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Abstract

The performance of mobile devices directly affects billions
of people worldwide. Yet, despite memory management be-
ing key to their responsiveness, energy efficiency, and cost,
mobile devices are understudied in the literature. A paucity
of suitable methodologies and benchmarks is likely both a
cause and a consequence of this gap. It also reflects the chal-
lenges of evaluating mobile devices due to: i) their inherently
multi-tenanted nature, ii) the scarcity of widely-used open
source workloads suitable as benchmarks, iii) the challenge
of determinism and reproducibility given mobile devices’ ex-
tensive use of GPS and network services, iv) the complexity
of mobile performance criteria.

We study this problem using the Android Runtime (ART),
which is particularly interesting because it is open sourced,
garbage collected, and its market extends from the most ad-
vanced to the most basic mobile devices available, with a com-
mensurate diversity of performance expectations. Our study
makes the following contributions: i) we identify pitfalls and
challenges to the sound evaluation of garbage collection in
ART, ii) we describe a framework for the principled perfor-
mance evaluation of overheads in ART, iii) we curate a small
benchmark suite comprised of widely-used real-world appli-
cations, and iv) we conduct an evaluation of these real-world
workloads as well as some DaCapo benchmarks and a mi-
cro-benchmark. For a modestly sized heap, we find that the
lower bound on garbage collection overheads vary consider-
ably among the benchmarks we evaluate, from 2 % to 51 %,
and that overall, overheads are similar to those identified in
recent studies of Java workloads running on OpenJDK. We
hope that this work will demystify the challenges of studying

“This work was, in part, done during an internship at Google DeepMind.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ISMM °24, June 25, 2024, Copenhagen, Denmark

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0615-8/24/06
https://doi.org/10.1145/3652024.3665510

Stephen M. Blackburn
steveblackburn@google.com
Google and Australian National University
Australia

Lokesh Gidra
lokeshgidra@google.com
Google
United States

memory management in the Android Runtime. By doing so,
we hope to open up research and lead to more innovation in
this highly impactful and memory-sensitive domain.
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1 Introduction

Despite there being over 15 billion mobile devices world-
wide [49], there is a paucity of studies of the performance
of mobile systems, and in particular garbage collection for
mobile systems. The explanation is not a lack of pressing chal-
lenges. To the contrary, memory management is a primary
performance concern for mobile runtimes [12, 13]. Rather, we
suggest that the lack of studies reflects the deep challenges
mobile devices present to sound performance evaluations.
Unfortunately, well-developed server performance evalua-
tion methodologies [21, 32] do not readily translate to mobile
devices. Mobile devices are increasingly heterogenous, with
multi-tiered asymmetric cores as well as hardware acceler-
ators for common tasks such as video decoding [34]. This
heterogeneity complicates performance evaluation. Mobile
devices are inherently multi-tenanted with multiple applica-
tions, hardware, etc. all vying for the same set of constrained
resources. Furthermore, applications typically connect to
and interact with the network to provide core functionality:
be it GPS services or a server on the internet. Such a com-
plex and non-deterministic environment is not conducive
to principled performance evaluation given such sources of
experimental noise. These issues are further compounded
by a lack of widely-used open source benchmarks. With-
out a standard benchmarking suite, researchers often use
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microbenchmarks or create ad hoc benchmarks to evaluate
performance, leading to inconsistent results and difficulty in
comparing results across different studies.

We delve into this problem in the context of Android, the
most popular mobile operating system (as of Q4 2023) [61],
focusing on the Android Runtime (ART), its language vir-
tual machine (VM). ART is particularly interesting given it
is open-source, garbage collected, and widely used over a
variety of different hardware configurations.

In this paper we make the following key contributions:

e We identify challenges and pitfalls associated with
performance evaluation of garbage collection on mo-
bile devices in general and in ART in particular and
describe how we overcame them.

e We create a framework for principled performance
evaluation of overheads in ART for both vanilla Java
workloads such as DaCapo [20] as well as real-world
Android applications. We open-source this framework.

e We curate a small set of popular real-world applica-
tions and mock user interactions with them to serve
as representative workloads for mobile devices.

o We evaluate the overheads of production garbage col-
lectors in ART by using the methodologies and frame-
work we developed. For a modestly sized heap, we find
that the lower bounds on garbage collection overheads
for the production GCs vary from 2 % to 51 %.

2 Background and Related Work

To provide context for the remainder of the paper, we first
give an overview of relevant aspects of the Android Runtime
(ART) which we use throughout the paper. We then discuss
the state of the art in performance evaluation of garbage
collectors and the design of benchmark suites, which pro-
vide background to Section 3 and Section 4 respectively. We
conclude this section with a discussion of related work.

2.1 Android Runtime (ART)

The Android Runtime (ART) is the language virtual machine
(VM) on which Android applications run. Android applica-
tions are written in Java or Kotlin and compiled to Dalvik
Executable (DEX) bytecode which is executed on ART [9].
Applications may call native code, and are sometimes largely
native with only a minimal Java or Kotlin wrapper. Android
supports a subset of Java features and standard library.

Applications and Vanilla Java and Kotlin. As well as run-
ning Android applications, vanilla Java (or Kotlin) programs
can be run on ART so long as ART’s language features and
standard libraries support them. Vanilla Java programs do
not require the Android framework, so can be run on a more
minimalist environment which, as we shall explain, makes
them methodologically more straightforward. By contrast,
Android applications depend on the Android framework
running which complicates performance evaluation.
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Application Startup. When a user starts an application,
rather than directly creating a new ART instance, an ap-
plication startup request is sent to a system process called
the Zygote [16]. The Zygote is an ART instance with impor-
tant libraries and classes preloaded. In order to service the
application startup request, the Zygote forks itself (using
copy-on-write semantics) and then starts the user-requested
application in the new process. Hence, the Zygote is the
parent of all Android application processes. The benefits
of such a mechanism are twofold: i) application startup is
fast and efficient: each application starts with a set of com-
mon preloaded libraries and classes instead of having to load
them at startup; and ii) the Zygote enables resource sharing
of seldom written-to data and greatly reduces the memory
footprint due to its copy-on-write nature. The use of the
Zygote presents methodological challenges since all ART
instances inherit the same bootstrap arguments, and thus
use the same garbage collector and the same heap size. Since
all ART instances inherit the Zygote’s heap size arguments,
the Zygote must be started with a sufficiently generous heap
to accommodate the most demanding of the ART instances
that will run. We discuss this further in Section 3.

Compiler. ART uses a tiered interpreter and just-in-time
(JIT) compiler as well as an ahead-of-time (AOT) compiler [11].
Applications can be AOT-compiled to reduce startup and
memory costs. The AOT compiler can use profile data that is
either generated locally by the JIT compiler, or downloaded
from the Google Play Store [8]. AOT-compiled code is pre-
ferred whenever available [11].

Garbage Collectors. Responsiveness is critical for mobile
devices. Android has two production garbage collectors (as of
Android 14 QPR1): a generational concurrent copying collec-
tor [4] and a new concurrent mark compact collector [25, 33].
All GCs in ART use an unconditional card-marking write
barrier to track pointers from the bootimage into the mov-
ing spaces, pointer updates during concurrent marking, and
old-to-young pointers in the concurrent copying collector.
The concurrent copying collector uses a Baker-style read bar-
rier [45] to ensure the mutator sees a consistent heap-state.
The new concurrent mark compact collector is in the style of
the Compressor [46]. Android also has a simple semi-space
collector which is invoked over the Zygote space before new
child processes are forked, to reduce fragmentation.

Collection is singled threaded. A dedicated GC thread (the
HeapTaskDaemon) performs concurrent collection. However,
if the heap becomes exhausted because the concurrent col-
lector is unable to keep up with allocation, the first mutator
that is unable to allocate will perform collection.

Operating System and Multi-Tenancy. Android runs on
a modified Linux kernel, with each application forked from
the Zygote process. Android applications can exist in the
foreground or background. A background application may
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be frozen with its heap compressed to free up RAM, or it
may be killed if necessary to provide resources for another
higher priority application [12].

One of the hallmarks of rigorous performance evaluation
is that the system being evaluated is measured in isolation.
This is a challenge in the mobile setting since mobile devices
are deeply multi-tenanted. For example, it is not possible to
evaluate an Android application in complete isolation since
the Zygote and essential services must always be running.

Hardware. Mobile devices are by nature relatively resource-
constrained in terms of memory, available CPU cores, and
power consumption. This amplifies the importance of the
time-space tradeoff made by garbage collectors. It can also
lead to application developers aggressively managing re-
sources, for example using introspection to assess resource
utilization and then responding by resizing software caches
maintained by the application. The use of such introspec-
tion to implement bespoke resource management can in-
troduce feedback loops and complicates performance anal-
ysis and debugging. Mobile devices are increasingly het-
erogenous, with many modern phones having three-tiered
asymmetrical cores (i.e. big-middle-little cores) and have
specialized hardware for certain workloads such as video en-
coding/decoding [34]. Mobile devices come in many diverse
hardware configurations. Controlling for heterogeneity adds
an additional challenge to developing sound methodology.

2.2 Performance Evaluation in Java

Performance evaluation for Java is mature, with a sub-literature
of methodology papers and four major benchmark suites [20,
59, 63, 64]. Core elements of Java performance evaluation
are summarized by Blackburn et al. [21] and Georges et al.
[32]. By contrast, performance evaluation for Android is the
subject of few papers and there are no standard benchmark
suites consisting of real-world applications. Closing those
gaps are two of the key contributions of this paper.

Reproducibility and Statistical Significance. The most
basic methodological technique is to control for variance.
This is more difficult with Java than it was for C and For-
tran workloads that came before them due to Java’s dynamic
compilation and garbage collection [21]. A variety of tech-
niques exists to control for the effects of dynamic compila-
tion, including warming the workload up and using replay
compilation. Controlling for heap size is also essential since
a program given a larger heap will have less garbage collec-
tion work. Above all, experiments must be repeated and the
statistical significance of any result needs to be reported and
accounted for in any conclusions drawn. As we will discuss,
this is more difficult in a mobile setting such as Android.

Time-Space Tradeoff. Garbage collection makes a time-
space tradeoff. This makes it necessary to evaluate garbage
collected systems at different heap sizes. Although this is
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fairly straightforward for Java, it is significantly more chal-
lenging for Android, mainly because the heap size limits are
determined by the Zygote and inherited by all applications.

Lower Bound Overheads. We use the LBO (lower bound
overhead) methodology described by Cai et al. [22] to esti-
mate garbage collection overheads in ART. The idea is that
if an ideal collector were to exist, then the cost of any real
collector could be established by comparing it to the ideal. Al-
though the ideal collector does not exist, an upper bound on
ideal performance can be established by subtracting easily-
attributable collector costs from the performance of a real
collector, which Cai et al. call the distilled cost. The lowest
distilled cost among different GCs is then the closest approx-
imation to the ideal, so is used as a baseline to estimate an
empirical lower bound on the absolute costs of different GCs.

The LBO methodology has four key requirements: i) work-
loads that can be reliably and repeatably measured; ii) a
means of cheaply and reliably measuring metrics of interest,
such as wall clock time or performance counters; iii) the
ability to accurately attribute costs to the garbage collector;
and iv) a baseline collector that has few collector costs that
are not easily attributable.

2.3 Benchmarks and Benchmark Suites

Benchmark suites are an essential research tool, facilitating
systematic and controlled performance analysis. Java is sup-
ported by a relatively mature benchmark ecosystem, includ-
ing the DaCapo and Renaissance open source suites [20, 59].
Android has many benchmark suites [19, 57, 58, 66, 67] but
they primarily aim to test hardware performance or are mi-
crobenchmarks for tasks such as image decoding. Notably, all
these benchmark suites: do not use real-world applications,
are closed-source, and have opaque testing criteria.

Harnessing. A simple measure of performance might be
to use the time command to run an application and then
report its output. This will capture the application in its en-
tirety, but the approach is limited since it does not allow the
user to isolate initialization and setup from the substantive
workload. For example, if we desire to measure transaction
processing throughput, a server and database typically have
to be initialized before the workload can commence and if
we conflate initialization with transaction processing we will
obscure the objective of our measurement. Suites like Da-
Capo harness the portion of the workload to be measured
and allow the workload to be run multiple times within a
single invocation, allowing the user to control for warmup.

While DaCapo reports the time for each iteration of the
benchmark, it also provides a callback which allows the user
to capture and report other metrics with respect to each
benchmark iteration. The callback is invoked at the start and
end of each benchmark iteration, allowing the user to start,
stop, and report metrics of their choosing.
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GC Cost Attribution. If the runtime is able to attribute
costs to garbage collection, then by combining this with
a benchmark callback, the user can attribute costs to the
garbage collector on a per-iteration basis.

2.4 Related work

Most studies of application performance on Android either
target application-level inefficiencies [1, 27, 29, 31, 36, 55], or
the Linux kernel and associated services [35, 43, 47, 48, 51—
53, 62, 69]. Surprisingly few studies look at understanding
or improving the Android Runtime itself.

Hussein et al. [40, 42] propose a global memory manage-
ment service for Android 4.4 that optimizes memory, per-
formance, and power by collecting system-wide statistics
and coordinating with the power manager to tune garbage
collection scheduling. They model a variety of scenarios
(such as sending an application into the background, sequen-
tially executing multiple applications, etc.) in their evalua-
tion methodology in order to best understand the effects of
their global memory management service. They use a sub-
set of the DaCapo benchmarks [20] and popular real-world
applications such as Angry Birds and Spotify for their eval-
uations. They find that the global service can help reduce
the number of applications being killed in the background,
can improve the execution time and energy consumption
for both foreground and background applications, and can
reduce the memory consumption and number of garbage
collection events significantly (10 % and 50 % respectively).

Lebeck et al. [50] propose ‘Marvin’, a memory manage-
ment system for Android 7.1 that reduces background ap-
plication kills by combining OS and language-level manage-
ment. Android prefers to kill applications in the background
when it is under memory pressure instead of writing the
memory to flash since frequent write operations shorten
the lifespan of storage devices [13]. Marvin uses a modified
Linux kernel to target ‘cold” objects (i.e. objects > 2 KB that
have not been accessed recently) in ART and checkpoints
them to disk for faster memory reclamation under pressure.
This requires the use of a bookmarking garbage collector [37]
because otherwise swapped objects will be brought back into
memory during GC time even if applications aren’t using
them. They find that Marvin can run more than twice as
many concurrent applications than stock Android and can
reclaim memory 60X faster than Android using a swap file
under memory pressure for a set of microbenchmarks.

Recently, Huang et al. [38] propose ‘Fleet’, a memory man-
agement system for Android 10.0 to improve application
(hot) launch speed and reduce background application kills.
They combine OS and language-level memory management
in the vein of Lebeck et al. [50]. Their core insight is that
objects allocated when the application is in the foreground
have a longer lifetime than objects that are allocated when
the application is in the background. Using this, they opti-
mize the background GC to avoid touching objects that were
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allocated in the foreground, by only collecting objects allo-
cated in the background. Further, they group objects with
similar access patterns and then place them in RAM or swap
depending on their hotness akin to locality optimizations
described by Huang et al. [39]. They find that Fleet achieves
a 1.59x% faster hot launch time and can cache 1.21X more
applications than stock Android running with swap enabled.

3 Performance Evaluation on Android

As we have described in Section 2, sound evaluation of
garbage collection overheads on Android is challenging. In
this section we outline the major contributions of our work
to the methodology of performance evaluation on Android,
with a focus on understanding garbage collection overheads.

3.1 Controlling Heap Size

As discussed in Section 2.2, the ability to control the heap size
is essential to evaluating performance in garbage collected
languages. This is straightforward in Java (via the -Xms and
-Xmx command line options), but is challenging in Android.

Because every application process is forked from the Zy-
gote (Section 2.1), all applications share the same inherited
startup parameters. Thus modifying Zygote startup param-
eters will change the heap size for all applications. If the
Zygote is not given sufficient memory at startup, the phone
may not boot, making it impossible to evaluate target appli-
cations in small heap sizes.

In order to control heap sizes at an application-level, we
hijack a key functionality of the application specialization
process. For a normal execution, after forking itself, the child
Zygote process starts the application specialization process
which includes “clamping” or “clearing” the growth limit and
capacity of the application. The growth limit is a soft limit on
the maximum heap size of an application, while the capacity
is the hard limit. The growth limit is always < the capacity
of an application. For ‘normal’ applications, the capacity
is clamped to the growth limit (thereby reducing the heap
size), while for applications specified with a ‘large’ heap,
the growth limit is cleared and set to the capacity (thereby
increasing the heap size). We hijack this functionality.

We modify ART so that when it forks the Zygote to start
a new application, it consults a metadata file listing heap
sizes for applications. If an entry for the new application
appears in the file, ART sets the growth limit and capacity of
the application to the heap size found in the file, otherwise
it uses the existing defaults. This mechanism allows us to
change the heap size of a particular application without
affecting the rest of the system.

As far as we know, no prior work has implemented such a
system, making this the first work to systematically control
for heap size in an evaluation of Android GC overheads.
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3.2 GC Cost Attribution and Metrics

Attributing costs and using appropriate metrics to measure
them is essential to performance analysis (Section 2.3). ART
instruments its garbage collectors to collect timings of GC
phases and stop-the-world GC pauses. We extend this by in-
cluding hardware performance counters (such as CPU cycles,
retired instruction counts, etc.) and software performance
counters (such as number of page faults, task clock, etc.).

Our framework also collects jank and frame render tim-
ing metrics for each invocation. Jank is defined as the stut-
tering or choppy motion caused by skipped frames [15], a
consequence of user-observed latency. We use gfxinfo, a
command line tool, to gather these metrics [3]. These met-
rics reveal how GC algorithms, heap sizes, and other factors
impact responsiveness, a core aspect of user experience.

We do not use metrics such as number of low-memory kills
for background applications as we believe it is a proxy metric
for understanding the efficiency of the memory manager.
By controlling heap sizes, we can induce these low-memory
situations directly to get a better picture of how each memory
manager actually performs in such situations.

We do not use a framework such as ART TI [7] as it only
allows agents to be attached to debuggable processes. Appli-
cations published on the Google Play Store are not marked as
debuggable, hence, we cannot use ART TI agents for bench-
marking real-world applications.

3.3 Feedback Loops due to Heap Introspection

A major challenge in benchmarking Android applications
is their tendency to introspect their own heap usage. This
introspection can dynamically alter the application’s behav-
ior, impacting the sound measurement of metrics as well as
breaking the basic assumption that a benchmark be deter-
ministic and perform the same amount of work on each invo-
cation. Popular applications such as X (Twitter), Instagram,
and Google Maps adjust their behavior based on available
memory. This creates a problematic feedback loop: the ap-
plication’s workload becomes dependent on the heap size,
which is an independent variable that we wish to control.
To address this issue, we modify ART to mock specific Java
standard library APIs commonly used for heap introspec-
tion' By intercepting these calls, we present the application
with a false (but consistent) view of the heap to avoid the
application using these APIs to witness our changing of
the actual heap size. That is to say, any tuning or resizing
of caches that an application may perform is invariant to
the actual heap size. We return pre-defined, constant val-
ues for the maxMemory and totalMemory APIs (512 MB and
128 MB respectively). For freeMemory, we return the mini-
mum value between the actual free memory and the mocked
totalMemory value. This ensures the reported free memory
remains realistic from the perspective of the application.

INamely the Runtime.{max, free, total}Memory APIs.
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We ran a sensitivity study for the applications that we
mock heap usage for by measuring the execution times and
GC overheads of eight different configurations of returned
API values (including one where we do not mock the APIs)
over nine different actual heap sizes. We found that the
values we chose do not significantly impact the application’s
execution or increase GC overheads.

However, intercepting these APIs is not a complete fix
since applications can still introspect heap sizes through
alternative means. Even if we exhaustively go through all
APIs and libraries to mock every instance of such APIs, ap-
plications can still directly obtain memory usage statistics
themselves by using JNI. The best fix would be to patch appli-
cation source code to remove their use of heap introspection.
Unfortunately, this is not possible for the overwhelming ma-
jority of Android applications owing to their closed-source
nature. To be pragmatic, we decided to use our pragmatic
scheme instead of trying to conclusively fix this issue.

3.4 Evaluating Android Applications

Having addressed major challenges of benchmarking real-
world applications, we now describe various other challenges
we encountered when benchmarking Android applications.

Cached VM State. Closing an application on Android does
not ensure that its process has exited. The application process
is often kept around in memory to reduce startup times if
the user relaunches the application [13]. This is problematic
for us as a benchmark may start with incorrect heap size
values due to the use of a previous application instance?.
We ensure a cold start for each benchmark invocation [15]
by killing any previous instance of the application® before
starting the benchmark setup and workload. This guarantees
that benchmarks do not inherit any cached state such as heap
sizes from previous instances.

AOT- vs JIT-compilation. When installing an ART build
that changes the GC algorithm, previously compiled AOT-
code is discarded.* Following a system reboot, applications
heavily rely on the JIT compiler for their execution. This
can cause a significant increase in memory allocations as
well as increasing experimental noise due to the JIT compiler.
However, in steady-state, ART prefers using AOT-compiled
code (Section 2.1). We gather JIT profiling data by running
each benchmark 5 times with default parameters at the start
of the experiment and then force a compilation of all the
benchmark applications using the generated profile data.
This ensures that AOT-compiled code is available and used,
and hence, reduces allocations and experimental noise due to

For example, in the case where we have changed the heap size to a different
value from what was previously specified in our metadata file.

3Using SIGKILL.

4For example, the semi-space GC does not use the read barrier and so
previously compiled code with inlined read barriers must be discarded.
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JIT compilation. Since we are primarily using AOT-compiled
code, this obviates the need to run warmup iterations.

Network Traffic. Mobile applications often connect to re-
mote servers to provide functionality to users.” However,
this presents a challenge to sound performance analysis
since the network traffic introduces a major source of non-
determinism to the benchmarks. We tackle this in two ways.
First, wherever possible, we try to limit the sources from
which we fetch data. For example, in the case of a social
media application such as TikTok, we only follow a select
few accounts to ensure our feed does not change often.

Second, we run the benchmark with default settings once
for each GC for every heap size we evaluate before starting
the actual experiment. This allows the application to fetch
and, ideally, cache up-to-date data, leading to more consistent
performance measurements in subsequent runs. There is a
tradeoff to make here between reducing the effects of non-
deterministic network traffic and obtaining results within a
reasonable time frame. Doing the above for every invocation
ensures that each benchmarking run does not have to fetch
a lot of data, but dramatically increases the time to obtain
results. To achieve a balance, we chose to do this once per
experiment. This allows for timely results, while slightly
compromising on data freshness. Both approaches help us
reduce non-determinism due to network traffic.

Deterministic record-and-replay of network traffic is gen-
erally not feasible for real-world applications. Most appli-
cations restrict the set of trusted CA certificates for secu-
rity [14, 17], so it is not possible to use a man-in-the-middle
proxy such as mitmproxy [26] to record-and-replay traffic.
Further, server connections are likely to use timestamped
messages and nonces for security against replay attacks [56,
70]. Overcoming such security measures requires non-trivial
effort [60] or directly integrating into the application’s logic
during the record-and-replay process [54].

3.5 Evaluating Vanilla Java Workloads

For evaluating the performance of vanilla Java workloads,
we adapt standard Java benchmarking methodologies [21]
for Android. We use a standalone version of ART and utilize
the chroot-based on-device testing [6] to run multiple ART
instances on the same device without rebooting. Using a
standalone ART instance allows us to control the heap size
directly by using command line options. Since the vanilla
Java workloads we evaluate do not require network access,
we further reduce sources of experimental noise by running
them with airplane-mode turned on.

Simple Baselines. A key requirement of the LBO methodol-
ogy is that the baseline used to approximate the ideal applica-
tion cost has few non-attributable GC costs (Section 2.2, [22]).

5Only one application in our benchmark suite does not require a network
connection.
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Android’s default production collectors are concurrent copy-
ing and compacting collectors which embody significant
unattributable GC costs, such as concurrently marking and
moving objects. We thus use ART’s semi-space collector and
implement a NoGC collector that simply allocates but does
not collect anything to ensure a better baseline.

We apply three optimizations to the semi-space and NoGC
collectors: i) we remove the need for remembered sets (‘NR’),
ii) we remove the write barrier (NW’), and iii) we avoid
eager return of pages to the OS (‘NE’). The NR optimization
already exists as a flag and simply involves shifting work
to the GC. The NW optimization requires modifications to
ART. This can affect correctness for the semi-space GC as
it may miss pointer updates in the bootimage otherwise.
However, we note that the simple vanilla Java workloads do
not often write to the bootimage, and hence do not crash
due to the NW optimization. The NE optimization clears
unused and free pages instead of returning them back to
the operating system. This does not affect correctness since
Java workloads are short-lived and will return pages back to
the OS when they exit. This can also dramatically improve
mutator performance as each page has been touched at least
once (due to the clear), reducing the number of page faults.

Unfortunately, the NE and NW optimizations do not allow
us to run real-world applications. Real-world applications
may update pointers in the bootimage, and hence we can run
into correctness issues for the semi-space GC. Not returning
pages back to the OS with semi-space makes the device
restart frequently due to low memory. NoGC is also not a
practical scheme on which to run the full Android OS.

4 A Suite of Android Benchmarks

Building and maintaining benchmarking suites is tedious
and time-consuming and yet essential to making progress
in our field (Section 2.3). While Java has major benchmark
suites [20, 59, 63, 64] used extensively by both industry pro-
fessionals and researchers, Android has no such suite. Due
to the lack of a standard benchmark suite, researchers often
tend to use ad hoc benchmarks which can introduce biases
and reduce reproducibility. We now describe the design of
a small benchmark suite and the challenges we faced in
building it. The benchmark suite consists of popular real-
world applications aimed at understanding and characteriz-
ing memory management performance on Android.

Using what we learned, we implement an extensible and
modular framework for sound performance evaluation of
Android applications. To the best of our knowledge, our
work is the first open-source framework curating a set of
real-world applications aimed at understanding application
performance. Our benchmark framework and associated
scripts are fully open-source and can be found at https:
//github.com/k-sareen/android-benchmark-runner.
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Table 1. List of applications evaluated with their Google Play category, workload description, and version. Benchmarks marked
with asterisks are the ones for which we had to mock APIs that queried heap sizes (see Section 3.3 for details). While TikTok
also introspects heap sizes, we were able to disable this feature, and hence did not need to mock APIs for it.

Benchmark Category Description Version
Adobe Acrobat  Productivity Open PDF and jump to a chapter. Scroll 2 times and then  24.1.0.30990
search for some text. Scroll 3 times before returning to
the start of the PDF.
Airbnb Travel & Local Scroll and swipe pictures of listings 10 times. 24.06
Discord Communication Send messages (including one with media), react to mes- 217.13
sages, and then join a voice call for 7 seconds.
Gmail Communication Open newsletter and scroll to the end. 2024.01.28.605458019
Google News  News & Magazines Scroll the “World” headlines tab 10 times. 5.100.0.604907407
Google Maps*  Travel & Local Preview a route between two cities and go through each  11.115.0103
step.
Instagram”® Social Open Reels tab and scroll through 14 reels. 320.0.0.0.31
TikTok Social Open Following tab and scroll through 12 videos. 33.4.3
Twitch Entertainment Open Creator mode and stream for 30 seconds. 18.3.0
X (Twitter)* Social Open Following tab and scroll 15 times. 10.28.0

4.1 Scripting User Interactions

Most mobile applications are highly interactive. Therefore to
deterministically execute representative Android workloads,
we need to script Ul interactions.

We use UI Automator [5, 18], an open-source library de-
veloped by the Android Open Source Project, to drive user
interactions for our benchmark applications. It abstracts over
device state such as the current foreground application, ori-
entation of the device, etc. and was designed for end-to-end
and cross-app testing. It allows us to search and interact
with UI elements directly, for example, pressing buttons or
scrolling posts. It also allows us to wait for Ul animations to
finish or until a particular UI element appears or disappears
before sending subsequent user inputs.

Because UI Automator abstracts over the device state, we
do not need access to source code for target applications
in order to interact with them. This is in contrast to other
Ul interaction libraries such as Espresso [10] which require
application source code to be available in order to script UI
interactions. However, as a consequence, two ART processes
run concurrently now: the application we’re benchmarking
and the benchmark harness running Ul Automator code.
This is not ideal, of course, as it can increase experimental
noise, however it is the only viable solution without having
access to application source code.

4.2 Harnessing

Section 2.3 introduced the importance of harnessing work-
loads when building a benchmark suite. This is straightfor-
ward in the case of the vanilla Java workloads we use since
the DaCapo workloads are already harnessed and we have
the source to the other workloads.

However, the Android applications are driven by UI Au-
tomator, which runs in a separate process to the workload
under test. We solve this problem by having the controller
process send signals to the process running the workload,
and we modified ART to handle those signals and call bench-
mark start and end hooks accordingly.

4.3 A Small Benchmark Suite

We chose popular real-world applications from the Google
Play Store and mock typical user interactions with them.
We briefly describe each benchmark and categorize them
in Table 1. Our benchmark set is representative of the most
common activities and use-cases of mobile devices [23, 24].
However, we do not consider two notable use-cases: web
browsing and gaming. We omit browsers (and other ap-
plications based on WebView such as Amazon Shopping,
Wikipedia, etc.) from our benchmark suite because they are
predominantly JavaScript applications, with a thin Android
Java wrapper. We omit videos games for similar reasons
since most games would either allocate into the native heap
directly or use a game engine such as Unity [2, 68].

Unfortunately, all of the applications in our suite are closed-
source. The closed-source nature precludes the ability to
deeply investigate the workloads. The few open-source ap-
plications that we mocked, such as Wikipedia® and Breezy
Weather’, were not suitable benchmarks for understanding
ART memory management performance due to their low
allocation rates.

We mocked, but do not include in our analysis, many ap-
plications that turned out not to be sensitive to memory
management performance such as Spotify, Google Photos,

®https://github.com/wikimedia/apps-android-wikipedia
Thttps://github.com/breezy-weather/breezy-weather
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Table 2. List of vanilla Java benchmarks evaluated with a
short description of their workload.

Benchmark Description

lusearch Multi-threaded text search over an input
corpus [20].

pmd Multi-threaded  source-code  ana-
lyzer [20].

xalan Multi-threaded XSLT processor for trans-
forming XML documents [20].

GCBench Single-threaded microbenchmark testing

allocation and garbage collection perfor-
mance [30].

and Medium. This is not surprising. For example, Spotify’s ex-
ecution time is likely dominated by decoding audio streams.

4.4 Benchmarking Challenges

We describe the challenges involved in scripting user inter-
actions and provide illustrating examples.

Flaky Benchmarks. While UI Automator provides better
control over user interactions such as waiting for certain
Ul elements to appear or disappear, benchmarking Android
applications can still be flaky. Dynamic content displayed by
applications such as Facebook complicates both benchmark
completion and stable benchmark results. A shifting content
layout can result in different benchmark characteristics and
allocation patterns. For example, videos displayed consecu-
tively may cause allocation spikes which may result in the
benchmark failing due to out-of-memory errors. Reddit and
X (Twitter) also exhibit similar problems.

Furthermore, applications sometimes behave unexpect-
edly at small heap sizes. For example, X (Twitter) stops dis-
playing images if the heap size is too small when running
without mocked heap introspection APIs (Section 3.3), chang-
ing the benchmark workload. On the other hand, applications
such as BBC News would, paradoxically, have spikes in the
number of GCs for certain heap sizes much greater than its
notional minimum heap size. This behavior was still visi-
ble even when using the mocked heap introspection APIs.
Unfortunately, due to the closed-source nature of these ap-
plications, we were unable to investigate the cause of this
issue (and many others) further.

Idempotent Benchmarks. An important requirement for
sound performance evaluation is to have idempotent bench-
marks. A previous benchmark execution should not affect
the correctness or performance of future executions. This
means that each benchmark needs to ensure that it finishes
or exits exactly where it started. This is difficult to engineer
for some benchmarks. For example, if the Adobe Acrobat
application fails or crashes in a state where the PDF is open
at an arbitrary page, then the application will always open
the PDF at this page instead of the first page.
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Application Idiosyncrasies. Many applications have their
own idiosyncrasies that can be challenging to overcome. For
example, while creating the Google Maps benchmark, we
found that its minimum heap size seemed to monotonically
increase every day due to it allocating an increasingly large
byte[] in some JNI code. This was problematic for a variety
of reasons. First, it meant that the benchmark workload was
not constant. Second, it meant that the minimum heap size
needed to be large enough to satisfy this single allocation,
resulting in the heap size being too slack for the rest of the
execution. Unfortunately, due to the closed-source nature of
Google Maps, we were unable to determine the cause of this
behavior. We were able to come up with a workaround, how-
ever. We uninstall and reinstall the Google Maps application
for every ART build we benchmark, which is not ideal.

Fixed Application Versions. There is tension between hav-
ing fixed application versions for the purpose of a benchmark
suite and the update cycle and distribution of real-world ap-
plications. Obtaining specific application versions can be
impossible since most app stores on mobile platforms do not
allow downloading older versions of applications. Even if
one is able to download and install an older version of an ap-
plication, the servers it connects to may refuse connections
for older application versions or the application itself may
display pop-ups to prompt the user to update to the latest
version®. Furthermore, the usefulness of a benchmark suite
is reduced when, due to future updates to applications mov-
ing Ul elements around, the benchmark ceases to function
correctly. Unfortunately, there is no clean solution to this
problem. Our hope is that the applications and workloads
we have chosen are relatively stable so that breakages are
not frequent or are easy to fix.

5 Methodology

We implement our work on ART commit 451cfcf® and make
it publicly available!’. We use two kinds of benchmarks to
evaluate the overheads of ART garbage collectors: vanilla
Java workloads and popular real-world applications. We de-
scribe the Java workloads we use in this section. We have
already discussed the real-world applications we use.

5.1 Vanilla Java Workloads

We evaluate a subset of the DaCapo 9.12 benchmark suite [20]
ported by Hussein et al. [40, 41, 42] and GCBench [30] a sim-
ple microbenchmark testing allocation and garbage collec-
tion performance. We tried to port the latest DaCapo Chopin
release [28], however, it proved challenging as Android does
not implement elements of the Java standard library DaCapo
Chopin requires. We briefly describe each benchmark and

8We experienced both when we were benchmarking applications.
®https://android.googlesource.com/platform/art/+/
451cfcf9d09515ef60d76bd8551fc68c6e3bf621

10 Available at https://github.com/k-sareen/art/tree/Ibo-rebase.
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Table 3. Hardware configurations we use for our evaluation.

Name Cores Clock Memory

Pixel 7 Pro 2x2.85GHz Cortex-X1, 2.40GHz, 12GB LPDDR5
2%2.35 GHz Cortex-A78, 1.99 GHz,
4%x1.8 GHz Cortex-A55 1.40 GHz

Pixel 445G 1x24GHz Kryo 475 2.18GHz, 6GB LPDDR4X
Prime, 1x2.2 GHzKryo 1.90GHz,
475 Gold, 6%x1.8GHz 151GHz

Kryo 475 Silver

their workload in Table 2. We make a minor modification to
the lusearch benchmark parameters for the ‘default’ size: the
benchmark now executes 52 queries instead of the usual 64.
This allows the benchmark to complete within the maximum
permissible heap size on Android (around 900 MB) for NoGC.

While such vanilla Java benchmarks do not reflect real-
world Android usage, they provide valuable insights into
core garbage collection performance as well as allow us to
compare against similar results for OpenJDK GCs.

5.2 Experimental Setup

We use two Google Pixel devices as described in Table 3,
allowing us to observe the impact of microarchitecture and
a ‘lower-end’ device configuration. Unless stated otherwise,
we report results from the Pixel 7 Pro.

Each device runs a Lineage OS 21 build [44, 65] based on
Android 14 QPR1. We use Lineage OS instead of an AOSP
build as it allows us to have a more realistic environment
and is easier to work with when trying to install Google Play
Services. The Pixel 7 Pro and Pixel 4a 5G are running Linux
kernel versions 5.10.177 and 4.19.282 respectively.

To control for variance due to thread scheduling, we pin
benchmarks to the two biggest cores of each device. To en-
sure that pinning is respected, we implement a fix to the
Runtime.availableProcessors API to correctly check for
CPU masks. We also force each core to use a fixed frequency
by using the ‘performance’ CPU governor. However, we
do not pick the maximum frequency, instead we pick a fre-
quency near the maximum in order to prevent thermal throt-
tling. The frequencies we picked are listed in Table 3.

Since we use performance counters to gather metrics, we
need to run the benchmarks as root!! and disable SELinux
to allow the perf_event_open and read syscalls to execute.
While we do not run any background applications ourselves,
certain applications such as Google Maps have a background
service running all the time. We run all benchmarks with
location services and bluetooth turned off. We also do not
install SIM cards to both devices. These measures were taken
to reduce variance due to network traffic.

We use a single iteration along with a pre-compiled bootim-
age for the vanilla Java workloads. The pre-compiled bootim-
age speeds up benchmark execution considerably as well as
reduces allocations due to JIT compilation. NoGC is able to

11Using adb root.
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Table 4. Minimum heap values for each of the benchmarks.
We gathered minimum heap values with the Concurrent-
Copying collector and a bisection search.

Heap Size (MB)

Benchmark Pixel 7 Pro  Pixel 4a 5G
Adobe Acrobat 18 18
Airbnb 23 23
Discord 19 19
Gmail 14 14
Google News 14 17
Google Maps 65 65
Instagram 34 39
TikTok 65 65
Twitch 17 17
X (Twitter) 24 24
GCBench 13 13
lusearch 3 3
pmd 18 18
xalan 4 4

complete all of the vanilla Java workloads we have within
the maximum permissible heap size on Android if run with
a single iteration. We run a single iteration for Android ap-
plications as described in Section 3.4.

We gather the minimum heap values for each of the bench-
marks using the ConcurrentCopying collector, because it is
the default production collector. Table 4 list the minimum
heap values. Since we are interested in understanding the
time-space tradeoff of the garbage collectors, we evaluate
each GC over 9 multiples of the minimum heap size spread
in a geometric progression, with values closer to the start
than the end. We run each benchmark 15 times per multi-
ple of the minimum heap size and report the average. The
ConcurrentMarkCompact GC is only supported on newer
devices, and hence we do not evaluate its performance on
the Pixel 4a 5G. We also evaluate a SemiSpace collector with-
out remembered sets (NR) (Section 3.5) for the real-world
Android applications. However, this is not the same as the
optimized SemiSpace for the vanilla Java workloads as its
behavior is still similar to the stock SemiSpace.

There is an idiosyncrasy in the way ART sets heap sizes. In
the JVM, the -Xmx command line argument sets the memory
made available to the collector. This is inclusive of space the
collector must hold in reserve for copying. A semi-space col-
lector must hold in reserve half of the available memory for
copying. On the other hand an in-place compacting collector
does not require any copy reserve. However in ART, the
command line argument dictates the maximum size of from
space, not the total memory available to the collector. Conse-
quently the memory made available to ConcurrentCopying
and SemiSpace is twice the value specified on the ART com-
mand line. We could have corrected for this by modifying
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Figure 1. Task clock overheads for the vanilla Java work-
loads on the Pixel 7 Pro averaged over 15 invocations. Each
point on the x axis is a multiple of the minimum heap size
for that benchmark. We plot a line for NoGC since it only
runs in an ‘unbounded’ heap. Here, SS (O) is the SemiS-
pace (NR+NW+NE) build. Note how it improves over the
stock SemiSpace implementation. NoGC is the baseline for
GCBench, while SemiSpace (NR+NW+NE) is the baseline for
the rest of the benchmarks.

the source code and made ART consistent with the JVM,
but instead we correct for this by consistently reporting the
available heap size, not the command line argument. The
ConcurrentMarkCompact collector is unaffected since its
from space is the entire heap.

6 Evaluation
6.1 Vanilla Java Workloads

Figure 1 plots the task clock overheads for the four Java
workloads we evaluated. Here, task clock refers to the Linux
performance counter PERF_COUNT_SW_TASK_CLOCK which
sums the time spent by all threads running the application
and excludes any time spent idling. This is interesting to
us as it exposes the opportunity cost of concurrent GC [22].
Note how the optimized SemiSpace collector improves on
the stock implementation across all benchmarks (and metrics
we gathered). Overall, we see that the optimized SemiSpace
collector either performs better or matches the Concurrent-
Copying collector. ConcurrentMarkCompact generally has
higher overheads than the two, while the stock SemiSpace
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Figure 2. Geometric mean of task clock LBO across the
Android application benchmarks on the Pixel 7 Pro. Each
GC was ran 15 times. We remove X (Twitter) from the geo-
metric mean calculations since it is not stable. For most of
the benchmarks, the SemiSpace collectors minimize mutator
overhead, with ConcurrentMarkCompact minimizing muta-
tor overheads for Instagram.

collector has the highest overheads across all the bench-
marks. The trends in the results are largely consistent with
the ones from Cai et al. [22], however, the overhead values
are generally lower.

Notably for pmd, ConcurrentCopying has lower task clock
overheads at small heaps than for large ones (Figure 1c).
We believe that this is caused by the benchmark actually
benefitting from the frequent GCs which provide it better
spatial locality. We confirm this by measuring CPU cache
misses: the ConcurrentCopying collector minimizes cache
misses even in comparison to the SemiSpace collector.

Ignoring GCBench, which is a microbenchmark, for a
modest 2X heap, the optimized SemiSpace collector has over-
heads ranging from 14-27 %. ConcurrentCopying has over-
heads ranging from 10-23 % and ConcurrentMarkCompact
has overheads ranging from 11-32 %.

Results for CPU cycles (not shown) are similar, while re-
sults for wall clock overheads (not shown) indicate the con-
current collectors can have lower overheads in comparison
to the optimized SemiSpace (with the exception of GCBench).
These trends are similar to the ones from Cai et al. [22] and
further reinforces that wall clock time should not be consid-
ered on its own.

6.2 Real-World Applications

Figure 2 plots the results for the production collectors and
the two SemiSpace collectors. We plot the geometric mean of
the overheads across all of the benchmarks per collector and
heap size. The two SemiSpace collectors are generally the
ones which minimize overheads on the mutator, and hence
are the baselines for LBO calculations. Wall clock time is
noisy across all benchmarks. We believe this is due to the
non-deterministic processing times in between user actions
as well as the presence of two ART instances complicating
scheduling decisions (Section 4.1). The task clock and CPU
cycles are unaffected since they do not measure time the
application is inactive. We now only discuss the task clock
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Table 5. Task clock LBOs at a modest 2x heap for real-world
applications. Best results are highlighted in green. X (Twitter)
has been grayed out and excluded from summary statistics
since it is too chaotic (see Figure 5 for details).

Benchmark SS (Stock)  SS (NR) CC CMC
Adobe Acrobat  1.143 0947 1.149 <0887 1188 w048%  1.132 +0.45%
Airbnb 1.296 +4.907 1.267 +394%  1.506 +5.69 1.143 £091%
Discord 1.285 +2.097 1.273 w4572 1.407 +235%  1.085 +1.75%
Gmail 1.169 +2587 1.157 +185%  1.370 <487 1.061 +1.28%
Google News 1172 23307 1.309 £528%  1.097 +1.637
Instagram 1.107 +3.74% 1.152 23929  1.333 +4.41 1.018 +3.43%
Maps 1.095 +1.95% 1.240 2847 1121 x171% 1,140 <0517
TikTok 1.187 +3.48% 1.172 +a05%  1.349 +399 1.135 +2.40%
Twitch 1.101 <186 % 1.086 <3427 1.175 =112 1.020 +0.95%
X (Twitter) 1.307 +2.63% 1.824 +195% 1.377 +339%  1.347 +1.78%
min 1.095 1.086 1.121 1.018

max 1.296 1.273 1.506 1.143
mean 1.171 1.186 1.306 1.093
geomean 1.169 1.184 1.301 1.092

results since the trends for CPU cycles are similar (CPU
cycles has slightly higher overheads).

We can see in Figure 2 that the ConcurrentCopying collec-
tor has much higher overheads than the SemiSpace collector
for small heaps (< 2.5x), while having similar overheads
for larger heap sizes (> 2.5x). This is unsurprising since
at tight heap sizes, the ConcurrentCopying collector would
degenerate into a STW collector with the additional ma-
chinery required for concurrent copying such as read bar-
riers, remembered sets, etc. ConcurrentMarkCompact also
has higher overheads at small heap sizes, however, since
it is more space-efficient than the ConcurrentCopying and
SemiSpace collectors, its overhead is considerably less for
any given heap size.

Table 5 lists task clock overheads for a modest 2x heap.
The overheads for ConcurrentCopying range from 12-51 %
and the overheads for ConcurrentMarkCompact range from
2-14 %. Since the ConcurrentMarkCompact collector is more
space-efficient than ConcurrentCopying, these results are
unsurprising. The SemiSpace collector without remembered
sets (NR) has similar or lower overheads than stock SemiS-
pace, with the exception of Google Maps where it has signif-
icantly higher overheads across all heap sizes.

Overall, these overheads are not high, suggesting one of
three things: i) the production GCs in ART are very efficient;
ii) the baselines used for LBO are not close to the ideal ap-
plication cost; or iii) these workloads are not particularly
GC-intensive. For the vanilla Java workloads, in terms of mu-
tator overheads, the stock SemiSpace actually had marginally
better or similar results to the ConcurrentCopying collector.
However, the SemiSpace collector with NR+NW+NE opti-
mizations significantly minimized mutator overheads. This
suggests that while the stock SemiSpace does reduce mu-
tator overheads for Android applications in comparison to
the concurrent collectors, it is not a good baseline. As the
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Figure 3. Frame render times for 2x and 3 heap for Gmail
and Adobe Acrobat. We omit SemiSpace (NR) for a cleaner
graph as its results were similar to the stock SemiSpace. We
gather all the frame render timings across 15 invocations
and plot their percentile distribution. The standard deviation
for the 50th and 99th percentiles across the 15 invocations
for all collectors are < 1.0 ms and < 10.0 ms respectively for
the two heap sizes. Note how SemiSpace and Concurrent-
Copying have similar frame render times for Gmail, while
ConcurrentMarkCompact generally has the lowest times.
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(a) Gmail (b) Adobe Acrobat
Figure 4. Percentage of janky frames for Gmail and Adobe
Acrobat averaged over 15 invocations. Each point on the
x-axis is a multiple of the minimum heap size for that bench-
mark. We omit SemiSpace (NR) for a cleaner graph as its
results were similar to the stock SemiSpace. Note how SemiS-
pace and ConcurrentCopying have similar percentage of
janky frames for Gmail, while ConcurrentMarkCompact im-
proves upon the other collectors for equivalent heap sizes.

vanilla Java workload results show, it is not close to the in-
trinsic application cost. By definition, the LBO results are
the lower-bound estimates of the true overheads.

Figure 3 plots the frame render times for a 2x and 3x
heap for Gmail and Adobe Acrobat, while Figure 4 plots
the percentage of janky frames. Gmail is a representative
benchmark (Figures 3a and 3c). We see that with Gmail, Con-
currentCopying does not significantly improve frame render
times or percentage of janky frames. On the other hand,
Adobe Acrobat (Figures 3b and 3d) showcases a benchmark
where ConcurrentCopying does improve on SemiSpace with
respect to both measures. We believe that these results can be
explained by the fact that ConcurrentCopying cannot keep
up with mutator allocations for smaller heap sizes which
negatively affects application responsiveness. This reinforces
recent work [22, 71] on how collector pause times are not
an accurate reflection of user-experienced responsiveness.
ConcurrentMarkCompact generally has the lowest frame
render times for similar heap sizes across all benchmarks.

Figure 5 plots the task clock overheads for Airbnb and X
(Twitter). Airbnb is a representative benchmark, and behaves
as expected, with smaller heap sizes having higher overheads
than larger heap sizes. On the other hand, X’s results are
chaotic. There seems to be no visible trend for any of the
collectors: larger heap sizes can have higher overheads than
smaller ones. Yet the error bars are tight for all the collectors
and heap sizes. This suggests that the results themselves are
stable for a particular heap size, but not across different heap
sizes. We believe such results are due to the effect of subtle
differences in ordering of posts as well as different posts
being displayed for each heap size as they execute at different
moments in time. X’s results underscore the difficulty in
controlling and benchmarking Android applications soundly.
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Figure 5. Task clock overheads for Airbnb and X on the Pixel
7 Pro averaged over 15 invocations. Each point on the x-axis
is a multiple of the minimum heap size for that benchmark.
Note how Airbnb behaves as expected, while X is chaotic.

7 Conclusion

Understanding memory management performance is key to
improving responsiveness, memory utilization, and costs of
mobile devices. In this paper, we outline a framework for
principled performance evaluation of overheads on mobile
devices, with a specific focus on Android and the Android
Runtime. While some of the challenges to sound performance
evaluation we faced were specific to Android (such as the
Zygote and AOT- vs JIT-compilation), we believe that much
of our experience and many of our solutions might be appli-
cable on other mobile platforms. In particular, the challenges
we faced in curating a benchmarking suite (Section 4), feed-
back loops due to heap usage introspection (Section 3.3), and
non-determinism due to network traffic (Section 3.4) seem
applicable to any mobile platform.

We curate a small benchmark suite consisting of popu-
lar real-world applications as well as some DaCapo work-
loads [20] and GCBench [30]. We evaluate the lower-bound
overheads of production garbage collectors in ART for our
benchmark suite by applying the LBO methodology described
by Cai et al. [22]. For a modestly sized heap, we find that
the lower bounds on garbage collection overheads for pro-
duction GCs vary considerably from 2 % to 51 % among the
benchmarks we evaluate.

We believe our work is a promising step in demystifying
memory management performance in the Android Runtime.
We hope it leads to growing interest and innovation in mem-
ory management research for mobile devices.
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