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Abstract
Poor instruction cache locality can degrade performance on modern
architectures. For example, our simulation results show that elim-
inating all instruction cache misses improves performance by as
much as 16% for a modestly sized instruction cache. In this pa-
per, we show how to take advantage of dynamic code generation
in a Java Virtual Machine (VM) to improve instruction locality at
run-time. We develop a dynamic code reordering (DCR) system; a
low overhead, online approach for improving instruction locality.
DCR has three optimizations: (1) Interprocedural method separa-
tion; (2) Intraprocedural code splitting; and (3) Code padding. DCR
uses the dynamic call graph and an edge profile that most VMs al-
ready collect to separate hot/cold methods and hot/cold code within
a method. It also puts padding between methods to minimize con-
flict misses between frequent caller/callee pairs. It incrementally
performs these optimizations only when the VM is optimizing a
method at a higher level. We implement DCR in Jikes RVM and
show its overhead is negligible. Extensive simulation and run-time
experiments show that a simple code space improves average per-
formance on a Pentium 4 by around 6% on SPEC and DaCapo Java
benchmarks. These programs however have very small instruction
cache footprints that limit opportunities for DCR to improve per-
formance. Consequently, DCR optimizations on average show little
effect, sometimes degrading performance and occasionally improv-
ing performance by up to 5%. Our work shows that the VM has the
potential to dynamically improve instruction locality incrementally
by simply piggybacking on hotspot recompilation.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Incremental Compilers, Compilers, Opti-
mization

General Terms Languages, Performance, Experimentation, Al-
gorithms

Keywords dynamic, locality, instruction, JIT compilation
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1. Introduction
The imbalance in memory and processor speeds creates a mem-
ory gap that software can help alleviate by improving data and
instruction locality, and consequently reduce long latency mem-
ory accesses. This paper focuses on improving instruction local-
ity in managed run-times to keep the processor pipeline fed and
prevent pipeline stalls. Programming languages with managed run-
times, such as Java and C# are gaining enormous popularity and
features such as JIT compilation provide opportunities at run-time
to reorder instruction, improving their locality.

Most previous work [14, 15, 23, 24, 25] uses static schemes to
improve instruction locality. They first profile dynamic call graphs
and basic block execution frequencies. Then they apply an expen-
sive algorithm on the profile to generate a code layout which co-
locates frequent caller/callee pairs together to create good spatial
locality and to avoid conflict misses. They apply the pre-computed
code layouts at compile or link time. Because these algorithms are
expensive (e.g., Pettis/Hansen is O(n3), where n is the number
of methods), they are not suitable for dynamic systems. Dynamic
schemes for improving instruction locality include Chen et al. [9].
This approach allocates methods in invocation order and achieves
performance improvements. Java Virtual Machines implicitly use
this order when they perform lazy compilation. Huang et al. [19]
develop several new dynamic code management algorithms based
on a complete call graph. Their algorithms regenerate all the code
in the program at once, causing a large pause, and are therefore
only suitable for long running programs.

This paper introduces dynamic code reordering (DCR) which
performs online code reordering with low overhead by piggyback-
ing on just-in-time (JIT) recompilation. DCR seeks to improve in-
struction locality by attacking capacity and conflict cache misses.
It uses dynamic call graph and basic block profiles. It performs
three optimizations using multiple code spaces: (1) interprocedu-
ral hot/cold method separation, (2) intraprocedural hot/cold code
splitting, and (3) interprocedural hot code padding. To reduce ca-
pacity misses, DCR allocates hot and cold methods into separate
spaces in the heap. DCR also performs code splitting of hot and
cold basic blocks within the same method to further reduce the hot
instruction working set size. To reduce conflict misses for the cur-
rent method, DCR examines the dynamic call graph and finds hot
caller/callee pairs. If they map to the same lines in the cache, they
will have too many conflict misses. Therefore, DCR applies code
padding on either caller or callee method (whichever it happens to
be recompiling) to eliminate the potential conflict misses.

DCR piggybacks on adaptive hotspot compilation. DCR per-
forms its code layout optimizations when the dynamic recompila-
tion system has already selected a method to recompile at a higher
level, and thus must generate and allocate space for the code any-
way. DCR uses the dynamic call graph and edge profile for the cur-



rent method, and never examines the entire graph nor re-allocates
the code, as does the prior work [19, 24]. This design reduces the
overhead of DCR to a negligible level.

We run our experiments on two architectures, an Intel Pentium
4 and an IBM PowerPC 970, using SPEC [28, 29] and DaCapo [6]
Java benchmarks. Because the instruction working set sizes for
these benchmarks are modest compared to the available instruction
cache (or trace cache), DCR does not improve most of these pro-
grams. However, a few programs are sensitive to instruction code
layout: compared to the Jikes RVM default configuration which
mixes code and data in the heap, a simple instruction code space
improves total performance on average by around 6% and on one
benchmark by 30%. The DCR optimizations improve one bench-
mark by 5%, but sometimes degrade performance and on average
have a negligible impact.

This paper makes the following contributions:

• An instruction locality optimization framework (DCR) that pig-
gybacks on hotspot recompilation to achieve negligible over-
heads and reduced instruction cache footprints.

• The design of four code space optimizations: (1) one space
with all code∗; (2) two spaces: separate hot/cold methods; (3)
three spaces: cold methods, hot blocks of hot methods, and cold
blocks of hot methods; (4) three spaces with method padding
for hot caller/callee pairs.

• A thorough evaluation on two architectures and in simulation
of the potential and actual performance of code space optimiza-
tions. Simulation results show potential improvements are pos-
sible, but DCR has a negligible effect in practice because of the
small instruction cache footprint of these benchmarks.

2. Background
We build DCR on the existing adaptive optimization system in Jikes
RVM [1, 2, 21], an open source Java virtual machine written almost
entirely in a slightly extended Java. We now briefly review relevant
aspects of this system. The features we use, dynamic profiling and
hotspot recompilation, are typical of many VMs. Section 3 explains
DCR and how we integrate it into this framework.

Jikes RVM does not have a bytecode interpreter. Instead, a fast
template-driven baseline compiler produces machine code when
the VM first executes each Java method, and then a separate op-
timizing compiler recompiles frequently executed methods at pro-
gressively higher levels of optimization. The adaptive system peri-
odically samples the currently executing code and records (1) the
currently executing method and (2) the caller of the currently exe-
cuting method. Jikes RVM feeds this profile data into a cost-benefit
model to identify methods to optimize further. Jikes RVM recom-
piles and optimizes these methods asynchronously on a separate
compilation thread. The system uses the profiled caller-callee rela-
tionships to build a weighted dynamic call graph that drives profile-
directed inlining during optimizing compilation.

When generating code, the baseline compiler inserts instrumen-
tation for every bytecode-level conditional branch to measure its
execution frequency and its taken/not-taken distribution. The opti-
mizing compiler uses this edge profile data to compute basic block
frequencies and branch probabilities. A number of optimizations
in the optimizing compiler exploit this information. Most rele-
vant to our work is basic block layout. At the lowest optimization
level (O0), the compiler simply moves infrequently executed ba-
sic blocks to the bottom of the compiled method’s code. At O1
and O2, it employs Pettis and Hansen’s bottom-up positioning al-
gorithm (Algo2) [24].

∗ This design is common in commercial VMs

3. Dynamic Code Reordering
The Dynamic Code Reordering (DCR) system is designed to be
low overhead and to exploit dynamic program behavior. By default,
Jikes RVM allocates code in the heap with all the other VM and
application objects. DCR first adds a separate space for all code.
(This design is prevalent in commercial JVMs for code locality and
ease of implementation for JVMs written in C.)

DCR performs two types of optimizations: interprocedural and
intraprocedural code reordering. When Jikes RVM initially com-
piles a hot method with its optimizing compiler, DCR allocates the
hot method in a separate space from baseline compiled code. DCR
also splits the hot method into hot and cold basic blocks based on
their execution frequencies and allocates them into different spaces.
DCR determines whether a basic block is hot or cold by computing
its relative execution frequency from online edge profile informa-
tion and then applying a simple threshold. It also identifies frequent
caller/callee pairs by applying a threshold to the dynamic call graph
edges. DCR calculates and inserts padding in front of the hot por-
tion of each optimized method to minimize the likelihood of con-
flicts with its callers and callees in the instruction cache.

Figure 1(a) shows code and data layout for the default configu-
ration of Jikes RVM. In the figure, ‘B’ denotes baseline compiled
code; ‘O’ denotes optimized compiled code; and ‘D’ denotes data
objects. Figure 1(b) shows the separation of code and data into sep-
arate spaces; this design is typical of most current JVMs. When a
method is compiled by either the baseline or optimizing compiler,
DCR allocates the code into the single shared code space.

3.1 Interprocedural Method Separation

Because of lazy compilation and dynamic class loading, baseline
compiled code and optimized code will mix in a single code space.
The first DCR optimization, interprocedural method separation,
simply separates hot and cold methods. When the optimizing com-
piler recompiles a method, DCR allocates these hot methods into a
separate hot code space, as shown in Figure 1(c). This optimization
reduces the code footprint of the hot methods, and consequently
may reduce L2 cache residency, L2 cache misses, and paging. We
manage the optimized compiled code spaces as a contiguously al-
located (bump-pointer copy) space in MMTk [5].

3.2 Intraprocedural Code Splitting

The existing optimizing compiler uses the edge profiling instru-
mentation from the baseline compiled code to push hot basic blocks
to the beginning of the generated code and cold ones to the end.
DCR further separates the hot and cold basic blocks by allocating
them into different regions of the optimized code space. The gener-
ated layout is shown in Figure 1(d), where ‘OH’ denotes hot basic
blocks of a method and ‘OC’ denotes cold blocks of a method.

DCR splits code during code generation. We implement DCR
system on x86 and PowerPC architectures, which both have short
pc-relative branch instructions for a short jump. We conservatively
use long branches if a branch is crossing the two partitions of the
same method. This conservative choice increases the code size if
the branch was a short branch before code splitting. DCR allocates
16 KB size chunks for hot and cold block allocation to avoid hav-
ing a branch distance larger than the upper bound of a conditional
branch. Therefore the hot and cold blocks are approximately inter-
leaved within the heap in 16 KB chunks.

3.3 Code Padding

DCR uses the dynamic call graph to find frequent caller/callee
pairs, based on the threshold used to identify recompilation candi-
dates. The frequent caller/callee pairs may generate conflict misses
if they map into the same line in the instruction cache. After DCR
splits a method A into hot/cold blocks, it checks all of the frequent
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cold basic blocks

CODE-PADDING(methodA, DCG)
1 currentPadding ← 0
2 repeat
3 for each methodB in GET-ADJACENT-NODES (methodA, DCG) do
4 if CHECK-CONFLICTS(methodA, methodB) then
5 padding ← CALCULATE-PADDING(methodA, methodB)
6 currentPadding ← currentPadding + padding

7 if currentPadding < methodA.size then
8 methodA.address← methodA.address + padding
9 until (padding == 0)||(currentPadding >= methodA.size)

CHECK-CONFLICTS (methodA, methodB)
1 offsetA ← methodA.address&(CACHE SIZE − 1)
2 offsetB ← methodB.address&(CACHE SIZE − 1)
3 if offsetA < offsetB
4 then return (offsetA + methodA.size > offsetB)
5 else return (offsetB + methodB.size > offsetA)

CALCULATE-PADDING(methodA, methodB)
1 offsetA ← methodA.address&(CACHE SIZE − 1)
2 offsetB ← methodB.address&(CACHE SIZE − 1)
3 padding ← offsetB + methodB.size − offsetA

4 if (offsetB > (offsetA + methodA.size))
5 then return 0
6 else return padding

Figure 2. Pseudocode for Code Padding

callers and callees of method A to see if their mappings in the cache
overlap method A’s mapping. If DCR detects overlaps, it employs
a simple and fast algorithm to calculate a padding size that avoids
conflicts. DCR does not attempt to find an optimal padding size
that minimizes the expected number of conflict misses and wasted
code space. However, our experience is that the number of poten-
tially conflicting methods for a method is often one and therefore
this simple and efficient algorithm is usually sufficient. To avoid
wasting space, we use the method size as an upper bound on the
amount of padding we insert.

The detailed algorithm is in Figure 2. For each conflicting
method, CHECK-CONFLICTS computes where in the given cache
size they map and their overlap. If they overlap, it computes a
padding, accumulating any non-zero padding unless the padding
size exceeds the method size. Because DCR contiguously allocates
with a bump pointer in the code space, DCR applies the padding
by simply adding the padding size to the bump pointer before al-
locating the hot blocks of method A. Figure 1(e) depicts this code
layout.

4. Experimental Results
This section evaluates DCR and compares it to Jikes RVM with
and without a separate code space. For our evaluation, we first per-
form simulations to expose the magnitude of the performance loss
due to instruction cache conflicts of our Java applications, and the
benefits of padding in a controlled setting. We find that for a di-
rect mapped cache, programs lose around 6% on average and up to
17% of their performance to instruction cache conflict misses. We
further explore the performance impact of DCR using two architec-
tures: Pentium 4 and PowerPC; and two Jikes RVM configurations:
one that excludes most compilation and thus consists mostly appli-
cation time, and one that mixes the adaptive compilation and the
application. The latter experiment more accurately reflects a multi-
programmed workload, and is when DCR is most effective. A sim-
ple code space improves the default Jikes RVM configuration by
about 6%. Because the code footprint of our benchmarks is small,
additional DCR optimizations have little impact, occasionally im-
proving them and occasionally slowing them down.



Baseline O0 O0H O1 O1H O2 O2H
DaCapo Benchmarks

antlr 1,385,368 109,232 48,892 118,252 57,928 17,656 10,052
bloat 1,178,616 193,716 103,104 307,020 123,484 140,836 39,968

fop 1,841,528 37,868 17,352 41,396 15,872 4,068 2,484
hsqldb 516,800 15,628 6,024 284,332 74,328 104,956 33,324
jython 1,217,868 13,916 9,184 8,992 2,384 43,824 11,432

pmd 1,166,364 59,932 31,132 48,708 20,996 51,892 25,144
xalan 1,397,848 20,356 10,232 97,388 32,004 4,528 1,016

ps 205,472 16,212 9,068 17,648 10,004 5,264 3,432
SPEC Java Benchmarks

201 compress 173,432 2,208 1,392 180 112 4,248 2,108
202 jess 355,296 8,400 4,012 29,724 9,820 6,104 3,628

205 raytrace 220,508 13,560 7,232 15,808 10,736 1,228 960
209 db 175,640 2,476 1,156 0 0 5,804 3,412

213 javac 612,128 93,032 42,900 53,720 27,784 2,168 836
222 mpegaudio 546,512 21,968 8,320 22,104 8,280 6,464 4,116

227 mtrt 221,032 14,124 7,500 14,700 9,988 1,336 960
228 jack 465,028 9,964 4,440 36,756 21,008 4,352 2,604

pseudojbb 404,512 85,456 43,368 24,916 15,240 2,588 2,028
Arithmetic mean 710,820 42,238 20,900 65,979 25,880 23,960 8,677

Table 1. Benchmark Code Size Characteristics in Bytes with Replay Compilation

4.1 Application and Compiler Mix

We use two Jikes RVM compiler and application mixes for our
experiments, which we call second run and adaptive.

(1) The second run methodology uses profiling of the adaptive
compiler from previous runs (compiler replay [4, 20]) to determin-
istically optimize methods to their highest level when the method
first executes. We then perform a whole heap collection to flush the
heap of compiler objects, and execute the benchmark again. Some
additional, but minimal recompilation may take place during the
second run of the benchmark. We report measurements of this sec-
ond run because it consists almost entirely of application execution
and it is easier to understand and measure [6]. Eeckhout et al. show
that measuring the first iteration on SPECjvm98, which includes
the adaptive compiler, is dominated by the compiler rather than the
benchmark behavior [13]. This methodology gives a simple code
space an advantage because more compilation takes place early and
together (as we show below). This methodology would also mimic
the Arnold et al. system that combines offline and online profiles to
drive compilation [3].

(2) The adaptive methodology lets the optimizing compiler be-
have as intended, is non-deterministic, and measures compilation
and application time. Section 4.5 reports these results, which be-
cause the compiler competes with the application, are most indica-
tive of a multiprogrammed workload, and may be more indica-
tive of results on programs with larger icache footprints than our
benchmarks. For example, SPECjAppServer loses significant per-
formance to poor instruction cache behavior [10].

4.2 Benchmarks and Instruction Code Sizes

We use the SPECjvm98 [28], SPECjbb [29], and DaCapo bench-
marks [6]. Other work [6, 12, 20] characterizes the memory behav-
ior and memory system performance of the data for these bench-
marks. Table 1 shows instead the code size characteristics of these
benchmarks in bytes. We use the replay compilation methodology
to measure the size of generated code at each optimization stage.
Therefore the numbers here only include the final optimized code
for every method, since replay specifies exactly at which level to
compile each method. An adaptive compilation would instead com-
pile a very hot method M at multiple levels, e.g., baseline com-
piled first, and then optimizing compiled at level O0, level O1, and

level O2. Replay compilation only optimizes method M at level
O2. Table 1 thus shows the amount of compilation at each level,
and each method is compiled once at one level (although inlining
produces copies of some code). Column one lists the benchmarks.
The baseline column shows the total amount of baseline compiled
code in bytes, which ranges from 173 KB up 1841 KB. These vol-
umes clearly exceed the capacity of typical 8 to 32 KB instruction
caches, and demonstrate that for the most part, the DaCapo bench-
marks have larger code footprints than SPEC. For each of the three
levels of optimization (O0, O1, O2), the next six columns divide the
methods into hot (indicated with a suffix ‘H’) and cold code. We
use the edge profile to determine the hot basic blocks. The SPEC
Java benchmarks always produce less than 8 KB of hot code in the
O2H space, and the total size of the hot methods at O1 and O2 is
always less than 32 KB. For the DaCapo benchmarks at O2, there
are two programs with a hot code size of greater than 32 KB, and
at O1 plus O2, there are five of eight. The table thus indicates that
the working set of code (i.e., the hot code) in these programs is not
putting very much pressure on the instruction cache.

4.3 Simulation Results

To examine the potential of DCR’s capability to remove conflict
misses, we use Dynamic SimpleScalar (DSS) [18], a variant of
widely used SimpleScalar simulator [8] that is extended to run Java
programs. We simulate a fully associative instruction cache and
compare with a direct-mapped cache with the same access time
to show how much performance is lost to instruction cache conflict
misses. The base DSS configuration uses an aggressive processor
model with five-stage pipeline. The details of this standard simu-
lated microprocessor are as follows:

• Five-stage pipeline based on a 16 entry Register Update Unit
(RUU), which combines the physical register file, reorder
buffer, and issue window into a single data structure

• Out-of-order issue, including speculative execution
• Issue width, decode width, and commit width are 4
• 2-level branch predictor that uses its own 1 KB L1, 16 KB L2,

and a 14 bit history register. The BTB is 2 way associative with
256 sets.

• An 8-entry load-store queue
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Figure 3. Simulation Results for Directed-Mapped and Fully As-
sociative 32 KB IL1, 512 KB L2

We use two instruction cache configurations for these simulations.
(1) A 32 KB direct-mapped instruction cache and 512 KB unified
L2 cache; L1 access latency is 2 cycles and L2 access latency is 5.
(2) A 32 KB fully-associative instruction cache and 512 KB unified
L2 cache with the same latencies as configuration (1). We make
the hit latency of (1) and (2) the same to examine the potential
performance improvement if we have no conflict misses on a direct-
mapped instruction cache. We use the second run methodology
described above. We perform functional simulation for the first
iteration, turn off the adaptive compiler, and then switch to cycle
level simulation right before the second iteration, and then simulate
2 billion instructions.

Figure 3 compares the relative performance of DCR using as
its baseline hardware instruction cache configuration (1) with a
simple code space. It shows the benefits of DCR code splitting,
code splitting, padding, and a fully associative instruction cache
(hardware configuration (2)). DCR code splitting and padding per-
forms 7.1% better than a simple code space on jython although just
DCR code splitting itself degrades the performance 7.6%. DCR has
the opposite trend on xalan where code splitting improves perfor-
mance by 14.0% but combined with code padding the performance
degrades by 1.2%. Although the geometric mean of DCR perfor-
mance over all benchmarks is about the same (0.5% better or 0.6%
worse) as a simple code space on these benchmarks with modestly
sized instruction footprints, we believe that by carefully choosing
the DCR optimizations for each individual program, we may be
able to achieve better average results. The performance of the fully
associative cache shows that even these relatively small applica-
tions lose on average around 6% to instruction cache conflicts, but
that DCR is not consistently able to achieve that potential.

4.4 IA32 and PowerPC Performance Results

We report run-time results for our implementation on the following
two platforms.

3.2GHz Pentium 4 with hyper-threading enabled, a 64 byte L1
and L2 cache line size, an 8 KB 4-way set associative L1 data
cache, a 12 Kµops L1 instruction trace cache, a 512 KB unified
8-way set associative L2 on-chip cache, and 1 GB main memory
running Linux 2.6.0.

1.6 GHz PowerPC 970 with a 128 byte L1 and L2 cache line size,
a 32 KB 2-way set associative L1 instruction and data (split)
caches, a 512 KB unified 8-way set associative L2 on-chip
cache, and 1 GB main memory running Linux 2.6.0.

For each experiment we report, we run the experiment five times,
interleaving the compared systems. We use the methodologies
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Figure 4. Code Optimizations on Pentium 4
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Figure 6. Compiler Activity Histogram on First Iteration

above, and take the fastest time. The variation between these mea-
surements is low. We believe this number is relatively undisturbed
by other system factors. When measuring the system overhead in
the adaptive compiler, we believe the low variation from the fastest
time reflects a good application of the adaptive compiler. We use a
generational copying collector with a 4MB bounded nursery with
five heap sizes ranging from the smallest in which the application
runs up to three times larger [4, 6].

4.5 Application Performance

We use the second run methodology in experiments we report in
this section, and thus measure only the application behavior. We
first compare the performance of DCR with the method separation
and the default configuration in Jikes RVM (code is mixed in with
data in the heap) on the Pentium 4. Most of the benchmarks are not
sensitive to the code layout, but we found that a few benchmarks
have some sensitivity. Figure 4 shows two of these programs (antlr
and fop), and the geometric mean of all programs. All the per-
formance numbers report relative heap size (bottom), actual heap
size in KB (top), the normalized times on the left legend, and sec-
onds on the right legend. We normalize the time to the best time on
each figure, so it is easy to see the relative performance difference
between the configurations. Although most systems use separated
spaces for code and data, method separation, which further sep-
arates optimized compiled code from baseline compiled code, is
the worst performing configuration for antlr. For fop, mixing code
and data in the heap degrades its performance and DCR optimiza-
tions perform worse than just having a simple code space. DCR
optimizations perform about the same as Jikes RVM default con-
figuration for the geometric mean over all benchmarks.

We also performed the same experiments on the PowerPC
which has a traditional instruction cache instead of the instruction
trace cache on the Pentium 4. Figure 5 shows these results. DCR
has even less impact on performance on the PowerPC than on the
Pentium 4 because the PowerPC has a larger instruction cache (32
KB) and 2-way set associativity. It is thus large enough to contain
the working set of our benchmarks and its associativity reduces
the conflict misses. As the previous section showed in simulation,
a large capacity (32 KB) direct-mapped cache does however lose
performance to instruction cache misses (Figure 3).

4.6 Mix of Compiler and Application

This section reports on experiments using the adaptive methodol-
ogy which includes a mix of the application and the compiler as it
finds hot methods and compiles them at progressively higher levels.

The compiler histograms in Figure 6 show the differences between
when the recompilation takes place in the first run with adaptive
compiler versus the first run using replay compilation. We divide
each of the two executions of the program into twenty buckets and
then record the number of methods compiled at level O0 or higher,
and sum over all programs. When we use compiler replay (to elim-
inate non-determinism from adaptive recompilation), compilation
happens earlier in the program. We see this behavior because re-
play compilation compiles to the highest level of optimization in
the profile on the first execution of the method, instead of recom-
piling at multiple levels. The adaptive methodology is thus running
the compiler throughout the execution of the program. The peri-
odic execution of the compiler displaces application code from the
instruction cache and thus we believe the adaptive methodology is
a suitable environment in which to study instruction cache perfor-
mance programs because the competition for the cache mimics a
multiprogramming environment. In this case, the application and
JIT compiler interfere with each other.

Figure 7 shows the performance of various configurations of
DCR when using the adaptive methodology. The figures show the
total time, mutator time (program only without garbage collection),
and the trace cache flushes. We report trace cache flushes using the
Pentium 4 performance counters configured for this measurement.
We measure all the programs and present the geometric mean and
three programs ( 213 javac, 227 mtrt, fop) across four heap sizes
(the bottom axis reports relative to the smallest and the top axis
reports in MB). Again, we normalize the total and mutator time
figures to the best point to show relative differences.

The results show that a simple code space improves over the
Jikes RVM default configuration by 6% on average and by 30% on
fop. There are two reasons for this large difference in performance.

1. The Pentium 4’s trace cache is flushed whenever the program
writes to a page in the trace cache (e.g., when the VM writes
new code on to a page or writes data on the same page as
code). By mixing data and code together in the heap, Jikes RVM
greatly increases the possibility of flushing the trace cache be-
cause writing to the data space happens more often than writ-
ing to the instruction space. This effect is very clear in Fig-
ures 7(c),(f),(i) and (l), and is the reason that the corresponding
mutator time increases as the heap size grows for each of the
benchmarks and the geometric mean.

2. By scattering instructions into the heap, Jikes RVM destroys
the instruction spatial locality between methods. This effect is
especially crucial for architectures with hardware prefetch for
instructions.

DCR optimizations offer some additional, but modest improve-
ments on a few programs. For example, on 227 mtrt, DCR code
splitting is most effective, and improves over a code space by up to
5%. These results demonstrate that DCR has no appreciable over-
heads, and has the potential to improve performance over a ba-
sic code space in a multiprogrammed environment. Programs with
larger instruction cache working sets may benefit, but our programs
do not exercise this space.

5. Related work
Numerous researchers have studied the problem of restructuring
programs to improve memory performance. Much of the early
software-based work was aimed at reducing virtual memory page
faults. Some current work also tries to minimize these very expen-
sive faults [31]. However, most recent work focuses on static and
dynamic approaches for reordering code to reduce instruction and
ITLB misses with offline and online profiling.
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Figure 7. Total time, mutator time, and trace cache flushes for a simple code cache, Jikes RVM default and various DCR configurations.

5.1 Static code placement

Researchers have explored code placement at compile or link-time
at a number of different granularities: for example, at the granu-
larity of basic blocks, groups of basic blocks, or entire procedures.
A limitation of these static layout approaches is that they produce
a fixed static layout, which as we discussed in Section 1, is not
suitable for a managed runtime. Furthermore, static schemes must
assume that the profile data gathered on a training run is representa-
tive of all program executions and miss the opportunities available

to a managed runtime of exploiting profile data from the program’s
current execution.

McFarling [23] uses profile data to lay out code to reduce misses
in a direct-mapped instruction cache. His algorithm identifies those
parts of a program that could overlap each other in the cache and
those that should be placed in non-conflicting addresses.

Pettis and Hansen [24] perform profile-based code placement at
all three granularities. 1) At the finest granularity, basic block po-
sitioning lays out basic blocks to straighten out common control



paths and minimize control transfers. 2) Procedure splitting moves
a procedure’s never-executed basic blocks into a different alloca-
tion area from that of its other blocks. 3) At the coarsest granularity,
a greedy algorithm starts with an undirected weighted call graph
constructed from the profile data and progressively combines its
nodes to place frequent caller-callee procedure pairs close together.
Pettis and Hansen show that combining all three optimizations can
improve performance up to 26% (average about 12%) with a 16
KB directly-mapped unified cache. However, the improvement they
achieve is very sensitive to cache organization. Because it is both
simple and effective, their procedure ordering algorithm is gener-
ally considered the reference placement technique. It is the basis
for several more recent algorithms. However, it has performance
instability because small changes in the profile data often produce
substantially different layouts [19].

Cohn et al [11] describe the Spike post-link optimizer for Al-
pha/NT executables which includes the Pettis-Hansen procedure
code layout algorithm. They report that, on a set of large bench-
marks, Spike speeds up most by at least 5%, and often 10% or
better. Ispike [22] is a post-link optimizer for the Itanium Process
Family (IPF). It uses the IPF performance counters to collect low
cost detailed profile information for instruction and data optimiza-
tions including inlining, branch forwarding, layout, and prefetching
of both code and data. Their code layout optimization includes 1)
basic-block chaining to lay out basic blocks in sequence if there is a
frequently-executed control flow edge between them, 2) procedure
splitting, and 3) procedure layout that keeps hot procedures close
together. On a set of small benchmarks, they found that code layout
by itself helps one-third of the benchmarks by over 4%.

Hashemi et al. [15] take the cache configuration into account to
lay out procedures using cache line coloring. Their algorithm col-
ors each cache line in the instruction cache and uses a greedy algo-
rithm similar to Pettis and Hansen’s to place procedures such that
the most frequent caller-callee pairs will not occupy the same cache
lines. In simulation, they achieve better performance than Pettis and
Hansen. Gloy and Smith [14] also compute procedure layouts that
reflect the cache configuration. They collect complete procedure
interleaving information that in combination with the cache config-
uration and procedure sizes, they use to produce a layout that mini-
mizes both cache conflicts and the instruction working set size. By
making use of temporal locality information, their technique elim-
inates more cache conflict misses than Pettis and Hansen.

Ramirez et al. [25] developed a code reordering system, called
the Software Trace Cache (STC), that not only tries to improve
the instruction cache hit rate, but also increase the processor’s
effective instruction fetch width. Using profile information, STC
determines traces (hot basic block paths) then maps the resulting
traces into memory locations that minimize cache conflicts. It also
makes effective use of instruction cache lines while tending to keep
sequentially-executed instructions in order. STC also reserves a
region in the instruction cache for hot instructions to avoid conflict
misses with cold instructions.

Since these static approaches generate code layouts ahead-of-
time, they lose the flexibility of determining layouts using the
actual information for a particular run of a program. They also
cannot cope with different program phases. The time complexity
of these algorithms is too high for a dynamic scheme. For example,
Pettis and Hansen’s algorithm has a time complexity of O(n3).
These limitations make them less useful in the context of virtual
machines.

5.2 Dynamic code placement

Dynamic schemes for improving instruction locality typically mon-
itor system behavior and apply optimizations at runtime based on
that behavior.

Chen and Leupen’s just-in-time code layout technique places
the procedures of Windows applications in the order of their in-
vocation at runtime [9] . Their results show improvements similar
to that of the Pettis and Hansen. It also substantially reduces the
program’s working set size, often by about 50%. Pettis-Hansen’s
procedure layout also reduces the working set, but being a static
approach, it is less effective because the procedures executed typi-
cally do not exactly match those of the training run. Chen and Leu-
pen’s approach lays out procedures at allocation time, whereas our
approach reorders hot procedures during recompilation.

Scales’ DPP (dynamic procedure placement) system uses run-
time information to dynamically lay out procedure code [27]. DPP
uses a loader component that is invoked on procedure calls. This
copies the code of the called procedure to a new code region, where
it will be close to the caller, then fixes up all references to the pro-
cedure to refer to the new copy. Because this system supports C
and other languages that are not strongly typed, it deals with in-
direct calls by memory protecting the original code space, so that
attempts to call a procedure at its original address result in a trap
whose handler then invokes the new copy of that procedure. DPP’s
overhead is high because of the virtual memory protection traps
and the many calls to the DPP loader. The DPP system can restart
procedure placement to try to improve the layout, but each restart
is expensive due to the overhead of the new loader calls. An exten-
sion of DPP supports runtime profiling: at each call to the loader,
the call stack is recorded to build a profile of the calls. This infor-
mation is used later to improve the layout. However, this profiling
is extremely expensive and slows down the program by a factor of
ten or more.

Whaley [30] very briefly outlines a never implemented dynamic
procedure code layout optimization for Jikes RVM. It also piggy-
backs on branch and call stack profiling, but suggests passing this
information to the garbage collector as a hint to reorder code in
the heap (see Figure 1(a)). In contrast, DCR separates code from
data objects in the heap which sometimes improves performance.
Furthermore, DCR pads conflicting hot caller/callee pairs when the
methods are recompiled, and does not wait until garbage collection.

Huang et al. [19] developed several more efficient algorithms
for generating a code layout. Their algorithms are up to 6000
times faster than the popular Pettis-Hansen algorithm. However,
they use fairly expensive instrumentation to gather their profile
data and perform a complete reorganization of all the compiled
code. Both of these factors result in large overheads for short
running applications. Our techniques try to allocate code in the
right place when it is generated and piggyback on the natural
actions of the adaptive recompilation system. This organization
achieves significantly lower overheads than previous approaches,
and may have the potential to obtain speedups on programs with
modest running times.

Recent research [7, 16, 17, 26] investigates code cache manage-
ment for dynamic binary optimizing systems. This work focuses
on frameworks for software managed code caches, creating basic
block sequences (superblocks) for a trace cache, replacement poli-
cies for hardware instruction caches, and sharing between threads.
Our work is complementary to theirs since we not only reduce the
working set size by code splitting, but also reduce conflict misses
by code padding.

Our system thus differs from the prior work in several key ways:
it is not restricted to invocation order [9], nor rely on expensive
page protection [27], nor does it require special hardware [26, 17],
and it is implemented in a JVM [30].



6. Conclusions
This work develops and throughly evaluates a dynamic code re-
ordering system specifically tailored for use in a virtual machine.
By exploiting existing online profiling mechanisms and piggyback-
ing on the activities of the adaptive recompilation system, DCR
seeks to improve instruction locality in a completely online fash-
ion with negligible overhead. DCR employs three optimizations
(1) interprocedural hot/cold method separation, (2) intraprocedural
hot/cold code splitting, and (3) interprocedural hot code padding
that together improve instruction locality by reducing both capac-
ity and conflict misses.

We have completely implemented DCR in Jikes RVM for both
the IA32 and PowerPC architectures and present experimental re-
sults using the SPEC Java and DaCapo benchmark suites on Intel
Pentium 4 and PowerPC 970 machines. We also present simulation
results that demonstrate the effectiveness of DCR at eliminating
conflict misses. Overall, the results show that instruction locality
can have an important impact on overall performance of some Java
applications. Although on average the improvement is minor, DCR
occasionally improves performance by improving instruction local-
ity and thus merits further investigation on larger benchmarks.
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