GB DDR4-1866 16 GB DDR4-2133 4 GB DDR3-1333 3 GB DDR3-1066 8 GB DDR3-2133 16 GB DDR3-1866

Table 2. Characteristics of the benchmarks used in this evaluation, as measured when using a generational barrier with a
modest 32 MB nursery on the i7-6700K. The table shows mutator time; fast path take rates; slow path take rates; and bytes
buffered. The measurements show take rates for a barrier on putfield, aastore and both.

Benchmark Time Fast Path/µs Slow Path/msec Buffered
msec pf aa pf+aa pf aa pf+aa B/µs

compress 1724 0 0 0 0 0 0 0
jess 320 13 12 25 4 75 79 1559
db 1313 2 21 23 0 0 1 280
javac 730 19 2 21 49 43 92 0
mpegaudio 983 6 0 6 0 0 0 0
mtrt 214 6 8 14 1 0 1 9
jack 485 25 6 31 237 18 255 3254

SPECjvm mean 824 10 7 17 42 19 61 729

antlr 530 7 1 8 6 6 12 0
avrora 2193 10 0 10 813 0 813 3
bloat 2159 136 2 137 5 25 29 31
eclipse 10543 6 9 15 24 38 62 2782
fop 582 3 0 3 20 0 20 0
hsqldb 534 27 8 35 1549 1543 3092 272
luindex 610 14 1 15 133 0 133 7
lusearch 959 29 2 30 2365 146 2511 15
pmd 482 37 6 43 8723 255 8977 225
sunflow 1367 37 0 37 197 102 299 17
xalan 473 42 25 68 3051 144 3195 8699

DaCapo mean 1857 32 5 36 1535 205 1740 1095

jbb2000 2323 22 10 32 1174 53 1227 11

min 214 0 0 0 0 0 0 0
max 10543 136 25 137 8723 1543 8977 8699

Total mean 1501 23 6 29 966 129 1095 903

and execute the slow path more than an order of magnitude
less frequently. Among the benchmarks, pmd has by far
the highest slow-path take rate, and this is dominated by
putfield operations. We chose to include the SPECjvm98
benchmarks in our analysis because they exhibit relatively
extreme behaviors, which focused much of our effort in
optimizing the barriers.

5 Results
We now present an evaluation of the field-logging barrier.
We focus on the generational field-logging barrier but also
provide a brief overview of the preliminary implementation
of a reference counting field-logging barrier.

5.1 Generational Barrier
Figure 2 and Table 3 show the mutator performance of the
generational field-logging barrier relative to the object-logging
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Figure 2. Performance characteristics of generational field-logging barriers and the boundary barrier on the i7-6700K. The
graph shows mutator time for each barrier, normalized to the time for the object-logging barrier. Error bars indicate 95%
confidence intervals.

barrier, running on the i7-6700K, the most recent of our six
test machines. The field barrier had no statistically measur-
able affect on the performance of the generational collector,
so we focus our evaluation on the mutator overhead (which
is directly affected by the barrier).

Our implementation allows both field and object barriers
to coexist. This lets us measure the putfield (pf) and aastore
(aa) barriers separately as well as presenting the cost when
both are used (pf+aa). When only one of the barriers is used,
the other reverts to the default object barrier.
It is clear from Table 3 that the putfield barrier escapes

the long-held tradeoff between precision and performance.
On average over our 19 benchmarks, we see just a 0.1% over-
head, and on eight of the benchmarks we see net improve-
ments. This result is not entirely unexpected. For objects
with two fields or fewer, the logged bit used by the putfield
barrier resides in the existing object header, so there is no
space or locality overhead. Furthermore, the field barrier
removes to need to consult the object type and scan the
object’s fields during the slow path, instead directly remem-
bering just the changed field. Thus unless a program makes
heavy use of objects with more than two reference fields,
the field-remembering barrier should present a performance
win.

The aastore barrier presents a more complex tradeoff.
Since arrays are more likely to be large, and perhaps sparsely
accessed, the field barrier may reduce the cost of the slow
path takes significantly. On the other hand, because the log-
ging bits are always stored in extra words, there is always a
space overhead, even for very small reference arrays. Also,
because the array index is generally not statically known,
the barrier cannot be reduced to something as simple as the
object barrier in the common case. Specifically, the index
must be converted into a word address and bit mask for

every aastore. Nonetheless, the overhead of the aastore bar-
rier is modest across the full set of benchmarks, with a net
overhead of just 0.8% (1.008).

Putting the putfield and aastore barriers together, the field
barrier performs well. Overall, the barrier has an overhead
of 1.0% (1.010) on the i7-6700K. When the garbage collection
overhead is included, the overall (total time) performance is
the same (1.0%).
Examining the overhead across the benchmark suites is

interesting. The overhead is lowest on the more realistic
and richer workloads that comprise the DaCapo suite. We
even see a statistically significant improvement on bloat
(-1.9%). On the other microarchitectures (Section 5.2), the
difference between the suites is even more marked, with a
modest overall performance advantage on DaCapo on the
E3-1270 (-0.6%).

The fast and slow path take rates from Table 2 show that
DaCapo exercises the barriers significantly more heavily,
which suggests that the overhead is not due to the direct cost
of the barriers. This, and the relative simplicity of the SPEC
benchmarks, suggests that perhaps the locality impact of the
slightly larger object header is felt more acutely in the SPEC
benchmarks. In Section 5.3 we evaluate the space overhead
of the field-logging metadata in detail. As on-going work,
we will investigate our locality conjecture via hardware per-
formance counters.

5.2 Architectural Sensitivity
Table 4 presents an evaluation of the architectural sensitivity
of the generational field-logging barrier across the six x86
microarchitectures listed in Table 1. Each column reports the
normalized mutator performance of the field barrier (both
putfield and aastore) relative to the object barrier on the re-
spective microarchitecture. Note that for the DaCapo bench-
marks, our default machine, the i7-6700K, is an outlier with
0.8% average overhead. The next worst microarchitecture
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Table 3. Performance characteristics of generational field-
logging barriers and the boundary (bdry) barrier compared
to an object-remembering barrier on the i7-6700K. 95% con-
fidence intervals are shown in grey.

Benchmark Time/Object Barrier
bdry pf aa pf+aa

compress 1.001 0.999 0.999 1.000
±0.006 ±0.007 ±0.008 ±0.006

jess 1.008 0.999 1.039 1.043
±0.036 ±0.047 ±0.007 ±0.002

db 0.980 1.002 1.001 0.999
±0.021 ±0.000 ±0.001 ±0.003

javac 0.995 1.009 1.006 1.023
±0.029 ±0.015 ±0.018 ±0.001

mpegaudio 1.000 1.005 0.997 1.004
±0.010 ±0.006 ±0.013 ±0.006

mtrt 0.993 0.996 1.009 1.007
±0.018 ±0.016 ±0.002 ±0.005

jack 0.999 1.006 1.006 1.019
±0.021 ±0.014 ±0.014 ±0.001

SPECjvm mean 0.997 1.002 1.008 1.014
geomean 0.997 1.002 1.008 1.014

antlr 1.001 1.007 1.004 1.010
±0.011 ±0.005 ±0.008 ±0.003

avrora 1.004 1.003 1.004 1.000
±-0.001 ±0.000 ±-0.002 ±0.003

bloat 0.978 0.961 1.007 0.981
±0.005 ±0.022 ±-0.024 ±0.002

eclipse 0.998 0.994 1.015 1.019
±0.028 ±0.031 ±0.011 ±0.006

fop 1.002 1.005 1.003 1.009
±0.011 ±0.007 ±0.009 ±0.004

hsqldb 1.012 1.005 1.017 1.021
±0.010 ±0.017 ±0.005 ±0.001

luindex 1.002 1.004 1.003 1.004
±0.011 ±0.008 ±0.009 ±0.008

lusearch 1.005 1.003 1.001 1.003
±0.001 ±0.003 ±0.004 ±0.003

pmd 1.041 1.006 1.018 1.017
±-0.021 ±0.013 ±0.002 ±0.003

sunflow 0.998 1.013 1.002 1.012
±0.019 ±0.004 ±0.016 ±0.005

xalan 0.995 1.000 1.011 1.011
±0.019 ±0.014 ±0.004 ±0.004

DaCapo mean 1.003 1.000 1.008 1.008
geomean 1.003 1.000 1.008 1.008

jbb2000 0.999 1.004 1.006 1.016
±0.019 ±0.014 ±0.012 ±0.002

min 0.978 0.961 0.997 0.981
max 1.041 1.013 1.039 1.043

Total mean 1.001 1.001 1.008 1.010
geomean 1.000 1.001 1.008 1.010

has half the average overhead (0.4%), and on the E3-1270,
there is a modest average speedup on DaCapo (-0.7%).
The Intel E3-1270 has the lowest overhead overall (0.1%).

The overheads on SPECjvm are very similar across architec-
tures, only ranging from 1.1% to 1.5% overhead. The greatest
variation is on jack, where the AMD architectures see a slow-
down of 2.2% and a speedup of 0.5%. Among the DaCapo
benchmarks, many were very consistent across architectures,
including bloat, which sees consistent speedups. hsqldb sees

Table 4. Performance overhead of field barriers across the six
microarchitectures listed in Table 1. 95% confidence intervals
are shown in grey.

Benchmark Intel AMD
6700 2600 1270 920 7850 8320

compress 1.000 1.000 0.993 1.000 1.005 1.000
±0.006 ±0.004 ±0.005 ±0.002 ±0.001 ±0.000

jess 1.043 1.038 1.024 1.033 1.024 1.039
±0.002 ±0.002 ±0.003 ±0.002 ±0.002 ±0.003

db 0.999 1.013 1.015 1.028 1.021 1.022
±0.003 ±0.007 ±0.004 ±0.004 ±0.001 ±0.002

javac 1.023 1.022 1.023 1.014 1.004 1.009
±0.001 ±0.001 ±0.001 ±0.002 ±0.002 ±0.001

mpegaudio 1.004 1.001 1.005 1.002 0.996 1.016
±0.006 ±0.011 ±0.010 ±0.002 ±0.002 ±0.002

mtrt 1.007 1.015 1.008 1.009 1.008 1.003
±0.005 ±0.008 ±0.004 ±0.004 ±0.003 ±0.002

jack 1.019 1.014 1.020 1.018 1.022 0.995
±0.001 ±0.001 ±0.002 ±0.003 ±0.002 ±0.002

SPECjvm mean 1.014 1.015 1.012 1.015 1.012 1.012
geomean 1.014 1.015 1.012 1.015 1.011 1.012

antlr 1.010 1.007 0.997 1.012 1.000 1.003
±0.003 ±0.003 ±0.008 ±0.005 ±0.009 ±0.001

avrora 1.000 1.001 0.988 0.998 0.995 0.992
±0.003 ±0.003 ±0.003 ±0.003 ±0.006 ±0.003

bloat 0.981 0.959 0.956 0.980 0.981 0.973
±0.002 ±0.002 ±0.003 ±0.003 ±0.002 ±0.002

eclipse 1.019 1.016 1.013 0.995 1.012 1.002
±0.006 ±0.006 ±0.007 ±0.016 ±0.007 ±0.008

fop 1.009 1.004 0.984 0.999 0.993 1.005
±0.004 ±0.003 ±0.002 ±0.003 ±0.007 ±0.005

hsqldb 1.021 1.034 1.011 1.016 1.037 1.040
±0.001 ±0.012 ±0.001 ±0.005 ±0.012 ±0.005

luindex 1.004 0.983 1.001 1.005 0.999 0.995
±0.008 ±0.014 ±0.013 ±0.006 ±0.018 ±0.005

lusearch 1.003 1.001 0.985 0.995 0.996 0.998
±0.003 ±0.006 ±0.006 ±0.005 ±0.006 ±0.006

pmd 1.017 1.015 0.989 0.993 1.005 1.008
±0.003 ±0.006 ±0.006 ±0.005 ±0.003 ±0.004

sunflow 1.012 1.019 1.013 1.017 1.008 1.002
±0.005 ±0.009 ±0.004 ±0.011 ±0.011 ±0.013

xalan 1.011 1.012 0.991 1.005 1.001 1.000
±0.004 ±0.003 ±0.004 ±0.003 ±0.004 ±0.004

DaCapo mean 1.008 1.005 0.994 1.001 1.002 1.002
geomean 1.008 1.004 0.993 1.001 1.002 1.001

jbb2000 1.016 1.011 1.001 1.004 1.009 1.072
±0.002 ±0.002 ±0.002 ±0.001 ±0.002 ±0.004

min 0.981 0.959 0.956 0.980 0.981 0.973
max 1.043 1.038 1.024 1.033 1.037 1.072

Total mean 1.010 1.009 1.001 1.006 1.006 1.009
geomean 1.010 1.009 1.001 1.006 1.006 1.009

the biggest range, from 1.1% to 4% slowdown. The largest
variation is seen on jbb2000, which varies from 0.1% (E3-
1270) to 7.2% (FX-8320) slowdown. Note that the jbb2000
results have very tight 95% confidence intervals, suggesting
that this is worthy of further investigation, as it may help
better characterize the sources of performance differences
between field and object remembering barriers.
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Table 5. Space overhead of field barriers using the genera-
tional collector. The first column shows the total allocation
(MB) of each benchmark when using the object barrier. The
other columns show the normalized amount of allocation
for field barriers with putfield, aastore, and both.

Benchmark MB Field Barrier
Alloc pf aa pf+aa

compress 65 1.000 1.000 1.000
jess 262 1.011 1.038 1.049
db 74 1.000 1.009 1.010
javac 174 1.042 1.004 1.054
mpegaudio 0 1.039 1.002 1.041
mtrt 93 1.022 1.009 1.027
jack 253 1.058 1.002 1.061

SPECjvm mean 132 1.025 1.009 1.035

antlr 215 1.013 0.999 1.013
avrora 52 1.088 1.001 1.088
bloat 1099 1.002 0.983 1.007
eclipse 2741 1.024 1.021 1.045
fop 49 1.023 1.006 1.028
hsqldb 116 1.068 1.025 1.093
luindex 35 1.009 1.002 1.010
lusearch 3846 1.001 1.008 1.005
pmd 337 1.022 1.013 1.029
sunflow 1141 1.017 1.009 1.002
xalan 882 1.006 1.009 1.022

DaCapo mean 956 1.025 1.007 1.031

jbb2000 1723 1.027 1.038 1.054

min 0 1.000 0.983 1.000
max 3846 1.088 1.038 1.093

Total mean 693 1.025 1.009 1.034
geomean 188 1.025 1.009 1.033

We found it interesting to note how the microarchitec-
ture affected the stability of measurements on certain bench-
marks. In particular, eclipse and luindex are striking. Among
the Intel machines, i7-6700K and i7-920 had a six-fold dif-
ference in the 95% confidence intervals on luindex (4.43%
v 0.73%). Of the two AMD machines, A10-7850 had a 4.6-
fold higher confidence interval than FX-8320 (3.25% v 0.70%).
Conversely, the A10-7850 had a slightly lower error (0.95%)
than the FX-8320 (1.20%) on eclipse, demonstrating that sta-
bility is a function of both workload and microarchitecture.
We eventually tightened the confidence intervals to under
1% for all benchmarks by running the benchmarks for 400
invocations or more when necessary, rather than the 50 invo-
cations used by default. We are unsure why those particular
combinations of benchmark and microarchitecture are so
unstable. However, the instability is not related to the field
barrier; the same instability was present for each barrier in
each case.

5.3 Space Overhead
Table 5 presents an evaluation of the space overhead of the
field barrier. The first column reports the bytes allocated (in
MB) during the execution of the benchmark when using the
default object-logging barrier. The remaining three columns
report the normalized number of bytes of allocation for the
field barrier applied to putfield, aastore and both. The totals
show an overhead of 2.5% for putfield, 0.9% for aastore, and
3.4% for both together.
Recall that the field barrier requires a logged bit for each

reference field or array element of the object. For arrays,
these bits are packed intowords preceding the object’s header,
while for scalars the first two bits are packed into the object
header and any remaining bits are packed into words pre-
ceding the object header. Perhaps surprisingly, the average
space overhead for putfield (2.5%) is more than twice that of
the overhead for aastore (0.9%). This is probably explained
both by the predominance of scalar types, and the relative
scarcity of small reference arrays (where the space overhead
is greatest).

5.4 Reference Counting
Table 6 shows mutator performance of the reference count-
ing field-logging barrier relative to the object-logging refer-
ence counting barrier, running on the i7-6700K. As in Sec-
tion 5.1, we show overheads for putfield, aastore and both.

The results reveal that the reference counting barrier has
not been carefully tuned, yielding an overhead of about 2%,
substantially higher than that of the generational field barrier.
The results also show a very high level of variability in the
results. A number of benchmarks, including lusearch, pmd,
eclipse, and jess show considerable variability.
Recall that the reference counting barrier differs from

the generational barrier only in its implementation of the
slow path, which must capture both old and new values,
and must do so atomically. We considered the possibility
that the field barrier leads to more slow path events and thus
more costly atomic operations, and henceworse performance
than seen with the field barrier for the generational collector.
We first thoroughly checked the efficiency of the slow path
implementation, and also checked the frequency of slow path
takes. Interestingly, we noted that on the most problematic
benchmark, jess, the number of slow-path takes was 30×
higher with the field barrier than for the default object-based
reference counting barrier. However, we also noted that the
number of slow-path takes was orders of magnitude lower
for the reference counting barriers than for the generational
barriers. These investigations led us to implement a variable-
granularity aastore barrier and a size threshold (Section 3).
We also considered the possibility that the slowdown was
related to the reference counting collector’s use of a free list.
We eliminated this concern by also implementing the barrier
in RCImmix [24], a high performance reference counting
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Table 6. Performance characteristics of reference counting
field-logging barriers compared to an object-remembering
reference counting barrier on the i7-6700K. 95% confidence
intervals are shown in grey.

Benchmark Time/Object Barrier
pf aa pf+aa

compress 0.998 0.994 0.992
±-0.001 ±0.003 ±0.004

jess 0.988 1.162 1.148
±0.162 ±-0.010 ±0.002

db 1.086 1.016 1.099
±0.026 ±0.095 ±0.013

javac 1.069 1.019 1.068
±0.008 ±0.063 ±0.010

mpegaudio 1.012 1.009 0.998
±0.019 ±0.022 ±0.026

mtrt 1.010 1.007 1.011
±0.009 ±0.013 ±0.009

jack 1.021 1.015 1.022
±0.004 ±0.010 ±0.002

SPECjvm mean 1.026 1.032 1.048
geomean 1.026 1.031 1.047

antlr 0.984 1.008 0.998
±0.020 ±-0.001 ±0.014

avrora 0.996 0.990 0.988
±-0.004 ±0.002 ±0.004

bloat 1.049 1.009 1.043
±0.001 ±0.040 ±0.008

eclipse 1.004 1.037 1.011
±0.051 ±0.023 ±0.045

fop 0.998 0.997 0.996
±0.009 ±0.013 ±0.009

hsqldb 1.006 1.037 1.022
±0.019 ±-0.011 ±0.005

luindex 1.076 1.048 1.027
±0.044 ±0.070 ±0.049

lusearch 1.127 0.997 1.095
±0.025 ±0.137 ±0.050

pmd 1.034 1.028 0.876
±-0.098 ±-0.117 ±0.112

sunflow 1.002 1.000 1.001
±0.005 ±0.005 ±0.008

xalan 1.029 1.014 1.037
±0.014 ±0.029 ±0.007

DaCapo mean 1.028 1.015 1.009
geomean 1.027 1.015 1.007

jbb2000 1.011 1.020
±0.015 ±0.003

min 0.984 0.000 0.876
max 1.127 1.162 1.148

Total mean 1.026 0.968 1.024
geomean 1.026 1.021 1.022

collector that uses a bump pointer allocator rather than a
free list. However, we observed a very similar performance
slowdown to that with the traditional reference counting
collector.

Threshold and Variable-Granularity Aastore Barrier
In Section 3 we considered two variations on the aastore
barrier, one that changed the granularity of the remembered
bit to be 2n fields, and one that only used the field barrier
for arrays larger than some threshold. When n is 0 in the

variable-granularity barrier, the barrier reduces to the origi-
nal aastore field barrier, remembering array fields one at a
time. As n grows, the number of fields that are remembered
at a time doubles. n is a constant for any particular build of
the virtual machine, allowing aggressive optimization. When
n is 1 for the threshold barrier, the barrier reduces to the orig-
inal aastore field barrier, and as n rises, arrays of size n or
less use the default object-remembering barrier.
We were surprised to find that neither of these optimiza-

tions were effective in bringing the overhead of the reference
counting field barrier down significantly. In the both cases,
the granularity/thresholding introduced noticeable overhead
reductions, but they only removed some of the overhead, and
were not able to yield performance similar to the generational
field barrier. We were unable to resolve this performance
anomaly by the time this paper was completed, so leave it
as ongoing work.

6 Conclusion
Write barriers are a ubiquitous and performance-critical
mechanism used by garbage collectors. Commonly-used bar-
rier designs sacrifice temporal and/or spatial accuracy in
order to be performant. A low-overhead, temporally and spa-
tially precise barrier has been elusive until now. We present
the first design of a write barrier that remembers fields with
temporal and spatial precision, and does so at low overhead.
We present a detailed analysis of the barrier and its perfor-
mance. The barrier design and our analysis should be helpful
to garbage collection researchers, providing them with fresh
insights into barrier behavior and a new mechanism to con-
sider when designing collectors.

Acknowledgments
This material is based upon work supported by Huawei and
the Australian Research Council under grant DP190103367.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of Huawei or the Australian
Research Council.

References
[1] B. Alpern, , S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng,

J. Dolby, S. J. Fink, D. Grove, M. Hind, K. S. McKinley, MMergen, J. E. B.
Moss, T. Ngo, V. Sarkar, and M. Trapp. 2005. The Jikes RVM Project:
Building an Open Source Research Community. IBM System Journal
44, 2 (2005), 399–418.

[2] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. Flynn Hummel, D. Lieber,
V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J.
Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000.
The Jalapeño virtual machine. IBM System Journal 39, 1 (Feb. 2000).
https://doi.org/10.1147/sj.391.0211

[3] A. Azagury, E. K. Kolodner, E. Petrank, and Z. Yehudai. 1998. Combin-
ing Card Marking with Remembered Sets: How to Save Scanning Time.

113

https://doi.org/10.1147/sj.391.0211


ISMM ’19, June 23, 2019, Phoenix, AZ, USA Stephen M. Blackburn

In ACM International Symposium on Memory Management. Vancouver,
Canada, 10–19. https://doi.org/10.1145/286860.286862

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. 2006. The
DaCapo Benchmarks: Java Benchmarking Development and Analysis.
In ACM SIGPLAN Conference on Object-Oriented Programing, Systems,
Languages, and Applications. 169–190. https://doi.org/10.1145/1167515.
1167488

[5] S. M. Blackburn, M. Hirzel, R. Garner, and D. Stefanović. 2007. pjbb2005:
The pseudoJBB benchmark. http://users.cecs.anu.edu.au/~steveb/
research/research-infrastructure/pjbb2005

[6] S. M. Blackburn and A. Hosking. 2004. Barriers: Friend or Foe?. In
ACM International Symposium on Memory Management. Vancouver,
Canada, 143–151. https://doi.org/10.1145/1029873.1029891

[7] S. M. Blackburn and K. S. McKinley. 2002. In or Out? Putting write
barriers in their place. In The ACM International Symposium onMemory
Management. 175–184.

[8] S. M. Blackburn and K. S. McKinley. 2008. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and Mutator
Locality. In ACM Conference on Programming Language Design and
Implementation. Tuscon, AZ, 22–32. https://doi.org/10.1145/1375581.
1375586

[9] R. Bodík, R. Gupta, and V. Sarkar. 2000. ABCD: Eliminating Ar-
ray Bounds Checks on Demand. In Proceedings of the ACM SIG-
PLAN 2000 Conference on Programming Language Design and Imple-
mentation (PLDI ’00). ACM, New York, NY, USA, 321–333. https:
//doi.org/10.1145/349299.349342

[10] H-J. Boehm, A. Demers, M.Weiser, B. Hayes, D. Bobrow, and S. Shenker.
1990. Combining Generational and Conservative Garbage Collection:
Framework and Implementations. In Proceedings of the Seventeenth
Annual ACM Symposium on the Principles of Programming Languages.
San Francisco, CA.

[11] C. Chambers. 1992. Object-Oriented Multi-Methods in Cecil. In Pro-
ceedings of the 1992 European Conference on Object-Oriented Program-
ming, Lecture Notes in Computer Science 615. Springer-Verlag, Utrecht,
The Netherlands.

[12] G. O. Collins. 1961. Experience in Automatic Storage Allocation. Com-
mun. ACM 4, 10 (Oct. 1961), 436–440.

[13] D. Detlefs and V. K. Nandivada. 2004. Compile-time Concurrent Marking
Write Barrier Removal. Technical Report. Mountain View, CA, USA.

[14] D. Dice. 2011. False sharing induced by card table marking. https:
//blogs.oracle.com/dave/entry/false_sharing_induced_by_card

[15] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. 1978. On-The-Fly Garbage Collection: An exercise in Coop-
eration. Commun. ACM 21, 11 (Nov. 1978), 965–975.

[16] R. R. Fenichel and J. C. Yochelson. 1969. A LISP Garbage-collector
for Virtual-memory Computer Systems. Commun. ACM 12, 11 (Nov.
1969), 611–612. https://doi.org/10.1145/363269.363280

[17] U. Hölzle. 1993. A Fast Write Barrier for Generational Garbage Collec-
tors. In OOPSLA, J. Eliot B. Moss, Paul R. Wilson, and Benjamin Zorn
(Eds.). ftp://ftp.cs.utexas.edu/pub/garbage/GC93/hoelzle.ps

[18] A. L. Hosking and R. L. Hudson. 1993. Remembered Sets Can Also
Play Cards. Position paper for OOPSLA ’93 Workshop on Memory
Management and Garbage Collection.

[19] A. L. Hosking, J. E. B. Moss, and D. Stefanović. 1992. A Comparative
Performance Evaluation of Write Barrier Implementations. In ACM

Conference on Object–Oriented Programming, Systems, Languages, and
Applications. Vancouver, BC, 92–109.

[20] R. L. Hudson and J. E. B. Moss. 2001. Sapphire: Copying GC Without
Stopping the World. In Proceedings of the 2001 Joint ACM-ISCOPE
Conference on Java Grande (JGI ’01). 48–57. https://doi.org/10.1145/
376656.376810

[21] Y. Levanoni and E. Petrank. 2001. An On-the-fly Reference Counting
Garbage Collector for Java. In ACM Conference on Object–Oriented
Programming Systems, Languages, and Applications. ACM, Tampa, FL,
367–380.

[22] H. Lieberman and C. E. Hewitt. 1983. A Real TIme Garbage Collector
Based on the Lifetimes of Objects. Commun. ACM 26, 6 (1983), 419–
429.

[23] J. McCarthy. 1960. Recursive functions of symbolic expressions and
their computation by machine, Part I. Commun. ACM 3, 4 (1960),
184–195. https://doi.org/10.1145/367177.367199

[24] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley. 2013. Tak-
ing off the Gloves with Reference Counting Immix. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’13). ACM,
New York, NY, USA, 93–110. https://doi.org/10.1145/2509136.2509527

[25] Standard Performance Evaluation Corporation 1999. SPECjvm98, Re-
lease 1.03. Standard Performance Evaluation Corporation. http:
//www.spec.org/jvm98

[26] G. L. Steele, Jr. 1975. Multiprocessing Compactifying Garbage Collec-
tion. Commun. ACM 18, 9 (Sept. 1975), 495–508. https://doi.org/10.
1145/361002.361005

[27] G. Tene, B. Iyengar, and M. Wolf. 2011. C4: The Continuously Concur-
rent Compacting Collector. In Proceedings of the International Sympo-
sium on Memory Management (ISMM ’11). ACM, New York, NY, USA,
79–88. https://doi.org/10.1145/1993478.1993491

[28] D. M. Ungar. 1984. Generation Scavenging: A Non-Disruptive High
Performance Storage Reclamation Algorithm. In ACM Software Engi-
neering Symposium on Practical Software Development Environments.
157–167. https://doi.org/10.1145/800020.808261

[29] M. T. Vechev and D. F. Bacon. 2004. Write Barrier Elision for Con-
current Garbage Collectors. In Proceedings of the 4th International
Symposium on Memory Management (ISMM ’04). ACM, New York, NY,
USA, 13–24. https://doi.org/10.1145/1029873.1029876

[30] P. R. Wilson and T. G. Moher. 1989. A “Card-marking” Scheme for
Controlling Intergenerational References in Generation-based Garbage
Collection on Stock Hardware. In ACM Conference on Object–Oriented
Programming Systems, Languages, and Applications. 87–92. https:
//doi.org/10.1145/66068.66077

[31] X. Yang, S. M. Blackburn, D. Frampton, and A. L. Hosking. 2012. Barri-
ers Reconsidered, Friendlier Still!. In Proceedings of the Eleventh ACM
SIGPLAN International Symposium on Memory Management, ISMM ’12,
Beijing, China, June 15-16. https://doi.org/10.1145/2258996.2259004

[32] T. Yuasa. 1990. Real-time garbage collection on general-purpose ma-
chines. Journal of Systems and Software 11, 3 (1990), 181–198.

[33] K. Zee and M. Rinard. 2002. Write Barrier Removal by Static Analysis.
In Proceedings of the 17th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA ’02).
ACM, New York, NY, USA, 191–210. https://doi.org/10.1145/582419.
582439

[34] B. G. Zorn. 1993. The Measured Cost of Conservative Garbage Collec-
tion. Software Practice & Experience 23, 7 (1993), 733–756.

114

https://doi.org/10.1145/286860.286862
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1167515.1167488
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
http://users.cecs.anu.edu.au/~steveb/research/research-infrastructure/pjbb2005
https://doi.org/10.1145/1029873.1029891
https://doi.org/10.1145/1375581.1375586
https://doi.org/10.1145/1375581.1375586
https://doi.org/10.1145/349299.349342
https://doi.org/10.1145/349299.349342
https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
https://blogs.oracle.com/dave/entry/false_sharing_induced_by_card
https://doi.org/10.1145/363269.363280
ftp://ftp.cs.utexas.edu/pub/garbage/GC93/hoelzle.ps
https://doi.org/10.1145/376656.376810
https://doi.org/10.1145/376656.376810
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/2509136.2509527
http://www.spec.org/jvm98
http://www.spec.org/jvm98
https://doi.org/10.1145/361002.361005
https://doi.org/10.1145/361002.361005
https://doi.org/10.1145/1993478.1993491
https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/1029873.1029876
https://doi.org/10.1145/66068.66077
https://doi.org/10.1145/66068.66077
https://doi.org/10.1145/2258996.2259004
https://doi.org/10.1145/582419.582439
https://doi.org/10.1145/582419.582439

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Field-Logging Barriers
	4 Methodology
	5 Results
	5.1 Generational Barrier
	5.2 Architectural Sensitivity
	5.3 Space Overhead
	5.4 Reference Counting

	6 Conclusion
	Acknowledgments
	References

