
research highlights

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 81

P. 91

Composable
Memory Transactions
By Tim Harris, Simon Marlow, Simon Peyton Jones,
and Maurice Herlihy

P. 90

Technical
Perspective
Transactions
are Tomorrow’s
Loads and Stores
By Nir Shavit

P. 83

Wake Up and Smell the Coffee:
Evaluation Methodology
for the 21st Century
By Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner,
Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel,
Antony Hosking, Maria Jump, Han Lee, J. Eliot, B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann

P. 82

Technical
Perspective
A Methodology for
Evaluating Computer
System Performance
By William Pugh

1_CACM_V51.8.indb 81 7/21/08 10:13:36 AM

82 COMMUNICATIONS OF THE ACM | AUGUST 2008 | VOL. 51 | NO. 8

research highlights

DOI:10.1145/1378704.1378722

the Algol60 programming language in
1972 and later translated into many
other languages. Several benchmarks
became well known and widely used
in research or commercial settings, or
both. Examples include the Livermore
loops, the Dhrystone benchmark, the
Linpack benchmark, and the Perfect
Club benchmarks.

The design and selection of bench-
marks, however, has traditionally been
a matter of art and taste, as much sci-
ence as engineering. The paper here by
the DaCapo team is the best effort I’ve
seen in providing a sound basis for se-
lecting benchmarks. Historically, there
has not been any standard methodolo-
gy for deciding whether or not a bench-
mark did indeed provide a representa-
tive measure of a system’s performance
within a particular domain. A more
serious problem with benchmarks is
that they age poorly. Benchmarks of-
ten do a reasonable job of evaluating
the performance of applications at the
time they are proposed. However, three
things tend to make benchmarks grow
less useful over time:

As machines and memories grow !

faster and larger, the sizes of applica-
tion data sets grow as well. What was
considered a reasonable problem size
when a benchmark was proposed soon
becomes a trivial example that fits in
the on-processor cache.

The actual applications that people !

use systems for evolve over time, and
benchmarks that were once represen-
tative become less so.

The weight attached to benchmark !

performance encourages develop-
ers of computer systems to optimize,
tune, and tweak their systems in ways
that improve their performance on the
benchmarks but not more generally,
making the benchmarks—again—less
representative.

Almost every systems researcher
and commercial software developer
has a personal horror story about a
poorly designed benchmark that was

C O M P U T E R S C I E N C E H A S long had a sol-
id foundation for evaluating the per-
formance of algorithms. The asymp-
totic complexity of the time required
by an algorithm is well defined and
usually tractable, allowing for a clear
evaluation of whether one algorithm
provides a fundamental improvement
over another. More nuanced and alter-
native evaluations, such as amortized
and randomized analysis, provide ad-
ditional insights into the fundamental
advantages of different algorithms.

Unfortunately, the situation is even
grimmer when evaluating the perfor-
mance of a computer system, whether
that system is a computer architec-
ture, a compiler, a graphics processor,
or a runtime system. Given a specific
application, it is often fairly straight-
forward to execute the application on
various systems and evaluate which
system offers faster execution of that
application on the provided input. Of
course, once an application has been
run on a particular input, one gener-
ally does not need to rerun it on that
same input.

What programmers really want is
some way to evaluate which system is
likely to provide better performance
on applications and data sets run in
the future, thus making it the “bet-
ter” system. Benchmarks also provide
a way to examine how various system
components behave and interact un-
der load. Benchmarks should give re-
peatable results, even when rerun by
an independent researcher or testing
organization. A benchmark can be
either a real or a synthetic applica-
tion.

A synthetic application doesn’t
compute anything useful but is de-
signed to have performance character-
istics that are representative of a range
of real applications.

Benchmarks have an established
history in computer science. The first
widely used synthetic benchmark was
the Whetstone benchmark written in

difficult to use, produced misleading
results, or focused attention on the
wrong problem for too long. One such
story in my own experience involves the
SPEC JVM98 db benchmark intended
to represent a database benchmark.
Several early papers on removing re-
dundant or useless synchronization
from Java programs focused on this
benchmark, since removing such syn-
chronization could produce a 20% to
30% speed improvement in the bench-
mark. However, closer examination re-
vealed that more than 70% of the CPU
time for this benchmark was spent in a
badly written 20-line Shell sort; replac-
ing the handwritten sort with a call to
the built-in sort function doubled the
execution speed, even without remov-
ing the useless synchronization.

The DaCapo research group offers
what seems to be an exceptionally well
engineered set of benchmarks for eval-
uating Java computer systems. This
includes not only selecting the bench-
mark applications, but designing a
substantial infrastructure to support
the execution and evaluation of bench-
mark executions.

Far more important than the actual
selection of the benchmarks and the
engineering infrastructure, the DaCa-
po team has put together an excellent
description of best practices for using
benchmarks to evaluate Java system
performance, as well as a principled
approach for evaluating whether a
suite of benchmark applications is, in
fact, sufficiently diverse. This approach
involves measuring a number of char-
acteristics of each application, and
then applying principal component
analysis (PCA) to determine whether
the applications do have fundamental
differences, or if they basically mea-
sure the same aspects of a system. I
hope the methodology described in
the paper will allow the DaCapo bench-
mark suite, and others, to be evaluated
so they can evolve in ways that make
them useful as well as meaningful for
more than just a moment in time.

William Pugh (pugh@cs.umd.edu) is a professor in the
Department of Computer Science at the University of
Maryland, College Park.

Technical Perspective
A Methodology for Evaluating
Computer System Performance
By William Pugh

1_CACM_V51.8.indb 82 7/21/08 10:13:37 AM

Wake Up and Smell the Coffee:
Evaluation Methodology
for the 21st Century
By Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
 J. Eliot, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann

DOI:10.1145/1378704.1378723

Abstract
Evaluation methodology underpins all innovation in experi-
mental computer science. It requires relevant workloads,
appropriate experimental design, and rigorous analysis.
Unfortunately, methodology is not keeping pace with the
changes in our field. The rise of managed languages such
as Java, C#, and Ruby in the past decade and the imminent
rise of commodity multicore architectures for the next de-
cade pose new methodological challenges that are not yet
widely understood. This paper explores the consequences
of our collective inattention to methodology on innovation,
makes recommendations for addressing this problem in
one domain, and provides guidelines for other domains.
We describe benchmark suite design, experimental design,
and analysis for evaluating Java applications. For example,
we introduce new criteria for measuring and selecting di-
verse applications for a benchmark suite. We show that the
complexity and nondeterminism of the Java runtime system
make experimental design a first-order consideration, and
we recommend mechanisms for addressing complexity and
nondeterminism. Drawing on these results, we suggest how
to adapt methodology more broadly. To continue to deliver
innovations, our field needs to significantly increase partici-
pation in and funding for developing sound methodological
foundations.

1. INTRODUCTION
Methodology is the foundation for judging innovation in
experimental computer science. It therefore directs and
misdirects our research. Flawed methodology can make
good ideas look bad or bad ideas look good. Like any infra-
structure, such as bridges and power lines, methodology is
often mundane and thus vulnerable to neglect. While sys-
temic misdirection of research is not as dramatic as a bridge
collapse11 or complete power failure,10 the scientific and
economic cost may be considerable. Sound methodology
includes using appropriate workloads, principled experi-
mental design, and rigorous analysis. Unfortunately, many
of us struggle to adapt to the rapidly changing computer sci-
ence landscape. We use archaic benchmarks, outdated ex-
perimental designs, and/or inadequate data analysis. This
paper explores the methodological gap, its consequences,
and some solutions. We use the commercial uptake of man-
aged languages over the past decade as the driving example.

Many developers today choose managed languages, which
provide: (1) memory and type safety, (2) automatic memory
management, (3) dynamic code execution, and (4) well-de-
fined boundaries between type-safe and unsafe code (e.g., JNI
and Pinvoke). Many such languages are also object-oriented.
Managed languages include Java, C#, Python, and Ruby. C
and C++ are not managed languages; they are compiled-
ahead-of-time, not garbage collected, and unsafe. Unfortu-
nately, managed languages add at least three new degrees of
freedom to experimental evaluation: (1) a space–time trade-off
due to garbage collection, in which heap size is a control vari-
able, (2) nondeterminism due to adaptive optimization and
sampling technologies, and (3) system warm-up due to dy-
namic class loading and just-in-time (JIT) compilation.

Although programming language researchers have em-
braced managed languages, many have not evolved their
evaluation methodologies to address these additional de-
grees of freedom. As we shall show, weak methodology leads
to incorrect findings. Equally problematic, most architecture
and operating systems researchers do not use appropriate
workloads. Most ignore managed languages entirely, despite
their commercial prominence. They continue to use C and
C++ benchmarks, perhaps because of the significant cost and
challenges of developing expertise in new infrastructure. Re-
gardless of the reasons, the current state of methodology for
managed languages often provides bad results or no results.

To combat this neglect, computer scientists must be
 vigilant in their methodology. This paper describes how
we addressed some of these problems for Java and makes
recommendations for other domains. We discuss how
benchmark designers can create forward-looking and diverse
workloads and how researchers should use them. We then
present a set of experimental design guidelines that accom-
modate complex and nondeterministic workloads. We show
that managed languages make it much harder to produce
meaningful results and suggest how to identify and explore
control variables. Finally, we discuss the importance of rig-
orous analysis8 for complex nondeterministic systems that
are not amenable to trivial empirical methods.

We address neglect in one domain, at one point in time,
but the broader problem is widespread and growing. For
example, researchers and industry are pouring resources
into and exploring new approaches for embedded sys-
tems, multicore architectures, and concurrent program-
ming models. However, without consequent investments

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 83

1_CACM_V51.8.indb 83 7/21/08 10:13:37 AM

84 COMMUNICATIONS OF THE ACM | AUGUST 2008 | VOL. 51 | NO. 8

research highlights

in methodology, how can we confidently evaluate these
approaches? The community must take responsibility for
methodology. For example, many Java evaluations still use
SPECjvm98, which is badly out of date. Out-of-date bench-
marks are problematic because they pose last year’s prob-
lems and can lead to different conclusions.17 To ensure a
solid foundation for future innovation, the community
must make continuous and substantial investments. Es-
tablishing community standards and sustaining these in-
vestments require open software infrastructures contain-
ing the consequent artifacts.

For our part, we developed a new benchmark suite and
new methodologies. We estimate that we have spent 10,000
person-hours to date developing the DaCapo suite and asso-
ciated infrastructure, none of it directly funded. Such a ma-
jor undertaking would be impossible without a large number
of contributing institutions and individuals. Just as NSF and
DARPA have invested in networking infrastructure to foster
the past and future generations of the Internet, our commu-
nity needs foundational investment in methodological in-
frastructure to build next-generation applications, software
systems, and architectures. Without this investment, what
will be the cost to researchers, industry, and society in lost
opportunities?

2. WORKLOAD DESIGN AND USE
The DaCapo research group embarked on building a Java
benchmark suite in 2003 after we highlighted the dearth
of realistic Java benchmarks to an NSF review panel. The
panel suggested we solve our own problem, but our grant
was for dynamic optimizations. NSF did not provide ad-
ditional funds for benchmark development, but we forged
ahead regardless. The standard workloads at the time,
SPECjvm98 and SPECjbb2000,14,15 were out of date. For ex-
ample, SPECjvm98 and SPECjbb2000 make meager use of
Java language features, and SPECjvm98 has a tiny code and
memory footprint. (SPEC measurements are in a technical
report3.) We therefore set out to create a suite suitable for re-
search, a goal that adds new requirements beyond SPEC’s
goal of product comparisons. Our goals were:

Relevant and diverse workload: A diverse, widely used set
of nontrivial applications that provide a compelling plat-
form for innovation.

Suitable for research: A controlled, tractable workload
amenable to analysis and experiments.

We selected the following benchmarks for the initial release
of the DaCapo suite, based on criteria described below.

antlr Parser generator and translator generator
bloat Java bytecode-level optimization and analysis tool
chart Graph-plotting toolkit and PDF renderer
eclipse Integrated development environment (IDE)
fop Output-device-independent print formatter
hsqldb SQL relational database engine written in Java
jython Python interpreter written in Java
luindex Text-indexing tool
lusearch Text-search tool

pmd Source code analyzer for Java
xalan XSLT transformer for XML documents

2.1. Relevance and diversity
No workload is definitive, but a narrow scope makes it pos-
sible to attain some coverage. We limited the DaCapo suite
to nontrivial, actively maintained real-world Java applica-
tions. We solicited and collected candidate applications.
Because source code supports research, we considered only
open-source applications. We first packaged candidates
into a prototype DaCapo harness and tuned them with in-
puts that produced tractable execution times suitable for ex-
perimentation, that is, around a minute on 2006 commodity
hardware. Section 2.2 describes how the DaCapo packaging
provides tractability and standardization.

We then quantitatively and qualitatively evaluated each
candidate. Table 1 lists the static and dynamic metrics we
used to ensure that the benchmarks were relevant and di-
verse. Our original paper4 presents the DaCapo metric data
and our companion technical report3 adds SPECjvm98 and
SPECjbb200. We compared against SPEC as a reference point
and compared candidates with each other to ensure diversity.

We used new and standard metrics. Our standard met-
rics included the static CK metrics, which measure code
 complexity of object-oriented programs6; dynamic heap
composition graphs, which measure time-varying lifetime
properties of the heap16; and architectural characteristics
such as branch misprediction rates and instruction mix.
We introduced new metrics to capture domain- specific
 characteristics of Java such as allocation rate, ratio of

Table 1: Quantitative selection metrics.

Metric Description
Code Metrics
CK metrics6 Object-oriented programming metrics measuring

source code complexity

Code size Numbers of classes loaded, methods declared, total

bytecodes compiled

Code footprint Instruction cache and I-TLB misses

Optimization Number of methods compiled, number optimized,

percentage hot

Heap Metrics
Allocation Total bytes/objects allocated, average object size

Heap footprint Maximum live bytes/objects, nursery survival rate

Fan-out/fan-in Mean incoming and outgoing pointers per object

Pointer distance Mean distance in bytes of each pointer encountered

in a snapshot traversal of an age-ordered heap

Mutation distance Mean distance in bytes of each pointer dynami-

cally created/mutated by the application in an age-

 ordered heap

Architecture Metrics
Instruction mix Mix of branches, ALU, and memory instructions

Branches Branch mispredictions per instruction for PMM

 predictor

Register Register dependence distances

dependence

1_CACM_V51.8.indb 84 7/21/08 10:13:37 AM

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 85

allocated to live memory, and heap mutation rate. These
new metrics included summaries and time series of allo-
cated and live object size demographics, summaries and
time series of pointer distances, and summaries and time
series of mutation distances. Pointer distance and mutation
distance time-series metrics summarize the lengths of the
edges that form the application’s object graph. We designed
these metrics and their means of collection to be abstract,
so that the measurements are VM-neutral.4

Figure 1 qualitatively illustrates the temporal complex-
ity of heap composition and pointer distance metrics for
two benchmarks, _209_db and eclipse. With respect to our
metrics, eclipse from DaCapo is qualitatively richer than
_209_db from SPECjvm98. Our original paper explains how
to read these graphs and includes dozens of graphs, repre-
senting mountains of data.4 Furthermore, it shows that the
DaCapo benchmarks substantially improve over SPECjvm98
on all measured metrics. To confirm the diversity of the
suite, we applied principal component analysis (PCA)7 to
the summary metrics. PCA is a multivariate statistical tech-
nique for reducing a large N-dimensional space into a low-
er-dimensional uncorrelated space. If the benchmarks are
uncorrelated in lower-dimensional space, then they are also
uncorrelated in the higher-dimensional space. The analysis
shows that the DaCapo benchmarks are diverse, nontrivial
real-world applications with significant memory load, code
complexity, and code size.

Because the applications come from active projects,
they include unresolved performance anomalies, both typi-
cal and unusual programming idioms, and bugs. Although
not our intention, their rich use of Java features uncovered
bugs in some commercial JVMs. The suite notably omits
Java application servers, embedded Java applications, and
numerically intensive applications. Only a few benchmarks
are explicitly concurrent. To remain relevant, we plan to up-
date the DaCapo benchmarks every two years to their latest
version, add new applications, and delete applications that
have become less relevant. This relatively tight schedule
should reduce the extent to which vendors may tune their
products to the benchmarks (which is standard practice, no-
tably for SPECjbb20001).

As far as we know, we are the first to use quantitative met-
rics and PCA analysis to ensure that our suite is diverse and
nontrivial. The designers of future suites should choose
additional aggregate and time-varying metrics that direct-
ly address the domain of interest. For example, metrics
for concurrent or embedded applications might include a
 measure of the fraction of time spent executing purely se-
quential code, maximum and time-varying degree of paral-
lelism, and a measure of sharing between threads.

2.2. Suitable for research
We decided that making the benchmarks tractable, stan-
dardized, and suitable for research was a high priority.
While not technically deep, good packaging is extremely
time consuming and affects usability. Researchers need
tractable workloads because they often run thousands of ex-
ecutions for a single experiment. Consider comparing four
garbage collectors over 16 heap sizes—that is, we need 64

combinations to measure. Teasing apart the performance
differences with multiple hardware performance moni-
tors may add eight or more differently instrumented runs
per combination. Using five trials to ensure statistical sig-
nificance requires a grand total of 2560 test runs. If a single
benchmark test run takes as long as 20 min (the time limit is
30 min on SPECjbb15), we would need over a month on one
machine for just one benchmark comparison—and surely
we should test the four garbage collectors on many bench-
marks, not just one.

Moreover, time-limited workloads do not hold work con-
stant, so they are analytically inconvenient for reproducibil-
ity and controlling load on the JIT compiler and the garbage
collector. Cycle-accurate simulation, which slows execution
down by orders of magnitude, further amplifies the need for
tractability. We therefore provide work-limited benchmarks
with three input sizes: small, default, and large. For some of
the benchmarks, large and default are the same. The larg-
est ones typically executed in around a minute on circa 2006
commodity high-performance architectures.

We make simplicity our priority for packaging; we ship the
suite as a single self-contained Java jar file. The file contains
all benchmarks, a harness, input data, and checksums for
correctness. The harness checksums the output of each it-
eration and compares it to a stored value. If the values do not
match, the benchmark fails. We provide extensive configu-
ration options for specifying the number of iterations, the
ability to run to convergence with customized convergence
criteria, and callback hooks before and after every iteration.
For example, the user-defined callbacks can turn hardware
performance counters on and off, or switch a simulator in
and out of detailed simulation mode. We use these features
extensively and are heartened to see others using them.12
For standardization and analytical clarity, our benchmarks
require only a single host and we avoid components that
require user configuration. By contrast, SPEC jAppServer,
which models real-world application servers, requires mul-
tiple hosts and depends on third-party–configurable com-
ponents such as a database. Here we traded some relevance
for control and analytical clarity.

We provide a separate “source” jar to build the entire
suite from scratch. For licensing reasons, the source jar au-
tomatically downloads the Java code from the licensor. With
assistance from our users,5 our packaging now facilitates
static whole program analysis, which is not required for
standard Java implementations. Since the entire suite and
harness are open-source, we happily accept contributions
from our users.

2.3. The researcher
Appropriate workload selection is a task for the commu-
nity, consortia, the workload designer, and the researcher.
Researchers make a workload selection, either implicitly or
explicitly, when they conduct an experiment. This selection
is often automatic: “Let’s use the same thing we used last
time!” Since researchers invest heavily in their evaluation
methodology and infrastructure, this path offers the least
resistance. Instead, we need to identify the workloads and
methodologies that best serve the research evaluation. If

1_CACM_V51.8.indb 85 7/21/08 10:13:37 AM

86 COMMUNICATIONS OF THE ACM | AUGUST 2008 | VOL. 51 | NO. 8

research highlights

there is no satisfactory answer, it is time to form or join a con-
sortium and create new suitable workloads and supporting
infrastructure.
Do Not Cherry-Pick! A well-designed benchmark suite re-
flects a range of behaviors and should be used as a whole.
Perez et al. demonstrate with alarming clarity that cherry-
picking changes the results of performance evaluation.13
They simulate 12 previously published cache architecture
optimizations in an apples-to-apples evaluation on a suite of
26 SPECcpu benchmarks. There is one clear winner with all
26 benchmarks. There is a choice of 2 different winners with
a suitable subset of 23 benchmarks, 6 winners with subsets
of 18, and 11 winners with 7. When methodology allows re-
searchers a choice among 11 winners from 12 candidates,
the risk of incorrect conclusions, by either mischief or error,
is too high. Section 3.1 shows that Java is equally vulnerable
to subsetting.

Run every benchmark. If it is impossible to report results
for every benchmark because of space or time constraints,
bugs, or relevance, explain why. For example, if you are pro-
posing an optimization for multithreaded Java workloads,
you may wish to exclude benchmarks that do not exhibit
concurrency. In this case, we recommend reporting all the
results but highlighting the most pertinent. Otherwise read-
ers are left guessing as to the impact of the “optimization”
on the omitted workloads—with key data omitted, readers
and reviewers should not give researchers the benefit of the
doubt.

3. EXPERIMENTAL DESIGN
Sound experimental design requires a meaningful base-
line and comparisons that control key parameters. Most
researchers choose and justify a baseline well, but identify-
ing which parameters to control and how to control them is
challenging.

3.1. Gaming your results
The complexity and degrees of freedom inherent in these
systems make it easy to produce misleading results through
errors, omissions, or mischief. Figure 2 presents four results
from a detailed comparison of two garbage collectors. The
JVM, architecture, and other evaluation details appear in the
original paper.4 More garbage collector implementation de-
tails are in Blackburn et al.2 Each graph shows normalized
time (lower is better) across a range of heap sizes that expose
the space–time tradeoff for implementations of two canoni-
cal garbage collector designs, SemiSpace and MarkSweep.

Subsetting Figure 2 badly misleads us in at least three
ways: (1) Figure 2(c) shows that by selecting a single heap size
rather than plotting a continuum, the results can produce
 diametrically opposite conclusions. At 2.1 × maximum heap
size, MarkSweep performs much better than SemiSpace,
while at 6.0 × maximum heap size, SemiSpace performs better.
Figures 2(a) and 2(d) exhibit this same dichotomy, but have
different crossover points. Unfortunately, some research-
ers are still evaluating the performance of garbage-collected
languages without varying heap size. (2) Figures 2(a) and 2(b)
confirm the need to use an entire benchmark suite. Although
_209_db and hsqldb are established in-memory database
benchmarks, SemiSpace performs better for _209_db in large
heaps, while MarkSweep is always better for hsqldb. (3) Figures
2(c) and 2(d) show that the architecture significantly impacts
conclusions at these heap size ranges. MarkSweep is better at
more heap sizes for AMD hardware as shown in Figure 2(c).
However, Figure 2(d) shows SemiSpace is better at more heap
sizes for PowerPC (PPC) hardware. This example of garbage-
collection evaluation illustrates a small subset of the pitfalls
in evaluating the performance of managed languages.

3.2. Control in a changing world
Understanding what to control and how to control it in an

Figure 1: Two time-varying selection metrics. Pointer distance (top) and heap composition (bottom) as a function of time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5
−100

−75

−50

−25

0

25

50

75

100

D
is

ta
nc

es
 (%

)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

Time (millions of pointer mutations)

(a) SPECjvm98 _209_db (b) DaCapo eclipse

0

1

2

3

4

5

6

7

8

H
ea

p
V

ol
um

e
(M

B
)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
−90
−80
−70
−60
−50
−40
−30
−20
−10
0
10
20
30
40

D
is

ta
nc

es
 (%

)

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350

Time (millions of pointer mutations)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

H
ea

p
V

ol
um

e
(M

B
)

1_CACM_V51.8.indb 86 7/21/08 10:13:39 AM

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 87

experimental system is clearly important. For a classic com-
parison of Fortran, C, or C++ systems, there are at least two
degrees of freedom to control: (a) the host platform (hard-
ware and operating system) and (b) the language runtime
(compiler and associated libraries). Over the years, research-
ers have evolved solid methodologies for evaluating compil-
er, library, and architectural enhancements that target these
languages. Consider a compiler optimization for improving
cache locality. Accepted practice is to compile with and with-
out the optimization and report how often the compiler ap-
plied the optimization. To eliminate interference from other
processes, one runs the versions standalone on one or more
architectures and measures miss rates with either perfor-
mance counters or a simulator. This methodology evolved,
but is now extremely familiar. Once researchers invest in a
methodology, the challenge is to notice when the world has
changed, and to figure out how to adapt.

Modern managed runtimes such as Java add at least three
more degrees of freedom: (c) heap size, (d) nondeterminism,
and (e) warm-up of the runtime system.

Heap Size: Managed languages use garbage collection to
detect unreachable objects, rather than relying on the pro-
grammer to explicitly delete objects. Garbage collection is
fundamentally a space–time trade-off between the efficacy
of space reclamation and time spent reclaiming objects;
heap size is the key control variable. The smaller the heap
size, the more often the garbage collector will be invoked
and the more work it will perform.

Nondeterminism: Deterministic profiling metrics are ex-
pensive. High-performance JVMs therefore use approximate
execution frequencies computed by low-overhead dynamic
sampling to select which methods the JIT compiler will op-
timize and how. For example, a method may happen to be
sampled N times in one invocation and N + 3 in another; if
the optimizer uses a hot-method threshold of N + 1, it will
make different choices. Due to this nondeterminism, code
quality usually does not reach the same steady state on a de-
terministic workload across independent JVM invocations.

Warm-Up: A single invocation of the JVM will often execute
the same application repeatedly. The first iteration of the ap-
plication usually includes the largest amount of dynamic
compilation. Later iterations usually have both less compi-
lation and better application code quality. Eventually, code
quality may reach a steady state. Code quality thus “warms
up.” Steady state is the most frequent use-case. For example,
application servers run their code many times in the same

JVM invocation and thus care most about steady-state perfor-
mance. Controlling for code warm-up is an important aspect
of experimental design for high-performance runtimes.

3.3. Case study
We consider performance evaluation of a new garbage col-
lector as an example of experimental design. We describe
the context and then show how to control the factors de-
scribed above to produce a sound experimental design.

Two key context-specific factors for garbage-collection
evaluation are (a) the space–time trade-off as discussed
above and (b) the relationship between the collector and
mutator (the term for the application itself in the gar-
bage-collection literature). For simplicity, we consider
a stop-the-world garbage collector, in which the collector
and the mutator never overlap in execution. This separa-
tion eases measurement of the mutator and collector.
Some collector-specific code mixes with the mutator: ob-
ject allocation and write barriers, which identify pointers
that cross between independently collected regions. This
code impacts both the mutator and the JIT compiler. Fur-
thermore, the collector greatly affects mutator locality, due
to the allocation policy and any movement of objects at col-
lection time.

Meaningful Baseline: Comparing against the state of the
art is ideal, but practical only when researchers make their
implementations publicly available. Researchers can then
implement their approaches using the same tools or con-
trol for infrastructure differences to make apples-to-apples
comparisons. Garbage-collection evaluations often use gen-
erational MarkSweep collectors as a baseline because these
collectors are widely used in high-performance VMs and
perform well.

Host Platform: Garbage collectors exhibit architecture-
dependent performance properties that are best revealed
with an evaluation across multiple architectures, as shown
in Figures 2(c) and 2(d). These properties include locality,
the cost of write barriers, and the cost of synchronization
 instructions.

Language Runtime: The language runtime, libraries, and
JIT compiler directly affect memory load, and so should be
controlled. Implementing various collectors in a common
toolkit factors out common shared mechanisms and focus-
es the comparison on the algorithmic differences between
the collectors.

Heap Size: Garbage-collection evaluations should com-

Figure 2: Gaming your results. Four ways to compare two garbage collectors.

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6
N

or
m

al
iz

ed
 T

im
e

Heap size relative to minimum heap size

SemiSpace
MarkSweep

1

 1.1

 1.2

 1.3

 1.4

1.5

1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

(a) _209_db, Pentium-M (b) hsqldb, Pentium-M (c) pseudojbb, AMD (d) pseudojbb, PPC

1_CACM_V51.8.indb 87 7/21/08 10:13:40 AM

88 COMMUNICATIONS OF THE ACM | AUGUST 2008 | VOL. 51 | NO. 8

research highlights

pare performance across a range of benchmark-specific
relative heap sizes, starting at the smallest heap in which
any of the measured collectors can run, as shown in Figure
2. Each evaluated system must experience the same memory
load, which requires forcing collections between iterations
to normalize the heap and controlling the JIT compiler.

Nondeterminism: Nondeterministic JIT optimization
plans lead to nondeterministic mutator performance. JIT
optimization of collector-specific code, optimizations that
elide allocations, and the fraction of time spent in collec-
tion may affect mutator behavior in ways that cannot be pre-
dicted or repeated. For example, in Jikes RVM, a Java-in-Java
VM widely used by researchers, JIT compiler activity directly
generates garbage collection load because the compiler al-
locates and executes in the same heap as the application.
These effects make nondeterminism even more acute.

Warm-Up: For multi-iteration experiments, as the system
warms up, mutator speeds increase, and JIT compiler activity
decreases, the fraction of time spent in collection typically
grows. Steady-state execution therefore accentuates the im-
pact of the garbage collector as compared to start-up. Fur-
thermore, the relative impact of collector- specific code will
change as the code is more aggressively optimized. Evalua-
tions must therefore control for code quality and warm-up.

3.4. Controlling nondeterminism
Of the three new degrees of freedom outlined in Section 3.2,
we find dealing with nondeterminism to be the most meth-
odologically challenging. Over time, we have adopted and
recommend three different strategies: (a) use deterministic
replay of optimization plans, which requires JVM support;
(b) take multiple measurements in a single JVM invocation,
after reaching steady state and turning off the JIT compiler;
and (c) generate sufficient data points and apply suitable
statistical analysis.8 Depending on the experiment, the re-
searcher will want to perform one, two, or all of these experi-
ments. The first two reduce nondeterminism for analysis
purposes by controlling its sources. Statistical analysis of
results from (a) and (b) will reveal whether differences from
the remaining nondeterminism are significant. The choice
of (c) accommodates larger factors of nondeterminism (see
 Section 4) and may be more realistic, but requires significant-
ly more data points, at the expense of other experiments.

Replay Compilation: Replay compilation collects pro-
file data and a compilation plan from one or more train-
ing runs, forms an optimization plan, and then replays
it in subsequent, independent timing invocations.9 This
methodology deterministically applies the JIT compiler,
but requires modifications to the JVM. It isolates the JIT
compiler activity, since replay eagerly compiles to the
plan’s final optimization level instead of lazily relying on
dynamic recompilation triggers. Researchers can mea-
sure the first iteration for deterministic characterization
of start-up behavior. Replay also removes most profiling
overheads associated with the adaptive optimization sys-
tem, which is turned off. As far as we are aware, produc-
tion JVMs do not support replay compilation.

Multi-Iteration Determinism: An alternative approach

that does not depend on runtime support is to run multiple
measurement iterations of a benchmark in a single invo-
cation, after the runtime has reached steady state. Unlike
replay, this approach does not support deterministic mea-
surement of warm-up. We use this approach when gather-
ing data from multiple hardware performance counters,
which requires multiple distinct measurements of the same
system. We first perform N – 1 unmeasured iterations of a
benchmark while the JIT compiler warms up the code. We
then turn the JIT compiler off and execute the Nth iteration
unmeasured to drain any JIT work queues. We measure the
next K iterations. On each iteration, we gather different per-
formance counters of interest. Since the code quality has
reached steady state, it should be a representative mix of
optimized and unoptimized code. Since the JIT compiler is
turned off, the variation between the subsequent iterations
should be low. The variation can be measured and verified.

3.5. Experimental design in other settings
In each experimental setting, the relative influence of the
degrees of freedom, and how to control them, will vary. For
example, when evaluating a new compiler optimization, re-
searchers should hold the garbage-collection activity con-
stant to keep it from obscuring the effect of the optimization.
Comparing on multiple architectures is best, but is limited
by the compiler back-end. When evaluating a new architec-
ture, vary the garbage-collection load and JIT compiler activi-
ty, since both have distinctive execution profiles. Since archi-
tecture evaluation often involves very expensive simulation,
eliminating nondeterminism is particularly important.

4. ANALYSIS
Researchers use data analysis to identify and articulate the
significance of experimental results. This task is more chal-
lenging when systems and their evaluation become more
complex, and the sheer volume of results grows. The prima-
ry data analysis task is one of aggregation: (a) across repeat-
ed experiments to defeat experimental noise and (b) across
 diverse experiments to draw conclusions.

Aggregating data across repeated experiments is a stan-
dard technique for increasing confidence in a noisy environ-
ment.8 In the limit, this approach is in tension with tractabil-
ity, because researchers have only finite resources. Reducing
sources of nondeterminism with sound experimental design
improves tractability. Since noise cannot be eliminated al-
together, multiple trials are inevitably necessary. Research-
ers must aggregate data from multiple trials and provide
evidence such as confidence intervals to reveal whether the
findings are significant. Georges et al.8 use a survey to show
that current practice lacks statistical rigor and explain the
appropriate tests for comparing alternatives.

Section 2.3 exhorts researchers not to cherry-pick bench-
marks. Still, researchers need to convey results from diverse
experiments succinctly, which necessitates aggregation. We
encourage researchers (a) to include complete results and (b)
to use appropriate summaries. For example, using the geo-
metric mean dampens the skewing effect of one excellent
result. Although industrial benchmarks will often produce

1_CACM_V51.8.indb 88 7/21/08 10:13:40 AM

AUGUST 2008 | VOL. 51 | NO. 8 | COMMUNICATIONS OF THE ACM 89

a single aggregate score over a suite, this methodology is
brittle because the result depends entirely on vagaries of the
suite composition.18 For example, while it is tempting to cite
your best result—“we outperform X by up to 1000%”—stat-
ing an aggregate together with the best and worst results is
more honest and insightful.

5. CONCLUSION
Methodology plays a strategic role in experimental computer
science research and development by creating a common
ground for evaluating ideas and products. Sound methodolo-
gy relies on relevant workloads, principled experimental design,
and rigorous analysis. Evaluation methodology can therefore
have a significant impact on a research field, potentially ac-
celerating, retarding, or misdirecting energy and innovation.
However, we work within a fast-changing environment and
our methodologies must adapt to remain sound and relevant.
Prompted by concerns among ourselves and others about the
state of the art, we spent thousands of hours at eight institu-
tions examining and addressing the problems of evaluating
Java applications. The lack of direct funding, the perception
that methodology is mundane, and the magnitude of the ef-
fort surely explain why these efforts are uncommon.

We address neglect of evaluation methodology concretely,
in one domain at one point in time, and draw broader lessons
for experimental computer science. The development and
maintenance of the DaCapo benchmark suite and associated

methodology have brought some much-needed improvement
to our evaluations and to our particular field. However, experi-
mental computer science cannot expect the upkeep of its meth-
odological foundations to fall to ad hoc volunteer efforts. We
encourage stakeholders such as industry and granting agencies
to be forward-looking and make a systemic commitment to
stem methodological neglect. Invest in the foundations of our
innovation.

Acknowledgments
We thank Andrew Appel, Randy Chow, Frans Kaashoek, and
Bill Pugh, who encouraged this project at our three year NSF
ITR review. We thank Mark Wegman, who initiated the public
availability of Jikes RVM, and the developers of Jikes RVM. We
gratefully acknowledge Fahad Gilani, who wrote the original
version of the measurement infrastructure for his ANU Mas-
ters thesis; Xianglong Huang and Narendran Sachindran, who
helped develop the replay methodology; and Jungwoo Ha and
Magnus Gustafsson, who helped developed the multi-iteration
replay methodology. We thank Tom Horn for his proofreading,
and Guy Steele for his careful reading and suggestions.

This work was supported by NSF ITR CCR-0085792,
CNS-0719966, NSF CCF-0429859, NSF EIA-0303609, DARPA
F33615-03-C-4106, ARC DP0452011, ARC DP0666059, Intel,
IBM, and Microsoft. Any opinions, findings and conclusions
expressed herein are the authors’ and do not necessarily re-
flect those of the sponsors.

References

 1. Adamson, A., Dagastine, D., and Sarne,
S. SPECjbb2005––A year in the life of
a benchmark. 2007 SPEC Benchmark
Workshop. SPEC, Jan. 2007.

 2. Blackburn, S.M., Cheng P., and
McKinley, K.S. Myths and realities:
The performance impact of garbage
collection. Proceedings of the
ACM Conference on Measurement
and Modeling Computer Systems,
pp. 25–36, New York, NY,
June 2004.

 3. Blackburn, S.M., Garner, R., Hoffman,
C., Khan, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović,
D., VanDrunen, T., von Dincklage,
D., and Wiedermann, B. The DaCapo
benchmarks: Java benchmarking
development and analysis (extended
version). Technical Report TR-
CS-06-01, Dept. of Computer
Science, Australian National
University, 2006. http://www.
dacapobench.org.

 4. Blackburn, S.M., Garner, R., Hoffman,
C., Khan, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S.Z., Hirzel, M.,
Hosking, A., Jump, M., Lee, H., Moss,
J.E.B., Phansalkar, A., Stefanović,
D., VanDrunen, T., von Dincklage,
D.,and Wiedermann, B. The DaCapo
benchmarks: Java benchmarking
development and analysis. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 169–190,
Oct. 2006.

 5. Bodden, E., Hendren, L., and Lhoták,
O. A staged static program analysis to
improve the performance of runtime
monitoring. 21st European Conference
on Object-Oriented Programming,
July 30th–August 3rd 2007, Berlin,
Germany, number 4609 in Lecture
Notes in Computer Science, pp.
525–549, Springer Verlag, 2007.

 6. Chidamber, S.R. and Kemerer, C.F.
A metrics suite for object-oriented
design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

 7. Dunteman, G.H. Principal Components
Analysis. Sage Publications, Newbury
Park, CA, USA, 1989.

 8. Georges, A., Buytaert, D., and
Eeckhout, L. Statistically rigorous
Java performance evaluation. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 57–76, Montreal,
Quebec, Canada, 2007.

 9. Huang, X., Blackburn, S.M., McKinley,
K.S., Moss, J.E.B., Wang Z., and Cheng
P. The garbage collection advantage:
Improving mutator locality. ACM
Conference on Object-Oriented
Programming Systems, Languages,
and Applications, pp. 69–80,
Vancouver, BC, 2004.

 10. Leyland, B. Auckland central
business district supply failure. Power
Engineering Journal, 12(3):109–114,
1998.

 11. National Transportation Safety
Board. NTSB urges bridge owners to
perform load capacity calculations
before modifications; I-35W
investigation continues. SB-08-02.
http://www.ntsb.gov/Pressrel/

2008/080115.html, Jan. 2008.
 12. Neelakantam, N., Rajwar, R.,

Srinivas, S., Srinivasan, U., and
Zilles, C. Hardware atomicity for
reliable software speculation. ACM/
IEEE International Symposium on
Computer Architecture, pp. 174–185,
ACM, New York, NY, USA, 2007.

 13. Perez, D.G., Mouchard, G., and
Temam, O. MicroLib: A case for
the quantitative comparison of
micro-architecture mechanisms.
International Symposium on
Microarchitecture, pp. 43–54,
Portland, OR, Dec. 2004.

 14. Standard Performance Evaluation
Corporation. SPECjvm98
Documentation, release 1.03
edition, March 1999.

 15. Standard Performance Evaluation
Corporation. SPECjbb2000 (Java
Business Benchmark) Documentation,

release 1.01 edition, 2001.
 16. Stefanović, D. Properties of

Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis,
Department of Computer Science,
University of Massachusetts,
Amherst, Massachusetts, Dec. 1998.

 17. Yi, J.J., Vandierendonck, H., Eeckhout,
L., and Lilja, D.J. The exigency of
benchmark and compiler drift:
Designing tomorrow’s processors
with yesterday’s tools. International
Conference on Supercomputing, pp.
75–86, Cairns, Queensland, Australia,
July 2006.

 18. Yoo, R.M., Lee, H.-H. S., Lee, H., and
K. Chow. Hierarchical means: Single
number benchmarking with workload
cluster analysis. IISWC 2007. IEEE
10th International Symposium
on Workload Characterization, pp.
204–213, IEEE, 2007.

© 2008 ACM 0001-0782/08/0800 $5.00

Stephen M. Blackburn, Robin Garner,
Daniel Frampton, Australian National
University

Kathryn S. McKinley, Aashish
Phansalkar, Ben Wiedermann, Maria
Jump, University of Texas at Austin

Chris Hoffmann, Asjad M. Khan, J Eliot
B. Moss, University of Massachusetts,
Amherst

Rotem Bentzur, Daniel Feinberg, Darko
Stefanović, University of New Mexico

Amer Diwan, Daniel von Dincklage,
University of Colorado

Samuel Z. Guyer, Tufts University

Martin Hirzel, IBM

Antony Hosking, Purdue University

Han Lee, Intel

Thomas VanDrunen, Wheaton College

1_CACM_V51.8.indb 89 7/21/08 10:13:40 AM

