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Abstract
Read and write barriers mediate access to the heap allowing the
collector to control and monitor mutator actions. For this reason,
barriers are a powerful tool in the design of any heap management
algorithm, but the prevailing wisdom is that they impose significant
costs. However, changes in hardware and workloads make these
costs a moving target. Here, we measure the cost of a range of
useful barriers on a range of modern hardware and workloads.
We confirm some old results and overturn others. We evaluate
the microarchitectural sensitivity of barrier performance and the
differences among benchmark suites. We also consider barriers in
context, focusing on their behavior when used in combination, and
investigate a known pathology and evaluate solutions. Our results
show that read and write barriers have average overheads as low
as 5.4% and 0.9% respectively. We find that barrier overheads are
more exposed on the workload provided by the modern DaCapo
benchmarks than on old SPECjvm98 benchmarks. Moreover, there
are differences in barrier behavior between in-order and out-of-
order machines, and their respective memory subsystems, which
indicate different barrier choices for different platforms. These
changing costs mean that algorithm designers need to reconsider
their design choices and the nature of their resulting algorithms in
order to exploit the opportunities presented by modern hardware.
Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection), Run-time environments

General Terms Experimentation, Languages, Performance, Measurement

Keywords Write barriers, Memory management, Garbage collection, Java

1. Introduction
Software read and write barriers are small code fragments trans-
parently inserted into a program by the compiler or interpreter to
mediate run-time accesses to memory. By observing and/or inter-
cepting a program’s accesses, they allow the run-time system to:
a) present richer memory abstractions, and b) transparently imple-
ment aggressive memory management strategies. For example, ar-
ray bounds checks enforce memory safety and read and write barri-
ers are used to ensure correctness of concurrent garbage collection.
The creative possibilities opened up by the mediating role of bar-
riers are large. However, because barriers add instructions to the
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program, any opportunities they present are held in tight check by
performance concerns. Because their overhead is often hard to mea-
sure, in practice it is typically perceptions of overhead that curtail
the creative use of barriers.

Software barriers are particularly interesting today because of
the growing use of garbage collected languages, and simultane-
ously, significant disruption to hardware trends. These develop-
ments invite deeper investigation into barrier costs because they in-
dicate both a growing dependence on barriers and a growing need
for creative memory management strategies that might minimize
the impact of disruptive and complex hardware changes. Further-
more, as hardware evolves the folklore surrounding software bar-
rier costs must also be re-examined.

We measure the mutator cost of a range of barriers on a range of
hardware and Java workloads. We find that: a) modern benchmarks
expose the overheads of barriers more than older benchmarks did,
b) write barrier costs are lower on modern machines, and c) bar-
rier overheads can be sensitive to microarchitecture. We consider
commonly used barriers as well as more fundamental barriers from
which other barriers can be composed. This strategy allows us to
tease apart the sources of overhead and will guide future imple-
menters in understanding important influences on barrier overhead.

We compare our findings with the prior study by Blackburn and
Hosking [5]. We took some care to optimize each barrier. Using
similar hardware, we measured a much lower overhead for a read
barrier of 8.5%, down from 15.9%, which we largely attribute to
our optimization of the barrier code. The prior work was published
before the DaCapo benchmarks became available [11]. We found
that the newer benchmarks expose the barrier overheads more than
the older ones, so the results in the previous study are understated.
We found that on a modern i7-2600 processor, read and write barri-
ers have average overheads as low as 5.4% and 0.9% respectively.
We were surprised to see that the overhead of the read barrier on the
in-order Atom is almost the same as on the aggressive out-of-order
i7 processor. On the other hand the write barrier overhead on the
Atom is twice that of the i7. We also examine a barrier pathology
[14] that is known to exist in a popular commercial Java virtual ma-
chine (JVM). Our study of this pathology for card marking barriers
shows it to be very real. We evaluate a number of possible solutions
to this pathology.

These changing costs mean that algorithm designers need to re-
consider their design choices and the nature of their resulting al-
gorithms in order to exploit the opportunities presented by modern
hardware.

2. Related Work
In 2004 Blackburn and Hosking [5] measured the cost of barri-
ers on hardware of that era, including both x86 and PowerPC. Our
methodology is essentially the same. Here, we focus on modern
x86 platforms, and consider a broader range of benchmarks and ad-
ditional useful barriers. We explore barrier costs more precisely us-
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ing hardware performance counters. Our results using similar hard-
ware broadly confirm theirs, but we observe a number of interesting
differences in behavior on current platforms, such as a greatly re-
duced read barrier overhead. Details appear in Section 5.

Previous direct studies of barrier overheads used less direct
approaches to studying barrier cost. Zorn [26] timed the cost of
barrier implementations in a tight loop and then used heap access
profiles for several large Lisp programs to estimate the total cost
of the barriers executing in those programs. These ranged from 2%
to 6% for inlined fast path write barriers, and up to 20% for read
barriers. Because Lisp is dynamically-typed the overhead includes
the cost of dynamically filtering out non-pointer accesses.

Real-time copying collectors commonly use an indirection bar-
rier (for both reads and writes) so that all accesses forward to
the most recent copy of the object in constant time [12]. Ba-
con et al. [4] measured the cost of this style of barrier as 4%
on average and 10% maximum for the SPECjvm98 benchmarks.
To obtain these results they applied standard optimizations (such
as common-subexpression elimination) and special-purpose opti-
mizations (such as barrier-sinking, which moves the barrier to the
point of use, so allowing the null-check for the access to combine
with that for the barrier).

There is much other related work looking at the effects of
different barriers on both mutator and collector execution [2, 3, 9,
13, 18–21, 24, 25]. Some use hardware and/or operating system
support. As in Blackburn and Hosking [5], we focus here on pure
software techniques. Blackburn and McKinley [7] detail the impact
of barriers on compile times and code quality. Hirzel et al. [17]
designed a region-based collector to avoid the need for barriers
entirely so as to eliminate their overhead. Hellyer et al. [16] study
the locality effects of barriers in concurrent collectors.

3. Barriers
We now describe each of the barriers we evaluate. We first describe
the most simple barriers, which we term primitive barriers, before
describing compound barriers, which combine primitive barriers
to build more sophisticated barriers. We consider both because
primitive barriers have the attraction of being easier to analyze,
while compound barriers may be more interesting because of their
broader application.

In practice, barriers also occur when array elements are writ-
ten, arrays are copied, and in a number of other more obscure
circumstances. Table 2 shows the relative frequency of the im-
portant cases. Depending on the barrier semantics, an array copy
(System.arraycopy) can be greatly optimized, and need not con-
sist of naı̈ve element-by-element application of the simple barrier.
In our performance analysis, we apply array copy optimizations ag-
gressively. For simplicity, in this section we present only the code
for barriers corresponding to putfield and getfield bytecode
operations.

3.1 Primitive Barriers
Figure 2 presents Java and x86 assembly code for each of the
primitive barriers. Each of the Java code segments belongs in the
context of the skeleton code shown in Figure 1. We assume that
a read barrier must load at least the reference value held in the
source (src) object’s slot and return the (equivalent, possibly
modified) reference (i.e., the read barrier substitutes for the load).
In contrast, we assume that the actual store of the target (tgt)
reference is performed separately from the write barrier (i.e., the
write barrier is additional to the store). Figure 2, and subsequent
figures showing barrier code, present only the barrier operations
(without showing the actual heap load/store).

1 @Inline
2 public ObjectReference objectReferenceRead(
3 ObjectReference src,
4 Address slot)
5 {
6 ObjectReference value;
7 value = slot.loadObjectReference;
8 /* barrier-specific code here */
9 return value;

10 }

(a) Read

1 @Inline
2 public final void objectReferenceWrite(
3 ObjectReference src,
4 Address slot,
5 ObjectReference tgt)
6 {
7 /* barrier-specific code here */
8 }

(b) Write

Figure 1: Skeleton code for generic read and write barriers.

Card The card marking barrier is widely used to identify inter-
generational pointers in a generational garbage collector. It consists
of an unconditional store of a byte to a computed offset in a card
table. We improved over the previous version of the card marking
code [5] by making the card base constant, reducing the barrier
from three instructions to two. At collection time, the card table is
scanned to identify the location of regions (cards) that contain mu-
tated reference fields. The size of each card (29 bytes in our case)
dictates how precise the card table is. A more precise card table has
a large footprint but reduces the scanning load at collection time.
The card marking barrier is widely used in commercial Java virtual
machines (JVMs) and is popular primarily because of its simplic-
ity and the fact that it is unconditional. The barrier has a number
of potential pathologies which we explore in detail in Section 5.3.
Moreover, frequent unconditional stores generate significant write
traffic, so if write bandwidth is scarce, the card marking barrier may
perform poorly. The collection-time cost of the barrier is a function
of the size of the table, which is typically linear in the size of the
heap. If the heap is very large the scanning overhead may be con-
siderable. This overhead is imposed on every nursery collection, so
discouraging small nurseries, which may otherwise be a desirable
choice.

Object The object barrier is also used in generational collection
and also conservatively records areas containing mutated reference
fields. However, it works by remembering objects whose reference
fields were mutated rather than remembering regions of memory
(cards). The barrier is conditional. It checks the header of the ob-
ject being mutated and only remembers the object if a bit is set in
the header to indicate that the object has not yet been remembered.
The barrier slow path then clears the bit so that the object is not re-
membered again. The collector scans each remembered object and
re-sets its not-remembered bit. A simple optimization allocates new
objects with the bit clear, which means they will not be needlessly
remembered. We optimized Jikes RVM’s implementation of the
check for the non-remembered bit (HeaderByte.isUnlogged())
to use the x86 TEST instruction, reducing the four lines of assembly
code reported in Blackburn and Hosking [5] down to two.

Because it remembers objects rather than cards, the object bar-
rier is more precise than the card marking barrier. Because it is
conditional, the object barrier generates much less write traffic.
The first method call within the slow path (line 2) is very small
and is explicitly inlined with an @Inline pragma. By contrast, the
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1 LOG_CARD = 9;
2 offset = src.rshl(LOG_CARD);
3 Gen.cardBuffer.store((byte)1, offset);
4

1 SHR EAX 9
2 MOVB 1048576[EAX] 1
3

4

(a) Card

1 if (HeaderByte.isUnlogged(src)) {
2 HeaderByte.markAsLogged(src);
3 modbuf.insertOutOfLine(src)
4 }

1 TEST -8[EBX] -128
2 JEQ 45
3

4

(b) Object

1 if (!Gen.inNursery(slot) &&
2 Gen.inNursery(tgt))
3 remset.insert(slot);
4

1 CMP EDX -1530920960
2 JGE 0
3 CMP EAX -1530920960
4 JGE 38

(c) Boundary

1 REGION_SIZE = 32*1024*1024;
2 if (tgt.toAddress().NE(Address.zero()))
3 if (src.xor(tgt).GE(REGION_SIZE))
4 remset.insert(slot)

1 TEST EAX EAX
2 JEQ 0
3 XOR EBX EAX
4 CMP EBX 33554432
5 JGE 36

(d) Zone

1 return value.and(ˆ3);
2

3

4

1 AND EDX -4
2

3

4

5

(e) Read

1 if (value.and(1).NE(0))
2 return insertNOP(src);
3 return value;
4

1 TEST EAX 1
2 JNE 35
3

4

5

(f) Conditional Read

Figure 2: Primitive barriers, showing Java source for the barrier and x86 assembler for the fast path.

second method is larger and is explicitly forced out of line with
the @NoInline pragma. The barrier slow path therefore includes a
couple of instructions and a call. We show later (in Table 4) that the
object barrier only remembers an object once every thousand times
it is invoked. In the presence of a good branch predictor, the ob-
ject barrier’s very low take-rate may help mitigate the fact that the
barrier is conditional. This very low take-rate may also argue for
forcing the entire slow path out of line, reducing i-cache pressure,
however we have not explored this.

Boundary The boundary barrier remembers the address of any
reference that crosses a fixed address boundary in a particular
direction. This can be used as an inter-generational barrier when
the nursery is strictly higher or lower than the mature heap in the
address space. If the nursery is in high memory then null references
are automatically ignored by the barrier. At collection time all
of the remembered reference fields are scanned by the collector.
Unlike card marking and the object barrier, this barrier will log
duplicates when the program changes a given field repeatedly.
Table 4 shows that on average the boundary barrier remembers
fields 19 times as often as the object barrier remembers objects.

Zone The zone barrier uses exclusive or to test for and remember
all references that cross power-of-two-aligned regions of the ad-
dress space. In our example we use a large 32 MB zone. So the
address space is broken into 32 MB zones on 32 MB alignment
boundaries. Before checking whether the reference crosses bound-
aries, we check whether the target is null. This is because 42% of
references that cross boundaries are due to null-assignments to ref-
erence fields. Table 4 shows that the zone barrier remembers point-
ers very frequently, 390 times as often as the object boundary.

Read The unconditional read barrier is a very simple bit-masking
barrier, masking the two low-order bits of the reference value be-
fore it is returned to the caller. The motivation for such a barrier
is that it can be used to cleanse addresses that have had their low-
order bits tainted. In a system such as a JVM where all addresses
are guaranteed to be at least word-aligned this barrier safely allows
‘stealing’ of the low order bits. Although this barrier is very sim-
ple, reads occur an order of magnitude more frequently than writes

1 return value.and(ˆ3);
2

3

4

1 AND EDX -4
2

3

4

5

(a) Read

1 Word old = slot.load();
2 if (!old.and(3).isZero())
3 slowPath(slot, tgt);
4

1 AND EDI -4
2 MOV EAX ESI
3 TEST [EBX] 1
4 JNE 105
5

(b) Write

Figure 3: The bit-stealing barrier, showing Java source for the
barrier and x86 assembler for the fast path.

(see Table 2), so it has far greater potential to slow the program
down. This barrier has been implemented in hardware on a number
of mainstream RISC architectures that require memory operations
to be word-aligned, but is not supported on x86.

Conditional Read The conditional read barrier will remember
the loaded reference if the reference has its low order bit set. When
run in isolation, the test will always fail, so the slow path will never
be executed. However, the compiler cannot identify this fact, so the
test is not optimized away. We made an improvement over the con-
ditional barrier used by Blackburn and Hosking [5]. They used
value.and(1).NE(1) where we use value.and(1).NE(0).
Our code is faster for two reasons: a) it compiles down to the
TEST instruction rather than an immediate mode comparison, and
b) by reversing the sense of the comparison, the taken case (line 3
of the Java code) does not require a branch.

3.2 Compound Barriers
These barriers combine one or more of the primitive barriers to
form more complex barriers.
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Bit-Stealing The bit-stealing barrier ‘steals’ one or both of the
low order bits of references in a context where the bits are unneeded
because references are guaranteed to be word-aligned. The Java
and assembler code for this barrier is shown in Figure 3. The
barrier consists of both a write barrier that sets the bits under
some condition, and a read barrier that masks the bits out before
use. The read barrier is identical to the unconditional read barrier
of Section 3.1. The bit-stealing barrier is analogous to the object
barrier, but instead of conditionally remembering modified objects
it conditionally remembers modified fields. It is therefore precise
rather than conservative. Once the field is remembered, a low order
bit is set ensuring that it is not re-remembered until the bit is cleared
again at the next collection. Like the object barrier, the bit-stealing
barrier does not remember duplicates.

Hybrid Object/Region The hybrid barrier presented by Black-
burn and Hosking [5] simply uses the object barrier for stores to
scalar objects and the boundary barrier for stores to arrays.

4. Methodology
We use similar methodology to that introduced by Blackburn and
Hosking [5]. In particular, we use the ignore remsets feature they
added to MMTk, which allows us to implement and measure the
overhead of barriers. In this section, we present the software, hard-
ware, and measurement methodologies we use, in particular high-
lighting areas where we differ from their previous barrier overhead
study.

Measurement Methodology We implement all barriers in MMTk
[10], based on JikesRVM’s [1] production configuration that uses
a generational Immix [6] collector. By default the generational
collector relies on a write barrier to remember references from
the mature space to the nursery, allowing an efficient partial trace
of the heap. However, the need to gather this remembered set for
correctness limits the experiments that can be performed. We use
the approach of Blackburn and Hosking [5], where the effect of a
nursery collection is simulated by performing a full trace and only
collecting the nursery. This removes the requirement of gathering
the remembered set for correctness, making it possible to measure
other systems, including a baseline no-barrier system.

Our focus is on barrier overheads, and so we report mutator
time, rather than total or garbage collection time. This is particu-
larly important when using the ignore remset approach, because the
full trace to simulate the remembered set may be quite expensive.
We use a 32MB fixed size nursery, which performs well for our
benchmarks. We execute with a generous heap size: 6× the mini-
mum required for each individual benchmark, so nursery allocation
and collection dominates. We run each benchmark 20 times (20 in-
vocations) and report the average. We also report 95% confidence
intervals for the average using Student’s t-distribution.

Controlling Non-Determinism To reduce perturbation due to dy-
namic optimization and to maximize the performance of the under-
lying system that we improve, we use a warmup replay method-
ology, which was recently committed to Jikes RVM, and is a re-
finement to the pseudoadaptive approach used by Blackburn and
Hosking [5]. Before executing any experiments, we gathered com-
piler optimization profiles from the 10th iteration of each bench-
mark. When we perform an experiment, we execute one complete
iteration of each benchmark without any compiler optimizations,
so as to load all the classes and resolve methods. We next apply
the benchmark-specific optimization profile after which no further
compilation occurs. We then measure and report the subsequent it-
eration. This methodology greatly reduces non-determinism due to
the adaptive optimizing compiler and improves underlying perfor-

mance compared to the prior replay methodology which is used by
Blackburn and Hosking [5].

To reduce the non-determinism introduced by the operating sys-
tem’s scheduler on multicore machines, we run using a single core
(except for our microbenchmark results that investigate contention
when using a card marking barrier).

Metrics We use performance counters to help understand barrier
costs. We measure execution time, retired instructions, and instruc-
tion cache misses. We report percentage overhead for each of these
measures (∆t, ∆i, and ∆imiss) relative to the no barrier configura-
tion. As an indicative measure of how costly the instructions added
by each barrier are, we also report ∆t/∆i.

Hardware and Software Environment We use three IA32 archi-
tectures to explore the role microarchitecture has on barrier over-
head: 1) a recent Intel Core i7 2600 processor, 2) an in-order Atom
D510, and 3) an older Pentium 4 (P4) D 820 machine (similar to the
machine used in the previous study). The i7 represents the current
mainstream multicore processor. Unlike the P4, which has a deep
superscalar pipeline, the i7 has a more modest out-of-order pipeline
with a powerful memory subsystem. The Atom tries to improve en-
ergy efficiency by using a simpler in-order pipeline. Table 1 shows
the parameters of these three architectures.

Operating System We use Ubuntu 10.04.01 LTS server distribu-
tion running with a 64-bit (x86 64) 2.6.32-24 Linux kernel.

Benchmark Properties A key way we improve on previous
work is the use of a more comprehensive, modern set of bench-
marks. We draw the benchmarks from the DaCapo suite [11], the
SPECjvm98 suite [23], and pjbb2005 [8] (a fixed workload ver-
sion of SPECjbb2005 [22] with 8 warehouses that executes 10,000
transactions per warehouse). We use benchmarks from both 2006-
10-MR2 and 9.12 Bach releases of DaCapo to enlarge our suite and
because a few 9.12 benchmarks do not execute on Jikes RVM.

Table 2 shows the frequency of operations that may trigger
barriers, expressed as a number of operations per millisecond. We
include results for reference field and array load/store operations as
well as array copy operations, which may invoke a special barrier to
avoid performing a naı̈ve element-by-element copy in a loop. The
results show both that these statistics vary considerably between
benchmarks, and also that the benchmarks used in the previous
study are not representative. In particular, we see that the four
benchmarks with the lowest reference putfield rates are all found
within the seven SPECjvm98 benchmarks.

5. Results
We now report the barrier overheads, starting with a detailed eval-
uation of the costs on modern architectures before discussing mi-
croarchitectural sensitivity and examining a case study in patholog-
ical write barrier performance.

5.1 The Cost of Barriers on Modern Architectures
We start by examining the cost of read and write barriers on modern
hardware. Table 3 summarizes these results and reproduces corre-
sponding numbers from Blackburn and Hosking [5]. All numbers
except for the right-most column (∆t/∆i ) are expressed as percent-
age overhead compared to a base case with no barrier. We include
average 95% confidence intervals in grey beneath the correspond-
ing mean. We include a column P4? that uses a set of benchmarks
similar to Blackburn and Hosking [5] as well as similar hardware.

Note that our data differs from Blackburn and Hosking [5] in at
least three significant respects, each of which is covered in detail in
Section 4: a) our benchmarks are larger and newer, b) our hardware
is newer (excepting P4 which approximates the P4 used in the
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Architecture Pentium 4 Atom D510 i7-2600

Model P4D 820 Atom D510 Core i7-2600
Technology 90nm 45nm 32nm

Clock 2.8GHz 1.66GHz 3.4GHz
Cores × SMT 2 × 2 2 × 2 4 × 2

L2 Cache 1MB × 2 512KB × 2 256KB × 4
L3 Cache none none 8MB

Memory 1GB DDR2-400 2GB DDR2-800 4GB DDR3-1066

Table 1: Processors used in our evaluation.

Benchmark Reference Fields Reference Arrays
Arraycopy

Get/µs Put/µs Load/µs Store/µs Call/µs Elem/µs

compress 117.41 0.00 0.01 0.00 0.00 0.00
jess 61.98 2.08 42.87 1.99 1.33 9.34
db 75.10 0.66 26.03 5.77 0.00 0.60
javac 69.51 5.86 7.08 0.77 0.00 0.01
mpegaudio 37.34 0.92 60.15 0.00 0.00 0.00
mtrt 68.58 0.69 37.37 0.93 0.00 0.00
jack 52.60 8.86 12.86 2.06 0.01 0.09

SPECjvm mean 68.93 2.72 26.62 1.64 0.19 1.43

antlr 75.21 1.99 1.95 0.19 0.00 0.01
avrora 40.83 1.73 5.71 0.01 0.00 0.00
bloat 81.11 19.12 12.96 0.30 0.00 0.00
eclipse 51.42 2.18 11.97 2.93 0.08 1.75
fop 43.53 1.50 6.17 0.06 0.00 0.02
hsqldb 79.73 6.09 17.40 1.68 0.00 0.28
jython 64.88 6.48 18.45 3.13 0.11 1.07
luindex 61.77 4.90 18.79 0.46 0.00 0.03
lusearch 69.81 6.31 4.61 0.17 0.00 0.00
pmd 63.04 8.02 13.31 0.92 0.01 0.03
sunflow 69.49 3.18 19.13 0.01 0.00 0.00
xalan 60.27 2.82 5.28 1.49 0.00 0.01

DaCapo mean 63.43 5.36 11.31 0.95 0.02 0.27

pjbb2005 42.47 7.94 13.01 1.96 0.00 0.02

min 37.34 0.00 0.01 0.00 0.00 0.00
max 117.41 19.12 60.15 5.77 1.33 9.34

Total mean 64.31 4.57 16.76 1.24 0.08 0.66

Table 2: Frequency of reference field and reference array operations by benchmark and benchmark suite.

Barrier Prior [5] Current Overheads

P4 AMD P4? P4 Atom i7
∆t ∆t ∆t ∆t ∆t ∆t ∆i ∆imiss ∆t/∆i

Card 0.8 1.0 1.8
±0.4

2.2
±0.4

1.8
±0.3

0.9
±0.8

1.3
±0.1

6.9
±1.5

0.70

Object 1.2 1.8 0.8
±0.4

1.8
±0.4

1.3
±0.3

1.6
±0.7

2.0
±0.1

5.7
±1.2

0.81

Boundary 1.3 2.2 1.5
±0.7

2.2
±0.6

2.5
±0.3

1.7
±0.8

2.7
±0.1

10.2
±1.3

0.65

Zone 4.8 5.1 7.1
±0.5

9.0
±0.5

9.3
±0.5

9.6
±0.8

8.5
±0.1

28.8
±1.4

1.12

Read 5.0 8.1 4.1
±0.5

4.6
±0.5

5.5
±0.3

5.4
±0.8

9.3
±0.2

11.9
±2.4

0.64

Cond Read 15.9 21.2 9.2
±0.6

9.4
±0.6

9.1
±0.5

10.1
±0.8

20.9
±0.1

37.2
±1.7

0.48

Bit Steal 7.0
±0.4

7.1
±0.5

7.8
±0.4

8.3
±0.9

12.8
±0.4

21.2
±2.3

0.65

Hybrid 1.3 1.8 0.9
±0.4

2.1
±0.4

1.8
±0.3

1.7
±1.1

2.2
±0.1

9.1
±1.4

0.78

? Running on current system with a subset of benchmarks similar to that used by Blackburn and Hosking [5].

Table 3: Summary of barrier overheads on various platforms, expressed in percentages in terms of time (∆t), instructions (∆i), and i-cache
misses (∆imiss). For comparison, measurements from Blackburn and Hosking [5] are reproduced in italics in the second and third columns.
For each average, the corresponding 95% confidence intervals are also averaged and printed in small grey font.
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Benchmark Suite Object Boundary Zone

Take Rate Original Slow NOP Slow Take Rate Original Slow NOP Slow Take Rate Original Slow NOP Slow
/µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss /µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss /µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss

SPECjvm mean 0.019 0.1 1.0 1.4 4.6 0.8 1.0 11.6 0.0 0.4 0.7 1.7 7.5 1.3 1.4 12.6 7.3 51.7 7.6 7.5 38.6 3.1 3.6 18.5
geomean 0.9 1.4 4.1 0.8 1.0 9.0 0.7 1.7 6.9 1.3 1.4 12.0 7.5 7.3 36.5 3.1 3.5 16.8

DaCapo mean 0.010 0.1 1.8 2.2 6.7 2.0 1.7 7.3 0.4 2.8 2.3 3.1 12.6 3.0 2.5 12.7 6.0 31.4 11.4 9.8 28.0 5.3 4.5 18.6
geomean 1.8 2.2 6.4 2.0 1.7 6.8 2.3 3.1 12.1 2.9 2.4 12.5 10.7 9.3 26.0 5.2 4.4 17.3

Total mean 0.015 0.1 1.6 2.0 6.1 1.6 1.5 8.6 0.3 1.9 1.8 2.7 10.7 2.5 2.2 12.7 6.5 39.0 10.1 8.9 30.9 4.5 4.2 18.4
geomean 1.6 2.0 5.7 1.6 1.5 7.4 1.7 2.7 10.2 2.5 2.2 12.4 9.6 8.5 28.8 4.4 4.2 17.0

Table 4: Summary of take-rate and cost of slow path for conditional barriers on the i7.

prior work), and c) our JVM is newer and faster. Furthermore, on
the i7 we present performance counter data for instructions retired
(∆i), and i-cache misses (∆imiss), and confidence intervals for our
average of 20 runs. Each of these differences reflects the passage of
eight years of improvements in software, hardware and evaluation
methodology since the previous study and is a source of motivation
for our study.

Tables 6 and 7, which appear at the end of the paper, provide
substantially more detailed data, including per-benchmark results,
all measured on the i7.

5.1.1 Primitive Barriers
Each primitive barrier is described in Section 3.1. The baseline for
our comparison is a system with no barrier. The first six rows of
Table 3 summarize performance results for each of the primitive
barriers (detailed results are in Table 6). For each barrier, the ta-
bles report the percentage increase in execution time (∆t), retired
instructions (∆i), and instruction cache (i-cache) misses (∆imiss).
Table 3 also presents ∆t/∆i, which indicates each barrier’s ability to
be absorbed by instruction-level parallelism (ILP).

Card Card marking shows an average performance hit of just
0.9%± 0.8% on the i7 processor. Retired instructions increase by
just 1.3% and i-cache misses are only 6.9% higher. The perfor-
mance overhead is consistent with Blackburn and Hosking [5], and
is explained by the increase in retired instructions. The increase
in i-cache misses is higher, but not enough to result in a signif-
icant performance overhead. The performance overhead for card
marking is significantly higher on the P4 (2.2%±0.4%) and Atom
(1.8%± 0.3%), which both have much lower memory bandwidth
than the i7 and much smaller caches. This doubling in overhead
between the i7 and Atom is the strongest architectural sensitivity
we see for any of the barriers.

Unlike card marking, the object, boundary, and zone barriers are all
conditional. Thus, their performance depends heavily on the rate at
which their slow path is taken. Table 4 summarizes the take-rates of
these write barriers and the impact of taking the slow path. Detailed
results are presented in Table 7. For each of the three barriers,
we present the rate at which the barrier is taken, both in terms of
execution frequency and in percentage rate of slow paths taken per
execution of the barrier. We also present overhead statistics as in
Table 3 for the barrier with the regular slow path (Original Slow)
and with a call to an empty function (NOP Slow).

Object The object barrier has an average performance overhead
of 1.6%± 0.7% on the i7. Although a little higher than the card
marking barrier, the 0.7% difference between the barriers is smaller
than the confidence intervals on either barrier. On the i7, the num-
ber of retired instructions increased by 2.0% and the relative change
in CPI is very similar to card marking. Perhaps unsurprisingly, we
found that the i-cache locality is strongly affected by inlining of

the slow path. When the slow path is forced inline the performance
overhead grows to 2.6% and the i-cache misses increase by 20%,
compared to 5.7% for the out of line case.

Boundary The boundary barrier has a performance overhead of
1.7%±0.8% on the i7 — not statistically different from the object
or card marking barriers. The take-rate for boundary is an order of
magnitude higher than for object, but in absolute terms is low, at
around 2%.

Each of these three primitive write barriers records mutated ref-
erence fields, but they represent different points in a mutator/col-
lector tradeoff space. Card marking has the highest collection-time
overhead, generates the most write traffic and, as we will show in
Section 5.3, has some problematic performance pathologies. Yet
its performance is not significantly better than either of the other
barriers. In the case of card marking, the collector must scan each
marked card. The object barrier is similar, but a little more targeted,
because it requires each remembered object to be scanned at collec-
tion time. By contrast, the boundary barrier is precise — it remem-
bers the address of each modified field, so it requires no scanning
at collection time.

Zone The zone barrier is more general than the others because
it records mutations crossing multiple boundaries (in both direc-
tions). However, this generality comes at a considerable cost, with
a 9.6%± 0.8% performance overhead on the i7. This overhead is
explained by its slow path take-rate of 39% — more than two orders
of magnitude higher than the object barrier! As shown in Figure 2,
we explicitly check whether the target address is null before check-
ing whether the boundary is crossed (in a system where young ob-
jects are in high memory, a null looks like a mature object). This
check is necessary because we found that 42% of taken slow paths
were due to nulling of object fields! A standard generational barrier
will only remember the mature-to-nursery pointers. Table 4 shows
that when we replaced the slow path with a call to an empty func-
tion the average overhead reduced to 4.4%. This reduction is due
both to the removal of parameter marshaling overhead and the cost
of actually executing the code that stores the remembered pointer
field. This result differs considerably from the overhead of just 5%
reported by Blackburn and Hosking [5].

The overheads of these three conditional write barriers are quite
different for different benchmark suites. The average overheads of
DaCapo are 1.8%, 2.3%, 10.7% for object, boundary, and zone
barriers, respectively. These are much higher than SPECjvm98, at
0.9%, 0.7%, and 7.5%, respectively. The explanation lies in the
high rate of reference writes in DaCapo, revealed in Table 2 . The
DaCapo reference write rate is about 2× higher than SPECjvm98.
One DaCapo benchmark, bloat, has 7× more frequent reference
writes than the average for SPECjvm98.

We now examine the two primitive read barriers.
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Read The unconditional read barrier has an overhead of 5.4% on
the i7 despite a 8.5% increase in retired instructions. The fraction
∆t/∆i is just 0.64, indicating that much of the instruction overhead
is absorbed by instruction level parallelism (ILP). Interestingly, on
the ILP-limited Atom the performance overhead is only 5.5%.

Conditional Read The conditional read barrier has a 10.1% over-
head with a 20% increase in retired instructions. The fraction ∆t/∆i
is 0.48, which is the lowest of all the barriers we measure. We see
a 9.2% overhead on the P4, which is significantly lower than the
15.9% and 21.2% previously reported by Blackburn and Hosking
[5] for the P4 and AMD, respectively. We attribute this improve-
ment to our tuning of the barrier to use a compare to zero rather
than immediate mode compare to 1 (cf. Section 3.1).

Summarizing our analysis of primitive barriers, we find that
among the write barriers, card marking has the lowest overhead
on i7, but only by 0.7%, which is not statistically significant. Fur-
thermore, card marking does not perform well on the Atom or P4.
The difference between them is very likely due to the substantially
better memory subsystem of the i7. The object barrier is attractive
because it outperforms card marking on the Atom and P4 and un-
like the previous findings, it dominates boundary and hybrid.

5.1.2 Compound Barriers
Section 3.2 describes each of the compound barriers. The last two
rows of Table 3 (and the right-most two column groups of Table 6:
Bit Steal and Hybrid) give performance results for each of the
compound barriers, relative to the base case where no barriers are
used.

Bit Steal Recall from Section 3.2 that the bit steal barrier com-
bines the (unconditional) read barrier with a write barrier that re-
members any unlogged reference fields (determined by the ‘stolen’
low order bit of the reference), and marks the reference as logged
by atomically updating it. Retired instructions increase by 12.8%
while time increases by only 8.3%. I-cache miss rates also increase
by 21%, in line with the overheads for the primitive conditional
write and unconditional read barriers.

Hybrid The hybrid barrier shows an average performance over-
head of 1.7% on the i7 processor. Retired instructions increase by
2.2% and i-cache misses increase by 9.1%. The performance over-
head remains fairly consistent with Blackburn and Hosking [5], and
is explained by the increase in retired instructions. However, unlike
the prior findings, hybrid does not dominate object and boundary.
The detailed results in Table 6 show that the worst case perfor-
mance of hybrid (max) is worse than that for object and boundary.
It is therefore hard to argue for hybrid over object or boundary on
the basis of our analysis using modern benchmarks and modern
machines.

5.2 Microarchitectural Sensitivity
We evaluated three different microarchitecture in this study: an ag-
gressively out-of-order machine (P4), an in-order machine (Atom),
and a modern out-of-order machine (i7). As shown in Table 1, com-
pared with the i7, both the P4 and Atom have outdated memory
subsystems. Not only do they have much smaller caches, but they
also suffer low memory bandwidth. Nevertheless, it is surprising
that the barrier performance is relative stable among the three di-
verse microarchitectures. However, there are a number of trends
revealed in Table 3.

Among the barriers, card marking is the most memory intensive
because it unconditionally executes a store (it does not have a slow
path) which may cause a cache miss. Although the object barrier’s
fast path contains a load to check the source header, the header
byte is likely already to be in the cache. Thus, the performance of

Barrier Overall Pathology

Card Bytemap 0.88
±0.78

378.0
±51.6

Card Wordmap 0.91
±0.75

372.4
±48.4

Card Wordmap NT 3.58
±0.77

40.1
±24.7

Card Conditional Set 2.44
±0.83

26.7
±5.9

Object 1.57
±0.74

1.0
±5.1

Table 5: Card marking overheads on the i7 in average and patho-
logical contexts, expressed as percentages. We show four variations
of card marking barriers, plus an object barrier. The barriers have
successively lower overhead in the pathological setting.

card marking will depend more heavily on the memory subsystem.
As shown in Table 3, the overhead of card marking on the more
powerful i7 is much less than for the other two architectures.

In contrast, read barriers have different behavior. On the slow
in-order Atom, read barrier overheads are always marginally better
than that of the state-of-the-art i7. This is also due to the differences
in memory subsystem. Unlike the write barriers, our read barriers
do not have any memory accesses, so their cost should be similar on
all three machines. But, the Atom’s cache is 16 times smaller than
the i7’s, so the impact of the extra read barrier instructions is buried
in the higher cache miss rates for the Atom. The P4 has a similar
memory subsystem to the Atom (for similar miss rates), but it is
much more aggressively out-of-order so it can more readily hide
the read barrier overheads. The i7 can similarly hide the read barrier
overhead, but its lower cache miss rate offers less opportunity to
hide read barriers behind cache misses. Indeed, memory-bound
operations like the write barriers benefit more from the i7’s larger
caches.

The Atom is noticeably worse on the boundary barrier than the
other architectures. We speculate that the cause of this slowdown
may be that the boundary barrier uses two CMP REG IMM instruc-
tions where the immediate value is 32 bits long. The Atom is known
to perform poorly with instructions greater than 4 bytes because of
its low instruction fetch-rate [15].

5.3 A Case Study in Barrier Pathology
We now explore and evaluate a known barrier pathology along
with several potential solutions to the pathology. Table 5 shows
the performance of four different card marking implementations
and the object barrier. We show the overall performance when run
against our suite of 20 benchmarks and the performance when run
on a microbenchmark designed to highlight the pathology.

Card marking is often advocated as a very low-cost uncondi-
tional write barrier (indeed it is cheap according to our results and
those of Blackburn and Hosking [5]), but it does suffer from at least
two known pathologies. The first is that the work of scanning the
cards is a function of heap size and thus small nurseries perform
poorly because of the fixed cost of scanning the cards dominates.
The second arises when multiple threads perform frequent concur-
rent updates to the same or adjacent cards, resulting in cache con-
tention on the cache line holding the metadata for those cards [14].
We focus now on this second pathology.

One proposed solution is to use conditional card marking, mark-
ing a card only if it is not already marked. This eliminates unnec-
essary writes (and any associated contention) at the expense of an
additional read. Table 5 shows that whereas the average overhead of
card marking is 0.88%±0.78%, conditional card marking is more
than twice as expensive at 2.4%±0.83%. The simple object barrier
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discussed earlier is cheaper at 1.57%± 0.74% overhead. Another
suggested solution is to use a non-temporal store instruction when
marking a card, allowing the write to occur without affecting the
cache. Unfortunately, Table 5 reveals that this has unacceptably
high overhead of 3.58%± 0.77%. Thus, using non-temporal in-
structions to avoid cache contention in card marking is less prefer-
able than conditional card marking, but using a cheaper alternative
such as the object barrier also avoids the pathology.

To illustrate the gains to be had, we use a synthetic micro-
benchmark designed to trigger card mark contention. This bench-
mark creates multiple worker threads, each of which has a thread-
local buffer that is continually written to in a tight loop. If the buffer
objects themselves are located on different cache lines — but lie
within the same or adjacent cards — then the card marking bar-
rier can introduce contention. This microbenchmark is drawn from
the real world example of a work-stealing scheduler, where each
worker thread is managing task objects in a thread-local buffer.1
Table 5 shows that this pathology can cause dramatic slowdowns,
with the byte-map card barrier suffering 378% overhead, meaning
that the system runs nearly 5× slower. While all of the proposals to
reduce contention are reasonably effective when compared to the
original byte-map card marking, in practice the object barrier han-
dles this case better than any of the card approaches.

6. Conclusion
This paper presents a detailed and up-to-date quantitative study of
barrier costs. Because barriers are a key building block for memory
management algorithms and enable opportunities for algorithmic
creativity, properly understanding their cost is essential. Reprising
the previous study of Blackburn and Hosking [5], we deepen and
renew the results using modern workloads, modern hardware, and
more rigorous methodology. The use of modern workloads is crit-
ical because the prior study was done with the simplest of Java
workloads. The use of modern hardware is important because there
has been substantial upheaval in computer architecture in the eight
years since the previous work. Applying more rigorous methodol-
ogy is essential because it clarifies the significance of some impor-
tant results. By using performance counters we were able to shed
more light on why barriers perform differently. We have also ex-
amined an important write barrier pathology and evaluated four al-
ternative solutions.

Significant changes in computer architecture and increasing de-
mand for managed languages are likely to put renewed pressure on
researchers to develop interesting memory management solutions
for diverse settings. Our work fortifies the algorithmic toolkit avail-
able to researchers embarking on this route by quantifying barrier
costs in detail.
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Benchmark Card Object Boundary Zone Read Cond Read Bit Steal Hybrid
∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss ∆t ∆i ∆imiss

compress 0.0
±0.0

0.0
±0.0

-0.8
±0.5

-0.1
±0.0

0.0
±0.0

-1.5
±0.6

0.0
±0.0

0.0
±0.0

2.4
±0.6

-0.1
±0.1

0.0
±0.0

7.3
±0.7

-9.3
±0.0

13.7
±0.0

4.4
±0.7

-4.6
±0.0

37.3
±0.0

14.4
±0.8

-9.2
±0.0

16.0
±4.5

9.5
±1.2

0.0
±0.0

0.0
±0.0

-0.8
±0.5

jess 2.8
±0.2

1.2
±0.1

15.5
±0.6

1.3
±0.2

1.5
±0.1

16.5
±1.1

1.0
±0.2

2.0
±0.1

21.5
±0.7

12.4
±0.3

10.1
±0.2

90.6
±2.2

20.9
±0.3

17.0
±1.5

17.8
±1.4

23.7
±1.0

32.9
±0.1

56.8
±2.4

31.9
±0.2

28.6
±0.1

41.6
±2.3

2.3
±2.2

1.8
±0.1

25.8
±1.9

db 1.3
±0.4

1.5
±0.0

3.1
±0.6

1.4
±0.3

2.3
±0.0

4.1
±0.6

1.3
±0.4

3.3
±0.0

6.7
±0.7

15.6
±0.4

19.7
±0.0

52.2
±1.1

9.9
±0.4

25.0
±0.0

12.1
±0.7

13.2
±0.4

43.6
±0.0

14.0
±0.7

11.0
±0.3

28.8
±0.0

10.4
±0.7

1.5
±0.3

3.3
±0.0

2.5
±0.6

javac 2.1
±0.1

1.8
±0.0

5.7
±0.2

3.6
±0.1

3.1
±0.0

6.5
±0.2

3.0
±0.1

3.0
±0.0

10.4
±0.2

8.9
±0.1

6.8
±0.0

19.5
±0.3

6.4
±0.1

6.9
±0.0

13.2
±0.3

10.3
±0.1

14.4
±0.0

40.1
±0.2

9.7
±0.1

10.5
±0.0

18.8
±0.2

3.1
±0.1

2.9
±0.0

5.8
±0.2

mpegaudio 0.4
±0.1

0.2
±0.0

-0.4
±1.6

0.2
±0.0

0.3
±0.0

-2.0
±1.1

-0.2
±0.0

0.3
±0.0

-0.1
±1.3

3.9
±0.1

2.5
±0.0

31.1
±1.6

3.2
±0.0

6.7
±0.0

17.7
±1.5

8.2
±0.0

19.2
±0.0

41.1
±1.6

3.5
±0.8

7.1
±0.0

13.1
±1.3

0.3
±0.0

0.3
±0.0

-2.0
±1.2

mtrt 0.0
±0.2

0.4
±0.0

21.2
±7.8

-0.3
±0.1

0.5
±0.0

19.4
±2.1

0.0
±0.2

0.6
±0.0

23.6
±2.3

1.6
±0.2

1.3
±0.0

37.2
±1.7

8.5
±0.2

9.6
±0.0

73.5
±27.1

13.6
±0.2

27.3
±0.0

141
±2.0

9.2
±0.2

10.6
±0.0

81.0
±16.9

0.4
±0.1

0.6
±0.0

24.6
±2.1

jack 0.5
±0.4

1.6
±0.0

6.7
±1.0

0.5
±0.7

2.4
±0.0

-11.0
±0.5

0.1
±0.4

2.8
±0.0

-11.8
±0.6

11.1
±0.5

12.4
±0.0

32.0
±0.8

1.5
±0.5

4.3
±0.0

-12.5
±0.5

4.2
±0.6

10.9
±0.0

7.8
±1.0

5.4
±2.3

7.7
±0.0

3.8
±0.6

1.5
±2.5

2.5
±0.0

0.1
±1.3

SPECjvm mean 1.0
±0.2

1.0
±0.0

7.3
±1.8

1.0
±0.2

1.4
±0.0

4.6
±0.9

0.7
±0.2

1.7
±0.0

7.5
±0.9

7.6
±0.2

7.5
±0.0

38.6
±1.2

5.9
±0.2

11.9
±0.2

18.0
±4.6

9.8
±0.3

26.5
±0.0

45.0
±1.2

8.8
±0.6

15.6
±0.7

25.5
±3.3

1.3
±0.8

1.6
±0.0

8.0
±1.1

geomean 1.0 1.0 7.0 0.9 1.4 4.1 0.7 1.7 6.9 7.5 7.3 36.5 5.5 11.7 15.8 9.5 26.0 39.9 8.2 15.3 23.2 1.3 1.6 7.5

antlr -3.3
±4.4

0.7
±0.1

4.9
±0.9

-2.4
±4.4

1.2
±0.1

2.8
±0.6

-5.0
±3.4

1.2
±0.1

5.1
±0.5

-4.3
±3.4

1.6
±0.1

10.6
±0.6

-2.5
±3.4

5.6
±0.1

9.1
±0.4

1.0
±3.6

10.9
±0.1

25.0
±0.5

-0.8
±3.5

7.1
±0.1

13.0
±0.4

-4.9
±3.9

1.2
±0.1

0.1
±0.6

avrora 0.4
±0.9

0.7
±0.1

-0.8
±0.7

2.6
±0.7

0.8
±0.1

7.0
±0.6

0.0
±0.8

1.6
±0.1

-0.3
±1.0

5.0
±1.0

3.1
±0.1

13.5
±1.0

3.5
±0.7

8.2
±0.1

10.7
±0.8

6.1
±0.9

18.7
±0.1

32.1
±1.5

3.2
±0.9

9.5
±0.1

9.5
±1.2

-1.0
±1.1

0.8
±0.1

-5.4
±0.6

bloat 1.0
±0.4

4.2
±0.1

3.8
±0.7

6.8
±0.3

8.2
±0.2

6.1
±0.5

8.3
±0.4

11.8
±0.1

7.4
±0.6

52.7
±0.4

43.8
±0.3

37.2
±0.5

5.8
±0.4

11.6
±0.0

7.9
±0.4

21.1
±0.5

35.0
±0.1

32.7
±0.8

18.7
±0.4

25.3
±0.0

20.3
±0.5

8.6
±1.6

9.1
±0.1

9.2
±0.8

eclipse 0.3
±3.6

0.6
±1.9

1.4
±4.4

-0.7
±3.4

1.5
±1.8

-2.6
±3.6

-0.5
±3.3

1.3
±1.9

6.0
±4.3

7.0
±3.5

8.1
±1.6

3.2
±3.7

3.6
±3.9

6.1
±2.1

2.0
±3.8

4.9
±4.2

12.1
±2.2

22.3
±5.3

3.7
±3.5

7.7
±2.2

9.1
±4.3

2.0
±3.7

1.2
±1.8

5.3
±4.9

fop 1.8
±0.8

0.6
±0.0

8.2
±0.4

5.1
±0.8

1.3
±0.0

6.1
±0.4

2.0
±0.8

1.3
±0.0

8.1
±0.3

6.9
±0.9

3.0
±0.0

11.8
±0.4

2.8
±0.8

5.3
±0.0

7.8
±0.3

7.8
±1.0

18.0
±0.0

24.5
±0.4

5.9
±1.0

7.1
±0.0

12.9
±0.4

1.7
±0.7

1.4
±0.0

0.2
±0.3

hsqldb 2.8
±0.3

1.8
±0.0

8.0
±1.3

3.6
±0.2

2.5
±0.0

6.2
±0.9

5.4
±0.2

4.4
±0.0

7.3
±0.8

9.8
±0.2

7.8
±0.0

15.8
±0.6

7.8
±0.3

7.5
±0.0

14.4
±1.2

12.6
±0.3

16.9
±0.0

38.8
±5.8

12.0
±0.2

11.2
±0.0

17.6
±0.9

5.4
±0.2

3.4
±0.0

7.8
±0.9

jython 1.0
±0.4

1.6
±0.0

16.4
±4.8

2.2
±0.4

2.4
±0.1

22.3
±4.3

2.7
±0.3

3.5
±0.0

40.4
±6.9

16.0
±0.7

13.0
±0.3

105
±8.6

13.8
±0.5

17.7
±0.3

23.5
±4.9

18.8
±0.3

28.8
±0.1

66.2
±6.4

17.1
±1.9

21.4
±0.1

66.7
±10.7

2.9
±0.4

2.7
±0.0

60.4
±7.1

luindex 0.7
±0.2

1.0
±0.0

12.8
±0.5

0.9
±0.2

0.5
±0.0

9.3
±1.1

0.6
±0.2

0.9
±0.0

7.1
±1.0

3.9
±0.2

2.5
±0.0

26.5
±0.6

5.2
±0.2

7.7
±0.0

18.0
±0.4

8.0
±0.3

14.2
±0.0

49.0
±0.6

7.1
±0.2

8.9
±0.0

20.7
±0.5

0.9
±0.2

0.5
±0.0

9.8
±0.5

lusearch 1.7
±0.3

2.1
±0.0

7.0
±0.7

1.4
±0.3

2.6
±0.0

7.7
±2.3

5.1
±2.1

3.6
±0.0

17.3
±0.7

12.8
±0.4

9.1
±0.0

24.5
±1.0

3.7
±0.3

7.7
±0.1

8.3
±0.3

9.0
±0.3

15.6
±0.0

29.6
±0.7

6.9
±0.4

10.8
±0.0

18.6
±0.5

3.1
±1.5

2.5
±0.1

10.6
±0.8

pmd 1.4
±0.1

2.3
±0.1

6.5
±0.7

3.3
±0.2

3.0
±0.1

17.5
±0.7

4.9
±0.2

4.1
±0.1

24.9
±1.1

13.4
±2.3

13.4
±0.1

28.3
±1.4

6.7
±0.2

6.0
±0.1

10.5
±1.4

9.5
±0.2

16.9
±0.1

36.1
±1.5

10.1
±0.2

11.0
±0.1

27.8
±1.1

4.4
±0.2

3.4
±0.1

24.0
±0.8

sunflow 0.1
±0.0

-0.7
±0.0

17.4
±0.7

1.5
±0.0

0.9
±0.0

0.1
±0.7

2.5
±0.0

1.2
±0.0

22.3
±0.5

11.5
±0.2

10.7
±0.1

39.8
±1.2

4.3
±0.0

7.2
±0.0

0.8
±0.4

14.8
±0.1

17.9
±0.0

62.6
±0.7

7.2
±0.0

8.1
±0.0

30.6
±0.4

1.5
±0.0

0.9
±0.0

9.1
±0.6

xalan 1.3
±0.3

1.8
±0.0

1.6
±0.1

-2.7
±0.3

1.5
±0.0

-2.4
±0.1

1.9
±0.5

2.6
±0.0

6.1
±0.1

1.9
±0.0

1.3
±0.0

19.6
±1.0

13.6
±1.3

5.7
±0.0

12.9
±0.1

16.5
±0.3

19.5
±0.0

26.6
±0.2

12.7
±0.3

11.7
±0.0

11.9
±0.1

-1.1
±0.2

2.5
±0.0

1.7
±0.1

DaCapo mean 0.8
±1.0

1.4
±0.2

7.3
±1.3

1.8
±0.9

2.2
±0.2

6.7
±1.3

2.3
±1.0

3.1
±0.2

12.6
±1.5

11.4
±1.1

9.8
±0.2

28.0
±1.7

5.7
±1.0

8.0
±0.2

10.5
±1.2

10.8
±1.0

18.7
±0.2

37.1
±2.0

8.7
±1.0

11.6
±0.2

21.6
±1.8

2.0
±1.1

2.5
±0.2

11.1
±1.5

geomean 0.8 1.4 7.1 1.8 2.2 6.4 2.3 3.1 12.1 10.7 9.3 26.0 5.6 8.0 10.3 10.7 18.5 36.4 8.5 11.5 20.7 1.9 2.5 10.0

pjbb2005 1.5
±2.6

1.9
±0.0

2.8
±1.1

3.8
±2.2

3.0
±0.0

9.1
±1.3

2.4
±3.0

4.1
±0.0

9.5
±1.6

11.1
±1.5

7.5
±0.0

12.0
±0.1

3.0
±2.6

8.9
±0.0

4.9
±1.1

6.5
±2.2

15.3
±0.1

28.0
±1.6

6.0
±2.6

10.6
±0.0

12.4
±1.3

2.3
±2.9

3.2
±0.1

9.5
±1.5

min -3.3 -0.7 -0.8 -2.7 0.0 -11.0 -5.0 0.0 -11.8 -4.3 0.0 3.2 -9.3 4.3 -12.5 -4.6 10.9 7.8 -9.2 7.1 3.8 -4.9 0.0 -5.4
max 2.8 4.2 21.2 6.8 8.2 22.3 8.3 11.8 40.4 52.7 43.8 105 20.9 25.0 73.5 23.7 43.6 141 31.9 28.8 81.0 8.6 9.1 60.4

Total mean 0.9
±0.8

1.3
±0.1

7.0
±1.5

1.6
±0.7

2.0
±0.1

6.1
±1.2

1.8
±0.8

2.7
±0.1

10.7
±1.3

10.1
±0.8

8.9
±0.1

30.9
±1.4

5.6
±0.8

9.4
±0.2

12.8
±2.4

10.3
±0.8

21.3
±0.1

39.4
±1.7

8.6
±0.9

13.0
±0.4

22.5
±2.3

1.7
±1.1

2.2
±0.1

9.9
±1.4

geomean 0.9 1.3 6.9 1.6 2.0 5.7 1.7 2.7 10.2 9.6 8.5 28.8 5.4 9.3 11.9 10.1 20.9 37.2 8.3 12.8 21.2 1.7 2.2 9.1

Table 6: Overheads (%) in time, instructions, and i-cache misses for the primitive barriers on the i7. The the first six column groups summarize
the performance for each barrier, showing percentage increase in execution time (∆t), retired instructions (∆i), and instruction cache misses
(∆imiss) compared to the base case where no barriers are used. The right-most two column groups give results for the compound barriers. The
figures in grey beneath the corresponding arithmetic mean report 95% confidence intervals.
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Benchmark Object Boundary Zone

Take Rate Original Slow NOP Slow Take Rate Original Slow NOP Slow Take Rate Original Slow NOP Slow
/µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss /µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss /µs % ∆t ∆i ∆imiss ∆t ∆i ∆imiss

compress 0.000 0.2 -0.1 0.0 -1.5 0.0 0.0 -1.2 0.0 1.3 0.0 0.0 2.4 0.0 0.0 1.8 0.0 39.8 -0.1 0.0 7.3 -0.2 0.0 1.7
jess 0.001 0.0 1.3 1.5 16.5 0.7 1.0 10.0 0.1 0.2 1.0 2.0 21.5 2.5 1.5 19.9 18.9 52.4 12.4 10.1 90.6 9.2 7.1 60.7
db 0.000 0.0 1.4 2.3 4.1 1.9 1.7 4.9 0.0 0.0 1.3 3.3 6.7 1.2 2.8 5.6 15.0 86.1 15.6 19.7 52.2 2.7 7.2 9.0
javac 0.124 0.8 3.6 3.1 6.5 3.1 2.1 9.4 0.1 0.3 3.0 3.0 10.4 4.4 2.5 15.1 3.7 24.5 8.9 6.8 19.5 5.1 4.0 15.7
mpegaudio 0.000 0.0 0.2 0.3 -2.0 0.1 0.2 -1.0 0.0 0.0 -0.2 0.3 -0.1 -0.2 0.2 1.1 3.6 98.5 3.9 2.5 31.1 0.5 0.8 0.1
mtrt 0.003 0.0 -0.3 0.5 19.4 0.2 0.3 74.6 0.0 0.0 0.0 0.6 23.6 0.2 0.6 38.6 1.1 14.6 1.6 1.3 37.2 0.6 0.7 37.8
jack 0.001 0.0 0.5 2.4 -11.0 -0.3 1.8 -15.4 0.2 0.8 0.1 2.8 -11.8 1.1 2.2 6.1 8.9 46.4 11.1 12.4 32.0 3.9 5.1 4.2

SPECjvm mean 0.019 0.1 1.0 1.4 4.6 0.8 1.0 11.6 0.0 0.4 0.7 1.7 7.5 1.3 1.4 12.6 7.3 51.7 7.6 7.5 38.6 3.1 3.6 18.5
geomean 0.9 1.4 4.1 0.8 1.0 9.0 0.7 1.7 6.9 1.3 1.4 12.0 7.5 7.3 36.5 3.1 3.5 16.8

antlr 0.003 0.1 -2.4 1.2 2.8 -4.0 0.9 2.6 0.0 0.2 -5.0 1.2 5.1 -5.4 1.0 4.0 0.2 3.7 -4.3 1.6 10.6 -3.9 1.4 5.5
avrora 0.000 0.0 2.6 0.8 7.0 -0.2 0.7 -1.6 0.2 8.7 0.0 1.6 -0.3 2.8 1.2 7.4 0.9 33.4 5.0 3.1 13.5 3.1 1.4 14.4
bloat 0.009 0.0 6.8 8.2 6.1 7.9 7.6 2.2 0.0 0.0 8.3 11.8 7.4 10.7 10.2 11.3 26.3 61.1 52.7 43.8 37.2 17.6 18.2 19.5
eclipse 0.004 0.0 -0.7 1.5 -2.6 1.0 1.7 -5.5 0.0 0.4 -0.5 1.3 6.0 -0.8 1.3 3.0 4.2 34.2 7.0 8.1 3.2 5.3 5.0 0.3
fop 0.005 0.2 5.1 1.3 6.1 6.6 0.9 5.4 0.0 0.5 2.0 1.3 8.1 1.4 1.1 5.8 0.8 28.9 6.9 3.0 11.8 7.1 1.8 7.3
hsqldb 0.025 0.1 3.6 2.5 6.2 5.1 1.8 10.5 2.1 8.9 5.4 4.4 7.3 4.5 2.9 14.9 5.2 19.6 9.8 7.8 15.8 6.7 4.9 18.0
jython 0.001 0.0 2.2 2.4 22.3 1.1 1.5 40.7 1.0 3.7 2.7 3.5 40.4 2.0 2.3 27.6 16.5 68.4 16.0 13.0 105.2 6.2 5.7 80.3
luindex 0.000 0.0 0.9 0.5 9.3 1.1 0.2 7.1 0.1 0.6 0.6 0.9 7.1 1.0 0.6 19.5 2.7 18.8 3.9 2.5 26.5 2.1 1.1 9.6
lusearch 0.001 0.0 1.4 2.6 7.7 1.4 1.8 7.0 0.5 3.5 5.1 3.6 17.3 4.8 3.0 16.1 6.1 42.2 12.8 9.1 24.5 5.9 4.3 20.5
pmd 0.058 0.3 3.3 3.0 17.5 2.9 2.5 11.0 0.7 3.3 4.9 4.1 24.9 5.2 3.4 18.9 5.5 27.5 13.4 13.4 28.3 6.2 6.2 23.7
sunflow 0.014 0.1 1.5 0.9 0.1 1.1 -0.2 7.2 0.0 0.2 2.5 1.2 22.3 1.0 0.4 14.6 0.1 1.1 11.5 10.7 39.8 1.9 0.5 12.9
xalan 0.003 0.0 -2.7 1.5 -2.4 0.0 1.4 1.3 0.4 3.9 1.9 2.6 6.1 8.4 2.2 9.9 3.6 38.3 1.9 1.3 19.6 5.7 4.0 10.9

DaCapo mean 0.010 0.1 1.8 2.2 6.7 2.0 1.7 7.3 0.4 2.8 2.3 3.1 12.6 3.0 2.5 12.7 6.0 31.4 11.4 9.8 28.0 5.3 4.5 18.6
geomean 1.8 2.2 6.4 2.0 1.7 6.8 2.3 3.1 12.1 2.9 2.4 12.5 10.7 9.3 26.0 5.2 4.4 17.3

pjbb2005 0.054 0.3 3.8 3.0 9.1 1.1 2.2 3.0 0.4 1.9 2.4 4.1 9.5 3.0 3.4 12.5 7.0 40.6 11.1 7.5 12.0 4.5 5.4 16.4

min 0.000 0.0 -2.7 0.0 -11.0 -4.0 -0.2 -15.4 0.0 0.0 -5.0 0.0 -11.8 -5.4 0.0 1.1 0.0 1.1 -4.3 0.0 3.2 -3.9 0.0 0.1
max 0.124 0.8 6.8 8.2 22.3 7.9 7.6 74.6 2.1 8.9 8.3 11.8 40.4 10.7 10.2 38.6 26.3 98.5 52.7 43.8 105.2 17.6 18.2 80.3

Total mean 0.015 0.1 1.6 2.0 6.1 1.6 1.5 8.6 0.3 1.9 1.8 2.7 10.7 2.5 2.2 12.7 6.5 39.0 10.1 8.9 30.9 4.5 4.2 18.4
geomean 1.6 2.0 5.7 1.6 1.5 7.4 1.7 2.7 10.2 2.5 2.2 12.4 9.6 8.5 28.8 4.4 4.2 17.0

Table 7: Effect of take-rate and slow path cost for conditional barriers on the i7.
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