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the Algol60 programming language in 
1972 and later translated into many 
other languages. Several benchmarks 
became well known and widely used 
in research or commercial settings, or 
both. Examples include the Livermore 
loops, the Dhrystone benchmark, the 
Linpack benchmark, and the Perfect 
Club benchmarks.

The design and selection of bench-
marks, however, has traditionally been 
a matter of art and taste, as much sci-
ence as engineering. The paper here by 
the DaCapo team is the best effort I’ve 
seen in providing a sound basis for se-
lecting benchmarks. Historically, there 
has not been any standard methodolo-
gy for deciding whether or not a bench-
mark did indeed provide a representa-
tive measure of a system’s performance 
within a particular domain. A more 
serious problem with benchmarks is 
that they age poorly. Benchmarks of-
ten do a reasonable job of evaluating 
the performance of applications at the 
time they are proposed. However, three 
things tend to make benchmarks grow 
less useful over time:

As machines and memories grow  !

faster and larger, the sizes of applica-
tion data sets grow as well. What was 
considered a reasonable problem size 
when a benchmark was proposed soon 
becomes a trivial example that fits in 
the on-processor cache.

The actual applications that people  !

use systems for evolve over time, and 
benchmarks that were once represen-
tative become less so.

The weight attached to benchmark  !

performance encourages develop-
ers of computer systems to optimize, 
tune, and tweak their systems in ways 
that improve their performance on the 
benchmarks but not more generally, 
making the benchmarks—again—less 
representative.

Almost every systems researcher 
and commercial software developer 
has a personal horror story about a 
poorly designed benchmark that was 

C O M P U T E R  S C I E N C E  H A S  long had a sol-
id foundation for evaluating the per-
formance of algorithms. The asymp-
totic complexity of the time required 
by an algorithm is well defined and 
usually tractable, allowing for a clear 
evaluation of whether one algorithm 
provides a fundamental improvement 
over another. More nuanced and alter-
native evaluations, such as amortized 
and randomized analysis, provide ad-
ditional insights into the fundamental 
advantages of different algorithms.

Unfortunately, the situation is even 
grimmer when evaluating the perfor-
mance of a computer system, whether 
that system is a computer architec-
ture, a compiler, a graphics processor, 
or a runtime system. Given a specific 
application, it is often fairly straight-
forward to execute the application on 
various systems and evaluate which 
system offers faster execution of that 
application on the provided input. Of 
course, once an application has been 
run on a particular input, one gener-
ally does not need to rerun it on that 
same input.

What programmers really want is 
some way to evaluate which system is 
likely to provide better performance 
on applications and data sets run in 
the future, thus making it the “bet-
ter” system. Benchmarks also provide 
a way to examine how various system 
components behave and interact un-
der load. Benchmarks should give re-
peatable results, even when rerun by 
an independent researcher or testing 
organization. A benchmark can be 
either a real or a synthetic applica-
tion.

A synthetic application doesn’t 
compute anything useful but is de-
signed to have performance character-
istics that are representative of a range 
of real applications.

Benchmarks have an established 
history in computer science. The first 
widely used synthetic benchmark was 
the Whetstone benchmark written in 

difficult to use, produced misleading 
results, or focused attention on the 
wrong problem for too long. One such 
story in my own experience involves the 
SPEC JVM98 db benchmark intended 
to represent a database benchmark. 
Several early papers on removing re-
dundant or useless synchronization 
from Java programs focused on this 
benchmark, since removing such syn-
chronization could produce a 20% to 
30% speed improvement in the bench-
mark. However, closer examination re-
vealed that more than 70% of the CPU 
time for this benchmark was spent in a 
badly written 20-line Shell sort; replac-
ing the handwritten sort with a call to 
the built-in sort function doubled the 
execution speed, even without remov-
ing the useless synchronization.

The DaCapo research group offers 
what seems to be an exceptionally well 
engineered set of benchmarks for eval-
uating Java computer systems. This 
includes not only selecting the bench-
mark applications, but designing a 
substantial infrastructure to support 
the execution and evaluation of bench-
mark executions.

Far more important than the actual 
selection of the benchmarks and the 
engineering infrastructure, the DaCa-
po team has put together an excellent 
description of best practices for using 
benchmarks to evaluate Java system 
performance, as well as a principled 
approach for evaluating whether a 
suite of benchmark applications is, in 
fact, sufficiently diverse. This approach 
involves measuring a number of char-
acteristics of each application, and 
then applying principal component 
analysis (PCA) to determine whether 
the applications do have fundamental 
differences, or if they basically mea-
sure the same aspects of a system. I 
hope the methodology described in 
the paper will allow the DaCapo bench-
mark suite, and others, to be evaluated 
so they can evolve in ways that make 
them useful as well as meaningful for 
more than just a moment in time. 

William Pugh (pugh@cs.umd.edu) is a professor in the 
Department of Computer Science at the University of 
Maryland, College Park.

Technical Perspective
A Methodology for Evaluating 
Computer System Performance
By William Pugh

1_CACM_V51.8.indb   82 7/21/08   10:13:37 AM



Wake Up and Smell the Coffee: 
Evaluation Methodology  
for the 21st Century
By Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer 
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, 
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Abstract
Evaluation methodology underpins all innovation in experi-
mental computer science. It requires relevant workloads, 
appropriate experimental design, and rigorous analysis. 
Unfortunately, methodology is not keeping pace with the 
changes in our field. The rise of managed languages such 
as Java, C#, and Ruby in the past decade and the imminent 
rise of commodity multicore architectures for the next de-
cade pose new methodological challenges that are not yet 
widely understood. This paper explores the consequences 
of our collective inattention to methodology on innovation, 
makes recommendations for addressing this problem in 
one domain, and provides guidelines for other domains. 
We describe benchmark suite design, experimental design, 
and analysis for evaluating Java applications. For example, 
we introduce new criteria for measuring and selecting di-
verse applications for a benchmark suite. We show that the 
complexity and nondeterminism of the Java runtime system 
make experimental design a first-order consideration, and 
we recommend mechanisms for addressing complexity and 
nondeterminism. Drawing on these results, we suggest how 
to adapt methodology more broadly. To continue to deliver 
innovations, our field needs to significantly increase partici-
pation in and funding for developing sound methodological 
foundations.

1. INTRODUCTION
Methodology is the foundation for judging innovation in 
experimental computer science. It therefore directs and 
misdirects our research. Flawed methodology can make 
good ideas look bad or bad ideas look good. Like any infra-
structure, such as bridges and power lines, methodology is 
often mundane and thus vulnerable to neglect. While sys-
temic misdirection of research is not as dramatic as a bridge 
collapse11 or  complete power failure,10 the scientific and 
economic cost may be considerable. Sound methodology 
includes using appropriate workloads, principled experi-
mental design, and rigorous analysis. Unfortunately, many 
of us struggle to adapt to the rapidly changing computer sci-
ence landscape. We use archaic benchmarks, outdated ex-
perimental designs, and/or inadequate data analysis. This 
paper explores the methodological gap, its consequences, 
and some solutions. We use the commercial uptake of man-
aged languages over the past decade as the driving example.

Many developers today choose managed languages, which 
provide: (1) memory and type safety, (2) automatic memory 
management, (3) dynamic code execution, and (4) well-de-
fined boundaries between type-safe and unsafe code (e.g., JNI 
and Pinvoke). Many such languages are also object-oriented. 
Managed languages include Java, C#,  Python, and Ruby. C 
and C++ are not managed languages; they are compiled-
ahead-of-time, not garbage collected, and unsafe. Unfortu-
nately, managed languages add at least three new degrees of 
freedom to experimental evaluation: (1) a space–time trade-off 
due to garbage collection, in which heap size is a control vari-
able, (2) nondeterminism due to adaptive optimization and 
sampling technologies, and (3) system warm-up due to dy-
namic class loading and just-in-time (JIT) compilation.

Although programming language researchers have em-
braced managed languages, many have not evolved their 
evaluation methodologies to address these additional de-
grees of freedom. As we shall show, weak methodology leads 
to incorrect findings. Equally problematic, most architecture 
and operating systems researchers do not use appropriate 
workloads. Most ignore managed languages entirely, despite 
their commercial prominence. They continue to use C and 
C++ benchmarks, perhaps because of the significant cost and 
challenges of developing expertise in new infrastructure. Re-
gardless of the reasons, the current state of methodology for 
managed languages often provides bad results or no results.

To combat this neglect, computer scientists must be 
 vigilant in their methodology. This paper describes how 
we addressed some of these problems for Java and makes 
recommendations for other domains. We discuss how 
benchmark designers can create forward-looking and diverse 
workloads and how researchers should use them. We then 
present a set of experimental design guidelines that accom-
modate complex and nondeterministic workloads. We show 
that managed languages make it much harder to produce 
meaningful results and suggest how to identify and explore 
control variables. Finally, we discuss the importance of rig-
orous analysis8 for complex nondeterministic systems that 
are not amenable to trivial empirical methods.

We address neglect in one domain, at one point in time, 
but the broader problem is widespread and growing. For 
example, researchers and industry are pouring resources 
into and exploring new approaches for embedded sys-
tems, multicore architectures, and concurrent program-
ming models. However, without consequent investments 
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in methodology, how can we confidently evaluate these 
approaches? The community must take responsibility for 
methodology. For example, many Java evaluations still use 
SPECjvm98, which is badly out of date. Out-of-date bench-
marks are problematic because they pose last year’s prob-
lems and can lead to different conclusions.17 To ensure a 
solid foundation for future innovation, the community 
must make continuous and substantial investments. Es-
tablishing community standards and sustaining these in-
vestments require open software infrastructures contain-
ing the consequent artifacts.

For our part, we developed a new benchmark suite and 
new methodologies. We estimate that we have spent 10,000 
person-hours to date developing the DaCapo suite and asso-
ciated infrastructure, none of it directly funded. Such a ma-
jor undertaking would be impossible without a large number 
of contributing institutions and individuals. Just as NSF and 
DARPA have invested in networking infrastructure to foster 
the past and future generations of the Internet, our commu-
nity needs foundational investment in methodological in-
frastructure to build next-generation applications, software 
systems, and architectures. Without this investment, what 
will be the cost to researchers, industry, and society in lost 
opportunities?

2. WORKLOAD DESIGN AND USE
The DaCapo research group embarked on building a Java 
benchmark suite in 2003 after we highlighted the dearth 
of realistic Java benchmarks to an NSF review panel. The 
panel suggested we solve our own problem, but our grant 
was for dynamic optimizations. NSF did not provide ad-
ditional funds for benchmark development, but we forged 
ahead regardless. The standard workloads at the time, 
SPECjvm98 and SPECjbb2000,14,15 were out of date. For ex-
ample, SPECjvm98 and SPECjbb2000 make meager use of 
Java language features, and SPECjvm98 has a tiny code and 
memory footprint. (SPEC measurements are in a technical 
report3.) We therefore set out to create a suite suitable for re-
search, a goal that adds new requirements beyond SPEC’s 
goal of product comparisons. Our goals were:

Relevant and diverse workload: A diverse, widely used set 
of nontrivial applications that provide a compelling plat-
form for innovation.

Suitable for research: A controlled, tractable workload 
amenable to analysis and experiments.

We selected the following benchmarks for the initial release 
of the DaCapo suite, based on criteria described below.

antlr Parser generator and translator generator
bloat Java bytecode-level optimization and analysis tool
chart Graph-plotting toolkit and PDF renderer
eclipse Integrated development environment (IDE)
fop Output-device-independent print formatter
hsqldb SQL relational database engine written in Java
jython Python interpreter written in Java
luindex Text-indexing tool
lusearch Text-search tool

pmd  Source code analyzer for Java
xalan XSLT transformer for XML documents

2.1. Relevance and diversity
No workload is definitive, but a narrow scope makes it pos-
sible to attain some coverage. We limited the DaCapo suite 
to nontrivial, actively maintained real-world Java applica-
tions. We solicited and collected candidate applications. 
Because source code supports research, we considered only 
open-source applications. We first packaged candidates 
into a prototype DaCapo harness and tuned them with in-
puts that produced tractable execution times suitable for ex-
perimentation, that is, around a minute on 2006 commodity 
hardware. Section 2.2 describes how the DaCapo packaging 
provides tractability and standardization.

We then quantitatively and qualitatively evaluated each 
candidate. Table 1 lists the static and dynamic metrics we 
used to ensure that the benchmarks were relevant and di-
verse. Our original paper4 presents the DaCapo metric data 
and our  companion technical report3 adds SPECjvm98 and 
SPECjbb200. We compared against SPEC as a reference point 
and  compared candidates with each other to ensure diversity.

We used new and standard metrics. Our standard met-
rics included the static CK metrics, which measure code 
 complexity of object-oriented programs6; dynamic heap 
composition graphs, which measure time-varying lifetime 
properties of the heap16; and architectural characteristics 
such as branch misprediction rates and instruction mix. 
We introduced new metrics to capture domain- specific 
 characteristics of Java such as allocation rate, ratio of 

Table 1: Quantitative selection metrics.

Metric Description
Code Metrics
CK metrics6  Object-oriented programming metrics measuring 

source code complexity

Code size  Numbers of classes loaded, methods declared, total 

bytecodes compiled

Code footprint Instruction cache and I-TLB misses

Optimization  Number of methods compiled, number optimized, 

percentage hot

Heap Metrics
Allocation Total bytes/objects allocated, average object size

Heap footprint Maximum live bytes/objects, nursery survival rate

Fan-out/fan-in Mean incoming and outgoing pointers per object

Pointer distance  Mean distance in bytes of each pointer encountered 

in a snapshot traversal of an age-ordered heap

Mutation distance  Mean distance in bytes of each pointer dynami-

cally created/mutated by the application in an age-

 ordered heap

Architecture Metrics
Instruction mix Mix of branches, ALU, and memory instructions

Branches  Branch mispredictions per instruction for PMM 

 predictor

Register  Register dependence distances 

dependence
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allocated to live memory, and heap mutation rate. These 
new metrics included summaries and time series of allo-
cated and live object size demographics, summaries and 
time series of pointer distances, and summaries and time 
series of mutation distances. Pointer distance and mutation 
distance time-series metrics summarize the lengths of the 
edges that form the application’s object graph. We designed 
these metrics and their means of collection to be abstract, 
so that the measurements are VM-neutral.4

Figure 1 qualitatively illustrates the temporal complex-
ity of heap composition and pointer distance metrics for 
two benchmarks, _209_db and eclipse. With respect to our 
metrics, eclipse from DaCapo is qualitatively richer than 
_209_db from SPECjvm98. Our original paper explains how 
to read these graphs and includes dozens of graphs, repre-
senting mountains of data.4 Furthermore, it shows that the 
DaCapo benchmarks substantially improve over SPECjvm98 
on all measured metrics. To confirm the diversity of the 
suite, we applied principal component analysis (PCA)7 to 
the summary metrics. PCA is a multivariate statistical tech-
nique for reducing a large N-dimensional space into a low-
er-dimensional uncorrelated space. If the benchmarks are 
uncorrelated in lower-dimensional space, then they are also 
uncorrelated in the higher-dimensional space. The analysis 
shows that the DaCapo benchmarks are diverse, nontrivial 
real-world applications with significant memory load, code 
complexity, and code size.

Because the applications come from active projects, 
they include unresolved performance anomalies, both typi-
cal and unusual programming idioms, and bugs. Although 
not our intention, their rich use of Java features uncovered 
bugs in some commercial JVMs. The suite notably omits 
Java application servers, embedded Java applications, and 
numerically intensive applications. Only a few benchmarks 
are explicitly concurrent. To remain relevant, we plan to up-
date the DaCapo benchmarks every two years to their latest 
version, add new applications, and delete applications that 
have become less relevant. This relatively tight schedule 
should reduce the extent to which vendors may tune their 
products to the benchmarks (which is standard practice, no-
tably for SPECjbb20001).

As far as we know, we are the first to use quantitative met-
rics and PCA analysis to ensure that our suite is diverse and 
nontrivial. The designers of future suites should choose 
additional aggregate and time-varying metrics that direct-
ly address the domain of interest. For example, metrics 
for concurrent or embedded applications might include a 
 measure of the fraction of time spent executing purely se-
quential code, maximum and time-varying degree of paral-
lelism, and a measure of sharing between threads.

2.2. Suitable for research
We decided that making the benchmarks tractable, stan-
dardized, and suitable for research was a high priority. 
While not technically deep, good packaging is extremely 
time consuming and affects usability. Researchers need 
tractable workloads because they often run thousands of ex-
ecutions for a single experiment. Consider comparing four 
garbage  collectors over 16 heap sizes—that is, we need 64 

combinations to measure. Teasing apart the performance 
differences with multiple hardware performance moni-
tors may add eight or more differently instrumented runs 
per  combination. Using five trials to ensure statistical sig-
nificance  requires a grand total of 2560 test runs. If a single 
benchmark test run takes as long as 20 min (the time limit is 
30 min on SPECjbb15), we would need over a month on one 
machine for just one benchmark comparison—and surely 
we should test the four garbage collectors on many bench-
marks, not just one.

Moreover, time-limited workloads do not hold work con-
stant, so they are analytically inconvenient for reproducibil-
ity and controlling load on the JIT compiler and the garbage 
collector. Cycle-accurate simulation, which slows execution 
down by orders of magnitude, further amplifies the need for 
tractability. We therefore provide work-limited benchmarks 
with three input sizes: small, default, and large. For some of 
the benchmarks, large and default are the same. The larg-
est ones typically executed in around a minute on circa 2006 
commodity high-performance architectures.

We make simplicity our priority for packaging; we ship the 
suite as a single self-contained Java jar file. The file contains 
all benchmarks, a harness, input data, and checksums for 
correctness. The harness checksums the output of each it-
eration and compares it to a stored value. If the values do not 
match, the benchmark fails. We provide extensive configu-
ration options for specifying the number of iterations, the 
ability to run to convergence with customized convergence 
criteria, and callback hooks before and after every iteration. 
For example, the user-defined callbacks can turn hardware 
performance counters on and off, or switch a simulator in 
and out of detailed simulation mode. We use these features 
extensively and are heartened to see others using them.12 
For standardization and analytical clarity, our benchmarks 
require only a single host and we avoid components that 
require user configuration. By contrast, SPEC jAppServer, 
which models real-world application servers, requires mul-
tiple hosts and depends on third-party–configurable com-
ponents such as a database. Here we traded some relevance 
for control and analytical clarity.

We provide a separate “source” jar to build the entire 
suite from scratch. For licensing reasons, the source jar au-
tomatically downloads the Java code from the licensor. With 
assistance from our users,5 our packaging now facilitates 
static whole program analysis, which is not required for 
standard Java implementations. Since the entire suite and 
harness are open-source, we happily accept contributions 
from our users.

2.3. The researcher
Appropriate workload selection is a task for the commu-
nity, consortia, the workload designer, and the researcher. 
Researchers make a workload selection, either implicitly or 
explicitly, when they conduct an experiment. This selection 
is often automatic: “Let’s use the same thing we used last 
time!” Since researchers invest heavily in their evaluation 
methodology and infrastructure, this path offers the least 
resistance. Instead, we need to identify the workloads and 
methodologies that best serve the research evaluation. If 
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there is no satisfactory answer, it is time to form or join a con-
sortium and create new suitable workloads and supporting 
infrastructure.
Do Not Cherry-Pick! A well-designed benchmark suite re-
flects a range of behaviors and should be used as a whole. 
Perez et al. demonstrate with alarming clarity that cherry-
picking changes the results of performance evaluation.13 
They simulate 12 previously published cache architecture 
optimizations in an apples-to-apples evaluation on a suite of 
26 SPECcpu benchmarks. There is one clear winner with all 
26 benchmarks. There is a choice of 2 different winners with 
a suitable subset of 23 benchmarks, 6 winners with subsets 
of 18, and 11 winners with 7. When methodology allows re-
searchers a choice among 11 winners from 12 candidates, 
the risk of incorrect conclusions, by either mischief or error, 
is too high. Section 3.1 shows that Java is equally vulnerable 
to subsetting.

Run every benchmark. If it is impossible to report results 
for every benchmark because of space or time constraints, 
bugs, or relevance, explain why. For example, if you are pro-
posing an optimization for multithreaded Java workloads, 
you may wish to exclude benchmarks that do not exhibit 
concurrency. In this case, we recommend reporting all the 
results but highlighting the most pertinent. Otherwise read-
ers are left guessing as to the impact of the “optimization” 
on the omitted workloads—with key data omitted, readers 
and reviewers should not give researchers the benefit of the 
doubt.

3. EXPERIMENTAL DESIGN
Sound experimental design requires a meaningful base-
line and comparisons that control key parameters. Most 
researchers choose and justify a baseline well, but identify-
ing which parameters to control and how to control them is 
challenging.

3.1. Gaming your results
The complexity and degrees of freedom inherent in these 
systems make it easy to produce misleading results through 
errors, omissions, or mischief. Figure 2 presents four results 
from a detailed comparison of two garbage collectors. The 
JVM, architecture, and other evaluation details appear in the 
original paper.4 More garbage collector implementation de-
tails are in Blackburn et al.2 Each graph shows normalized 
time (lower is better) across a range of heap sizes that expose 
the space–time tradeoff for implementations of two canoni-
cal garbage collector designs, SemiSpace and MarkSweep.

Subsetting Figure 2 badly misleads us in at least three 
ways: (1) Figure 2(c) shows that by selecting a single heap size 
rather than plotting a continuum, the results can produce 
 diametrically opposite conclusions. At 2.1 × maximum heap 
size, MarkSweep performs much better than  SemiSpace, 
while at 6.0 × maximum heap size, SemiSpace performs  better. 
Figures 2(a) and 2(d) exhibit this same dichotomy, but have 
different crossover points. Unfortunately, some research-
ers are still evaluating the performance of garbage-collected 
languages without varying heap size. (2) Figures 2(a) and 2(b) 
confirm the need to use an entire benchmark suite. Although 
_209_db and hsqldb are established in-memory database 
benchmarks, SemiSpace  performs better for _209_db in large 
heaps, while MarkSweep is always better for hsqldb. (3) Figures 
2(c) and 2(d) show that the architecture significantly impacts 
conclusions at these heap size ranges. MarkSweep is better at 
more heap sizes for AMD hardware as shown in Figure 2(c). 
However, Figure 2(d) shows SemiSpace is better at more heap 
sizes for PowerPC (PPC) hardware. This example of garbage-
collection evaluation illustrates a small subset of the pitfalls 
in evaluating the performance of managed languages.

3.2. Control in a changing world
Understanding what to control and how to control it in an 

Figure 1: Two time-varying selection metrics. Pointer distance (top) and heap composition (bottom) as a function of time.
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experimental system is clearly important. For a classic com-
parison of Fortran, C, or C++ systems, there are at least two 
degrees of freedom to control: (a) the host platform (hard-
ware and operating system) and (b) the language runtime 
(compiler and associated libraries). Over the years, research-
ers have evolved solid methodologies for evaluating compil-
er, library, and architectural enhancements that target these 
languages. Consider a compiler optimization for improving 
cache locality. Accepted practice is to compile with and with-
out the optimization and report how often the compiler ap-
plied the optimization. To eliminate interference from other 
processes, one runs the versions standalone on one or more 
architectures and measures miss rates with either perfor-
mance counters or a simulator. This methodology evolved, 
but is now extremely familiar. Once researchers invest in a 
methodology, the challenge is to notice when the world has 
changed, and to figure out how to adapt.

Modern managed runtimes such as Java add at least three 
more degrees of freedom: (c) heap size, (d) nondeterminism, 
and (e) warm-up of the runtime system.

Heap Size: Managed languages use garbage collection to 
detect unreachable objects, rather than relying on the pro-
grammer to explicitly delete objects. Garbage collection is 
fundamentally a space–time trade-off between the efficacy 
of space reclamation and time spent reclaiming objects; 
heap size is the key control variable. The smaller the heap 
size, the more often the garbage collector will be invoked 
and the more work it will perform.

Nondeterminism: Deterministic profiling metrics are ex-
pensive. High-performance JVMs therefore use approximate 
execution frequencies computed by low-overhead dynamic 
sampling to select which methods the JIT compiler will op-
timize and how. For example, a method may happen to be 
sampled N times in one invocation and N + 3 in another; if 
the optimizer uses a hot-method threshold of N + 1, it will 
make different choices. Due to this nondeterminism, code 
quality usually does not reach the same steady state on a de-
terministic workload across independent JVM invocations.

Warm-Up: A single invocation of the JVM will often execute 
the same application repeatedly. The first iteration of the ap-
plication usually includes the largest amount of dynamic 
compilation. Later iterations usually have both less compi-
lation and better application code quality. Eventually, code 
quality may reach a steady state. Code quality thus “warms 
up.” Steady state is the most frequent use-case. For example, 
application servers run their code many times in the same 

JVM invocation and thus care most about steady-state perfor-
mance. Controlling for code warm-up is an important aspect 
of experimental design for high-performance  runtimes.

3.3. Case study
We consider performance evaluation of a new garbage col-
lector as an example of experimental design. We describe 
the context and then show how to control the factors de-
scribed above to produce a sound experimental design.

Two key context-specific factors for garbage-collection 
evaluation are (a) the space–time trade-off as discussed 
above and (b) the relationship between the collector and 
mutator (the term for the application itself in the gar-
bage-collection literature). For simplicity, we consider 
a stop-the-world garbage collector, in which the collector 
and the mutator never overlap in execution. This separa-
tion eases measurement of the mutator and collector. 
Some collector-specific code mixes with the mutator: ob-
ject allocation and write barriers, which identify pointers 
that cross between independently collected regions. This 
code impacts both the mutator and the JIT compiler. Fur-
thermore, the collector greatly affects mutator locality, due 
to the allocation policy and any movement of objects at col-
lection time.

Meaningful Baseline: Comparing against the state of the 
art is ideal, but practical only when researchers make their 
implementations publicly available. Researchers can then 
implement their approaches using the same tools or con-
trol for infrastructure differences to make apples-to-apples 
comparisons. Garbage-collection evaluations often use gen-
erational MarkSweep collectors as a baseline because these 
collectors are widely used in high-performance VMs and 
perform well.

Host Platform: Garbage collectors exhibit architecture-
dependent performance properties that are best revealed 
with an evaluation across multiple architectures, as shown 
in Figures 2(c) and 2(d). These properties include locality, 
the cost of write barriers, and the cost of synchronization 
 instructions.

Language Runtime: The language runtime, libraries, and 
JIT compiler directly affect memory load, and so should be 
controlled. Implementing various collectors in a common 
toolkit factors out common shared mechanisms and focus-
es the comparison on the algorithmic differences between 
the collectors.

Heap Size: Garbage-collection evaluations should com-

Figure 2: Gaming your results. Four ways to compare two garbage collectors.
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pare performance across a range of benchmark-specific 
relative heap sizes, starting at the smallest heap in which 
any of the measured collectors can run, as shown in Figure 
2. Each evaluated system must experience the same memory 
load, which requires forcing collections between iterations 
to normalize the heap and controlling the JIT compiler.

Nondeterminism: Nondeterministic JIT optimization 
plans lead to nondeterministic mutator performance. JIT 
optimization of collector-specific code, optimizations that 
elide allocations, and the fraction of time spent in collec-
tion may affect mutator behavior in ways that cannot be pre-
dicted or repeated. For example, in Jikes RVM, a Java-in-Java 
VM widely used by researchers, JIT compiler activity directly 
generates garbage collection load because the compiler al-
locates and executes in the same heap as the application. 
These effects make nondeterminism even more acute.

Warm-Up: For multi-iteration experiments, as the system 
warms up, mutator speeds increase, and JIT compiler  activity 
decreases, the fraction of time spent in collection  typically 
grows. Steady-state execution therefore accentuates the im-
pact of the garbage collector as compared to start-up. Fur-
thermore, the relative impact of collector- specific code will 
change as the code is more aggressively optimized. Evalua-
tions must therefore control for code quality and warm-up.

3.4. Controlling nondeterminism
Of the three new degrees of freedom outlined in Section 3.2, 
we find dealing with nondeterminism to be the most meth-
odologically challenging. Over time, we have adopted and 
recommend three different strategies: (a) use deterministic 
replay of optimization plans, which requires JVM support; 
(b) take multiple measurements in a single JVM invocation, 
after reaching steady state and turning off the JIT compiler; 
and (c) generate sufficient data points and apply suitable 
statistical analysis.8 Depending on the experiment, the re-
searcher will want to perform one, two, or all of these experi-
ments. The first two reduce nondeterminism for analysis 
purposes by controlling its sources. Statistical analysis of 
results from (a) and (b) will reveal whether differences from 
the remaining nondeterminism are significant. The choice 
of (c) accommodates larger factors of nondeterminism (see 
 Section 4) and may be more realistic, but requires significant-
ly more data points, at the expense of other experiments.

Replay Compilation: Replay compilation collects pro-
file data and a compilation plan from one or more train-
ing runs, forms an optimization plan, and then replays 
it in subsequent, independent timing invocations.9 This 
methodology deterministically applies the JIT compiler, 
but requires modifications to the JVM. It isolates the JIT 
compiler activity, since replay eagerly compiles to the 
plan’s final optimization level instead of lazily relying on 
dynamic recompilation triggers. Researchers can mea-
sure the first iteration for deterministic characterization 
of start-up behavior. Replay also removes most profiling 
overheads associated with the adaptive optimization sys-
tem, which is turned off. As far as we are aware, produc-
tion JVMs do not support replay compilation.

Multi-Iteration Determinism: An alternative approach 

that does not depend on runtime support is to run multiple 
measurement iterations of a benchmark in a single invo-
cation, after the runtime has reached steady state. Unlike 
replay, this approach does not support deterministic mea-
surement of warm-up. We use this approach when gather-
ing data from multiple hardware performance counters, 
which requires multiple distinct measurements of the same 
system. We first perform N – 1 unmeasured iterations of a 
benchmark while the JIT compiler warms up the code. We 
then turn the JIT compiler off and execute the Nth iteration 
unmeasured to drain any JIT work queues. We measure the 
next K iterations. On each iteration, we gather different per-
formance counters of interest. Since the code quality has 
reached steady state, it should be a representative mix of 
optimized and unoptimized code. Since the JIT compiler is 
turned off, the variation between the subsequent iterations 
should be low. The variation can be measured and verified.

3.5. Experimental design in other settings
In each experimental setting, the relative influence of the 
degrees of freedom, and how to control them, will vary. For 
example, when evaluating a new compiler optimization, re-
searchers should hold the garbage-collection activity con-
stant to keep it from obscuring the effect of the optimization. 
Comparing on multiple architectures is best, but is limited 
by the compiler back-end. When evaluating a new architec-
ture, vary the garbage-collection load and JIT compiler activi-
ty, since both have distinctive execution profiles. Since archi-
tecture evaluation often involves very expensive simulation, 
eliminating nondeterminism is particularly important.

4. ANALYSIS
Researchers use data analysis to identify and articulate the 
significance of experimental results. This task is more chal-
lenging when systems and their evaluation become more 
complex, and the sheer volume of results grows. The prima-
ry data analysis task is one of aggregation: (a) across repeat-
ed experiments to defeat experimental noise and (b) across 
 diverse experiments to draw conclusions.

Aggregating data across repeated experiments is a stan-
dard technique for increasing confidence in a noisy environ-
ment.8 In the limit, this approach is in tension with tractabil-
ity, because researchers have only finite resources. Reducing 
sources of nondeterminism with sound experimental design 
improves tractability. Since noise cannot be eliminated al-
together, multiple trials are inevitably necessary. Research-
ers must aggregate data from multiple trials and provide 
evidence such as confidence intervals to reveal whether the 
findings are significant. Georges et al.8 use a survey to show 
that current practice lacks statistical rigor and explain the 
appropriate tests for comparing alternatives.

Section 2.3 exhorts researchers not to cherry-pick bench-
marks. Still, researchers need to convey results from diverse 
experiments succinctly, which necessitates aggregation. We 
encourage researchers (a) to include complete results and (b) 
to use appropriate summaries. For example, using the geo-
metric mean dampens the skewing effect of one excellent 
result. Although industrial benchmarks will often produce 
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a single aggregate score over a suite, this methodology is 
brittle because the result depends entirely on vagaries of the 
suite composition.18 For example, while it is tempting to cite 
your best result—“we outperform X by up to 1000%”—stat-
ing an aggregate together with the best and worst results is 
more honest and insightful.

5. CONCLUSION
Methodology plays a strategic role in experimental computer 
science research and development by creating a common 
ground for evaluating ideas and products. Sound methodolo-
gy relies on relevant workloads, principled experimental design, 
and rigorous analysis. Evaluation methodology can therefore 
have a significant impact on a research field,  potentially ac-
celerating, retarding, or misdirecting energy and innovation. 
However, we work within a fast-changing environment and 
our methodologies must adapt to remain sound and relevant. 
Prompted by concerns among ourselves and others about the 
state of the art, we spent thousands of hours at eight institu-
tions examining and addressing the problems of evaluating 
Java applications. The lack of direct funding, the perception 
that methodology is mundane, and the magnitude of the ef-
fort surely explain why these efforts are uncommon.

We address neglect of evaluation methodology concretely, 
in one domain at one point in time, and draw broader lessons 
for experimental computer science. The development and 
maintenance of the DaCapo benchmark suite and associated 

methodology have brought some much-needed improvement 
to our evaluations and to our particular field. However, experi-
mental computer science cannot expect the upkeep of its meth-
odological foundations to fall to ad hoc volunteer efforts. We 
encourage stakeholders such as industry and granting agencies 
to be forward-looking and make a systemic commitment to 
stem methodological neglect. Invest in the foundations of our 
innovation.
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