
The Moxie JVM Experience

Stephen M. Blackburn,‡ ∗ Sergey I. Salishev,
Mikhail Danilov, Oleg A. Mokhovikov, Anton A. Nashatyrev, Peter A. Novodvorsky,

Vadim I. Bogdanov, Xiao Feng Li, Dennis Ushakov
‡ Department of Computer Science

Australian National University
Steve.Blackburn@anu.edu.au

Software Solutions Group
Intel Corporation

<Firstname>.<I>.<Lastname>@intel.com

Abstract
By January 1998, only two years after the launch of the first Java
virtual machine, almost all JVMs in use today had been architected.
In the nine years since, technology has advanced enormously, with
respect to the underlying hardware, language implementation, and
in the application domain. Although JVM technology has moved
forward in leaps and bounds, basic design decisions made in the
90’s has anchored JVM implementation.

The Moxie project set out to explore the question: ‘How would
we design a JVM from scratch knowing what we know today?’
Amid the mass of design questions we faced, the tension between
performance and flexibility was pervasive, persistent and problem-
atic. In this experience paper we describe the Moxie project and its
lessons, a process which began with consulting experts from indus-
try and academia, and ended with a fully working prototype.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design

General Terms Java, Java in Java, Virtual Machine

Keywords Moxie, JVM, Java, JiJ, Virtual Machine

1. Introduction
Most of the widely used Java virtual machines today rest on code
bases which date to the first two years of the public life of the Java
language. The core of IBM’s very successful j9 JVM dates back
to even earlier times, emerging from a high performance SmallTalk
implementation. Almost a decade later, the technology within these
JVMs have advanced enormously. On one hand, such success pre-
cisely vindicates the aging technical cores of these JVMs: don’t fix
it if it ain’t broke! Alternatively, these technical advances highlight
why we need to reevaluate the core of JVM design.

The Moxie project emerged in late 2005 as part of Intel’s in-
volvement in the Apache Harmony project, whose goal is to build
a ‘compatible, independent implementation of the Java SE 5 JDK
under the Apache License v2’ and a ‘community-developed mod-
ular runtime (VM and class library) architecture’ [7]. While the

∗ This work was conducted while the author was at Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’08 March 5-7, 2008, Seattle, WA, USA.
Copyright c© 2008 ACM [to be supplied]. . . $5.00.

nascent Harmony community bootstrapped itself with an estab-
lished JVM [18], the Moxie project set out to explore the design
of a next generation JVM. This, of course, first required us to fig-
ure out what exactly a ‘next generation JVM’ was!

On one hand, a JVM is a relatively simple system. Accom-
plished programmers have been known to build working JVMs
single-handedly from scratch in a matter of months. On the other
hand, the technology that underlies a modern high performance
JVM is enormously complex, far beyond the grasp of any single
person. As a small example, more than 160 research papers have
been published using Jikes RVM alone. This and other work has in
turn been built on the back of focused research efforts through the
80’s [45] and 90’s [23, 32]. Commercial JVMs build on this with
patent portfolios. It would be extremely naı̈ve to embark on a ‘next
generation’ JVM design unless one could leverage this expertise.

Given the open setting of this project, we invited experts from
industry and academia to brainstorm JVM design. We set up two
meetings in late 2005 and early 2006 and used these to guide
the development of a prototype. The goal of the prototype was to
provide a testing ground for new ideas in JVM design that emerged
from these meetings. The prototype1 and notes from these meetings
are being made available online [37] under the Apache License.

The project ran for a year and within a few months had a modest
JVM working. By the end of the year, the prototype was capable
of running complex workloads such as Eclipse, was ported to both
IA32 and ARM architectures and could run on Linux, Windows and
the L4 microkernel [34]. The prototype successfully demonstrates a
number of new technologies and design ideas. In particular, it tests
existing ideas for retargetable template compilers [24], includes an
advanced Java-in-Java bootstrap model, implements a generalized
code persistence mechanism, has pluggable object models, and
includes a novel field packing algorithm for object layout.

This paper contributes to virtual machine design at three levels:
1. We examine and question the status quo, suggest the need for a
second generation of JVM design, and discuss the social factors in
the current state of affairs. 2. We describe a highly componentized
JVM design with a publicly available prototype. 3. We have made
a number of advances in JVM implementation, particularly with
respect to techniques for Java-in-Java implementation.

The remainder of the paper is structured as follows. First we
discuss related work. Then in Section 3 we discuss input from
experts, perspectives on future JVM design, and the specific goals
of the Moxie project. Section 4 discusses the design of the Moxie
JVM. Section 5 discusses the key lessons of the Moxie project and
Section 6 concludes.

1 The code is not available at the time of writing. We are committed to
releasing the source under the Apache license, but the process is slow. Our
hope is that the source will be available at moxie.sf.net by late 2007.

2. Background and Related Work
The literature on JVM design and implementation is substantial.
We limit our review here to work related to three of Moxie’s major
themes: modular JVM design, JVM implementation in Java, and
systems programming in Java.

2.1 Modular Design
Modular design increases flexibility, but often at the cost of reduced
performance. Sun’s EVM included a well-defined and comprehen-
sive GC interface [29]. Performance critical aspects of the interface
(such as read and write barriers) are expressed as C macros. EVM
GC components were therefore only statically selectable.

The open runtime platform (ORP) [18] was designed to have
pluggable compiler and garbage collector implementations. The
GC and JIT interact with the VM through well defined interfaces
which are implemented as C/C++ function tables. The function
tables are established at boot time, which allows the GC and JIT
to be boot-time configurable. In most cases, the JIT emits calls
through the interface, which typically yields adequate performance.
In performance critical settings, such as a check cast or write
barrier, the VM or GC (respectively) must provide the JIT with
code expressed in an architecture-neutral, low level intermediate
language (LIL) [30]. The JIT then emits the code directly, avoiding
a call through an interface. By contrast, Moxie exploits the fact
that code such as a check cast or write barrier is written in Java,
and is therefore automatically inlined and optimized in-situ by the
optimizing compiler, following the example of Jikes RVM [3],
Since Moxie depends on an ahead-of-time compiled boot-image
(like Jikes RVM), component bindings are statically defined (for
example, write barriers are inlined throughout the boot image,
nailing down a specific choice of collector at build time).

Ovm is a framework for building language runtimes [38]. Ovm
consists of statically configurable components, written in Java,
which are stitched together at the time the JVM is built. The stitch-
ing process uses a custom-built component system based on a spe-
cial intermediate form, OvmIR. While EVM and ORP used C
macros and LIL, and Moxie and Jikes RVM depend on inlining,
it is unclear how Ovm ensures performance in critical parts of the
component interface. Ovm does not have an aggressive JIT, so for
performance, application code can be compiled ahead of time us-
ing their Java-to-C++ compiler, for subsequent compilation by gc-
c/g++. C++ is used as the back-end language to leverage its built-in
exception handling support. While inlining is an invaluable mech-
anism for the performance of Jikes RVM [5], it tended to lead to
code bloat problems with the Ovm gcc/g++ back-end [14].

MMTk [15] is a self-contained component of Jikes RVM pro-
viding a framework for building garbage collectors. MMTk is
shared by other JVMs, including Moxie and Ovm [26]. The perfor-
mance of MMTk depends entirely on aggressive optimization of
calls across the VM-memory manager interface. MMTk has been
highly tuned to allow the flexibility of supporting multiple col-
lectors within Jikes RVM without performance penalty [15]. The
Moxie project raised the reciprocal concern of supporting multi-
ple VMs from MMTk. As we discuss later, this was solved by
using an abstract factory pattern [28], which the Jikes RVM op-
timizing compiler could optimize across with zero performance
penalty. It is possible that MMTk could have utilized a component
infrastructure such as Jiazzi [36], but the efficacy of the Jikes RVM
optimizing compiler meant that the simple abstract factory pattern
was adequate. The efficiency of the MMTk interface design, com-
bined with the capacity to inline allocation sequences (which are
all expressed in Java), means the MMTk allocation performance
can match that of a highly optimized C implementation [15]. The
lessons of MMTk were fundamental to, and were extended by, the
Moxie project.

2.2 Java-in-Java JVMs
There is a long-standing tradition among language developers of
‘eating one’s own dog food’ (implementing language L using the
same language L) [8]. The sense of this approach depends greatly
on the suitability of the language at hand to the task of language
implementation. C compilers are typically written in C. The Stan-
dard ML of New Jersey compiler is written in ML. Andrew Appel
has discussed in detail [8] the bootstrap problem that arises with a
self-implementing language/runtime. Squeak [32] is a high perfor-
mance SmallTalk VM implemented in SmallTalk.

JavaInJava [44] was a proof-of-concept experiment at Sun
which implemented a JVM in Java. The VM was written in pure
Java and executed over a host JVM, yielding slowdowns around
two orders of magnitude. The author concedes that an entirely dif-
ferent approach would need to be taken to achieve performance
comparable to a JVM written in C or C++.

Jikes RVM [4] (formerly known as Jalapeño) was developed at
IBM at about the same time as JavaInJava, and serves as a proof-
of-performance for the Java-in-Java JVM concept. Jikes RVM is
almost entirely written in Java (it has a small bootstrapper and OS
interface wrapper written in C). Jikes RVM includes an aggressive
optimizing compiler which targets PowerPC and IA32. In Febru-
ary 2002, Jikes RVM achieved 95% the performance of the IBM
1.3.0 DK JVM on the SPECjvm98 benchmarks on Linux/IA32 [5],
demonstrating that it is possible to build a high performance JVM
in Java. While the Jikes RVM optimizing compiler makes good
use of the Java language (following the dog food credo), parts of
the VM core and the original garbage collectors made heavy use
of static code—reflecting some of the authors’ background as C
coders and the relative novelty of Java at the time the code was writ-
ten. The MMTk memory management subsystem [15] was written
somewhat later by authors who had enormous faith in the optimiz-
ing compiler. Nonetheless, correctness concerns (such as not being
able to call new() within the garbage collector) lead to rather styl-
ized use of Java in such places. The Moxie project heavily leverages
the Jikes RVM experience. Importantly, Moxie explicitly set out to
address shortcomings in Jikes RVM as identified by longstanding
members of the Jikes RVM team. These include: a much stronger
focus on pluggable components; a more principled approach to ex-
tending the Java language with ‘magic’; a more robust and general
boot image construction method, and a generalization over code
persistence required for boot image writing.

Squawk [43] is a JVM written in Java targeted at embedded
devices. Squawk avoids most problems associated with Java-in-
Java construction by using a limited subset of Java which maps to
C. This approach allows Squawk to be compiled with a C compiler,
but limits its appeal as a ‘Java’ implementation. Since Squawk
avoids the Java runtime, it is probably not truly a Java-in-Java JVM.
By contrast, the Moxie project wanted to exploit the strengths of the
Java language as fully as possible and had a much broader focus
as. A number of other JVMs have been written in Java, each with
a different focus. These include Joeq [46] (compiler development),
JNode [40] (operating systems), and Rivet [17] (testing). Ovm is
also written in Java, and is discussed above.
2.3 Systems Programming In Java
The appeal of writing a JVM in Java is three-fold: a) the JVM
implementation can exploit the software engineering benefits of a
strongly typed, dynamically checked language, b) the impedance
mismatch between JVM helper code and application code is re-
moved, offering performance advantages [3, 15], and c) there is an
aesthetic appeal and symmetry in eating one’s own dog food. To
successfully eat one’s own dog food, the language at hand must
be suitable to the task of constructing a runtime. In particular, it
must be sufficiently expressive, and capable of efficiently render-
ing performance-critical code. This concept has been successfully

demonstrated in SmallTalk [32] and Java [3]. Nonetheless, there is
a considerable cultural block to using a language other than C or
C++ for systems work [42].

Unlike C#, Java does not have inbuilt mechanisms for perform-
ing tasks essential to systems programming, such as direct memory
access. While the JavaInJava project [44] bypassed the problem by
implementing above a host JVM in pure Java, Jikes RVM success-
fully tackled the problem head-on [3]. The original Jikes RVM ap-
proach was to add magic to the language in two forms: a) compiler
intrinsics2 which implemented semantics beyond the specification
of the Java language (such as an address read or cache flush), and
b) compiler pragmas expressed idiomatically which were used for
correctness (e.g. scheduling control) and performance (e.g. inlining
hints). Initially magic types such as addresses were untyped (int
was used for addresses!). Subsequently this became more princi-
pled. In particular, the magic types became better typed with the
introduction of magic types such as Address (akin to void*) and
Word (an unsigned int of the same size as the underlying archi-
tectural word). These are captured in the org.vmmagic package,
which is used by a number of projects.

Ovm makes idiomatic use of standard Java [26] to express ex-
tensions to the standard Java semantics (such as compiler pragmas
and direct memory accesses), which are necessary when imple-
menting a JVM. The development of idioms for this purpose was
largely due to Chapman Flack who drew from, extended and gener-
alized similar ideas in Jikes RVM. Ovm idioms are iteratively eval-
uated during the build process and the resulting OvmIR is compiled
into C++ for subsequent compilation to native code. Moxie depends
on compiler intrinsics to extend Java semantics, rather than iterative
translation of an IR. Moxie uses standard Java annotations rather
than idiomatic use of the throws and implements keywords as
Ovm does (Jikes RVM has recently adopted Moxie’s approach).
The Ovm approach means that all code using idiomatic Java must
be compiled ahead of time, whereas with Moxie and Jikes RVM,
such code can be JIT’ed, and may therefore be excluded from the
initial boot image unless it is essential to the bootstrap process.

In a recent invited paper [42], Jonathan Shapiro discussed some
of the reasons why the operating systems community is so attached
to C, and points to concerns with managed languages and even
C++. He does offer a glimmer of hope in his relatively enthusi-
astic view of the Singularity project [25]. Singularity has demon-
strated that a strongly typed, managed language (C#) can be used
in place of hardware protection to enforce interprocess isolation
in an operating system, with considerable performance advantages.
Nonetheless, contrary to the instinctive fears of many systems pro-
grammers (including many of our colleagues), there can be perfor-
mance advantages associated with reducing impedance mismatch
and strong typing. MMTk showed that performance-critical ob-
ject allocation sequences in Java could outperform highly tuned
C code [15]. The advantage came due to the inlining allowed by
an absence impedance mismatch between application and alloca-
tor, and that in Java, for most allocation sites, the size of the al-
located object is statically known at the call to new(). These fac-
tors combined to allow an aggressive compiler to highly optimize
an otherwise complex free list allocation sequence. JNode [40] is
an operating system written in Java. JNode uses MMTk and Jikes
RVM’s org.vmmagic package.

Moxie builds on the approach taken by Jikes RVM, and has re-
fined some of the ideas in an effort to make magic more principled
(some of these refinements have filtered back into the Jikes RVM
code base).

2 Compiler intrinsics are methods whose semantics are beyond the scope of
the implemented language, so are implemented directly by the compiler.

3. Scoping The Project
The Moxie project emerged as a modest, forward-looking compan-
ion to what are much larger and very pragmatic engineering ef-
forts under the emerging Apache Harmony project. In particular,
the Moxie project differentiated itself as being focused on innova-
tion; by developing innovative ideas, and moreover, by developing
a framework to facilitate innovation.

The mandate of the Moxie project was to serve both production
and research objectives. This created some significant challenges.
When engineering a JVM, arguably one may chose any two of per-
formance, robustness, and flexibility as design goals. Experience
suggests that given this choice, product will sacrifice internal flex-
ibility and research will sacrifice robustness. Of course we’d rather
have our cake and eat it. The foremost challenge for Moxie there-
fore became engineering a system capable of all three objectives.
A corollary of the product-research tension is that while innova-
tion demands revolution, robustness favors evolution. The Moxie
project will ideally allow both development styles to coexist.

Consistent with our skepticism of monolithic JVM develop-
ment, we favor an agile development style [11]. In particular our
approach was: small (for the most part, just four engineers), fast,
iterative, and adaptive (shifting focus as new challenges emerged).
Our aim was to prototype ideas rather than kid ourselves that we
could deliver a finished, complete, performance-tuned JVM in a
one year project.

Finally, we needed to draw on a wealth of outside expertise in
order to set meaningful priorities.

3.1 Expert Input
As soon as the project had approval, we got together a group
of people to have our first brainstorming meeting in San Fran-
cisco [13] in December 2005. A month later, we held a second
meeting in Albuquerque [14].

3.1.1 First Moxie Meeting
The objective of the first meeting was to use brainstorming to
explore in the broadest terms possible the shape of future JVMs.
Eleven individuals from a range of institutions participated in the
two day gathering [13]. The meeting was structured around four
sessions, each of which had a single theme couched as a question.
The brainstorming was driven by a series of sub-questions under
each theme. Each participant wrote responses on small pieces of
paper. The responses were gathered and then grouped using ‘mind
maps’. Details are available on the Moxie web site [13]. Here we
summarize the discussions surrounding each of the four themes.
These high level thoughts were intended not to provide specific
goals for Moxie, but to help define a broad context for the Moxie
project, given its aspiration to being a ‘next generation’ JVM.

Where will (or should) Java be in 10 years? Unsurprisingly, it
was hard to reach consensus. There was a strong sense that the Java
Language Specification [31] was limiting Java, and that the speed
of Java’s evolution was its greatest future challenge (five members
were concerned it was too slow, two were concerned it may be too
fast). The performance of Java was seen as a paramount ongoing
challenge, not a solved problem. Java’s support for native code was
seen as a particular weakness.

What should a next-generation JVM look like? Many saw im-
plementation issues as the biggest limitation of the current gener-
ation of JVMs, specifically lack of internal modularity. Most saw
performance as the most important lesson of the current generation
of JVMs. This topic lead to a heated discussion as to who should de-
sign and implement the next generation of JVMs. In particular there
was much discussion of the difficulty of the task, the need for ex-
pertise and how compatible the task was with various open source

development models. There was some consensus that developing
a product quality JVM required a much greater depth of technical
expertise than is seen in most open source development projects.
One of the participants stated that building a high quality VM re-
quires people with highly specialized knowledge & serious system
programming ability. There aren’t that many people with both and
many of them work on commercial VMs [13]. This seemed to cap-
ture the thoughts of many—but not all—on the panel, and raises
serious challenges for a project such as Moxie and Apache Har-
mony. The contrary viewpoint was that this perspective was elitist
(we were saying ‘Rocket scientists only please!’), and would stand
in the way of community efforts to build a next generation JVM.

What needs to be done to maximize innovation? Interestingly,
panel members felt by a ratio of 2:1 that industry rather than
academia had been the major source of innovation. There was also
a strong view that complexity of the JVM Specification and existing
implementations had been the major inhibitors of innovation [35].
The corollary is that to maximize innovation, a next generation im-
plementation must eschew complexity. Lack of adequate/realistic
workloads was cited as a problem—unrealistic workloads can lead
to unproductive research since many optimizations which work
well on small benchmarks do not scale out to large, realistic work-
loads [14, 16].

What are the highest priorities for new JVM design? There was
a substantial discussion of the value of hardware support for JVM
implementation. Hardware assistance for control-flow (generic
lightweight traps), memory management [19], and synchronization
(such as the full/empty bit [6, 2]) were popular suggestions. The
utility of hardware support for barriers and lightweight traps [19]
was hotly debated, but many were skeptical. The group viewed non-
determinism, particularly with respect to dynamic optimization, as
the greatest inhibitor of robustness in modern JVMs. Specifically,
there was a strong consensus that concurrency (particularly cor-
rectness with respect to concurrency) must be a first-order concern
from the outset. When asked how best to deal with the tension
between performance and flexibility, there was some consensus
that an important strategy was using Java as an implementation
language combined with aggressive optimization such as special-
ization [22].

The four brainstorming sessions were followed by open dis-
cussion primed by the question “What would your priorities be if
you were tasked with building a new JVM from scratch (given ap-
propriate resources)”? These discussions provoked questions such
as how a new JVM could be designed on an Apache mailing list,
and what it was about Moxie that would differentiate it from other
JVMs. The following sentence emerged as a succinct summary of
the Moxie project goals:

The Moxie project will create an open source platform for
developing product-quality JVMs and an environment for
JVM innovation.

We then discussed what the objective of innovation entailed, and
concluded that in a nutshell, it implies efficient modularization—a
big departure from the monolithic structure of most JVMs today.

3.1.2 Second Moxie Meeting
By contrast to the first meeting, the second meeting was focused
on experience and concrete technical issues. The meeting was an-
chored around four experience talks, each of which are available
online [14]. The first, by Cliff Click of Azul gave a retrospective on
the HotSpot compiler [39]. Dave Grove of IBM then spoke about
modular object models [10]. Jan Vitek of Purdue discussed lessons
of the Ovm project [38]. Marcus Lagergren of BEA finished with
a discussion on the importance of a solid QA infrastructure to the

JVM development process. Together, these talks gave a rich back-
drop of technical insight for the project. We summarize a few of the
notable discussions here.

Java-in-Java There was resounding support for implementing
the JVM in Java. Many of those in attendance had experience with
Java-in-Java, and others who lead development on C/C++ based
JVMs argued that Java had matured enormously since their JVMs
were initiated, and sufficiently that they would use Java now, if
implementing from scratch. Anecdotally there remain some very
experienced JVM architects who oppose the idea, but we did not
hear from them.

It was clear by this stage that Moxie would be implemented
in Java, which colored the discussion that followed. Discussions
among those with extensive Java-in-Java experienced identified the
following five challenges which had not been adequately addressed
in existing Java-in-Java JVMs:

1. Debugging the JVM in a Java-in-Java context has typically
been a weak spot, mainly because one cannot leverage existing,
underlying C/C++ runtime support for debugging.

2. Portability of the execution engine is a greater challenge be-
cause unlike C/C++-implemented JVMs, a Java-in-Java JVM
cannot achieve trivial portability via an interpreter that lever-
ages the existing portability of the C/C++ platform.

3. Footprint may be an issue if Moxie wishes to target embed-
ded applications because existing Java-in-Java JVMs have not
demonstrated small footprints (Squawk [43] is a notable excep-
tion, but is does not use the Java runtime, only its syntax).

4. Systems programming is not supported by Java. Existing ex-
tensions [3, 26] need to be further generalized, extended and
standardized.

5. Strong isolation between application and VM code is essential
for a production JVM. The majority were skeptical that existing
solutions [20, 38, 9] (in particular, isolates [20]) were practical
from a performance standpoint.

6. Clean bootstrap is lacking from both Jikes RVM [3], which
is brittle with respect to host and target class libraries, and
Ovm [38], which lacks generality due to its dependence on
C/C++ and lack of an optimizing JIT.

Having elected to build Moxie in Java, proof-of-concept solutions
to these shortcomings became a high priority.

Robustness Three themes emerged under robustness. The first
was the objective of using generators wherever possible rather
than hand-coding intricate and error-prone code, such as argument
shuffling. The second was the importance of reducing the size of
the trusted code base (TCB). The third was the importance of
establishing a quality assurance infrastructure right from the outset.

Portability As an open source project, it was important that
Moxie be portable. The strong advice from the meeting was that
portability be addressed right from the beginning, preferably with
two or more significantly different architectures. The meeting
discussed three different approaches to achieving portability: a)
use a retargetable compiler such as that proposed by Ertl and
Gregg [24], b) consider a tool such as VPO [33, 12], or c) sim-
ply use carefully crafted assembler—anecdotally this worked well
for HotSpot [14, 39].

Components A modular design is implicit in Moxie’s first-order
goal of flexibility. The group discussed two distinct manifestations
of components within a JVM. In the first instance, a component is a
relatively well-contained module with well defined services and/or
requirements with respect to the JVM core. The JIT and memory

manager are clear examples. Modularizing such components has
been studied extensively [18, 38, 15]. A more challenging problem
lies in components such as an object model—the subject of Dave
Grove’s experience talk at the meeting [10, 14]. In this case the
component is cross-cutting, and so an approach such as aspect
oriented programming may be more appropriate.

3.2 Project Goals
The initial goals of the Moxie project were determined by our ob-
jective of creating an ‘innovation friendly’ framework for JVM im-
plementation and our decision to implement the system in Java. We
therefore decided to focus on an aggressively modular JVM archi-
tecture, and to attack the six identified short-comings of existing
Java-in-Java JVMs (enumerated in Section 3.1.2).

We identified these sub-goals with respect to modularity:

• Modularize the JVM at as fine a grain as reasonable.
• Implement multiple component instances where ever possible.
• Reuse components such as MMTk [15] and Jitrino [1, 7].
• Improve over previously used approaches [15, 38].

Given their scale and complexity, we did not want to attempt to
implement an optimizing compiler or non-trivial memory manage-
ment subsystem in our prototype. Instead we decided to use Jikes
RVM’s MMTk [15] and Harmony’s Jitrino [7] (which is a second-
generation derivative of StarJIT [1]) and implement our own trivial
alternatives: a non-collecting memory manager and a simple tem-
plate based JIT. Future implementations of either component from
scratch would allow us to test our capacity to simultaneously sup-
port evolution (of the existing components) and revolution (in the
introduction of entirely new ones).

With respect to Java-in-Java JVM implementation, we decided
to make our major focus portability, clean bootstrap, debugging,
and systems programming but footprint and vm-application isola-
tion remained important considerations.

Since Jikes RVM had established proof of performance [5], and
we would not have access to an optimizing compiler until later in
the project when Jitrino was ported, performance was not an objec-
tive for our prototype. Our position that performance should not be
a first-order concern for Moxie has been borne out in ongoing per-
formance comparisons of Jikes RVM and DRLVM [21]. These re-
sults show that Jikes RVM, the java-in-java VM, consistently con-
tinues to outperform its cousin, DRLVM, written in C++. This is
an interesting comparison since both projects have similar goals,
similar roots in the late 1990’s as research JVMs and both have ad-
vanced JIT compilers. Nonetheless, we did perform some targeted
performance analysis. For example, we were able to evaluate the
performance of our application of the Abstract Factory pattern by
experimenting with MMTk in Jikes RVM.

A third, longer-term goal of the project was to explore the issue
of redundancy between operating system and JVM services such
as memory managers and schedulers. To that end, we decided to
port the JVM to the L4 microkernel [34] at the outset. A port to a
microkernel would allow us considerable flexibility with respect to
the provision of such key OS services.

Thus toward the end of 2005, we embarked on a year long
project to build a highly modular JVM in Java armed with a sub-
stantial list of goals based on input from experts and perceived
shortcomings of existing work. To re-iterate, our notable non-goals
were proof of performance [5] and the implementation of an opti-
mizing compiler [1] or non-trivial management system [15]. Or no-
table goals were to implement a highly modular Java-in-Java JVM,
ported to at least two architectures and two operating systems, with
an improved bootstrap mechanism and that as far as possible at-
tacked the above list of Java-in-Java shortcomings.

4. Moxie Design and Implementation
We now describe the design and implementation of the Moxie pro-
totype. Complete source code is being made publicly available [37]
under the Apache Public License v2.

4.1 Design
The design of Moxie is shaped by the decision to implement in
Java and to achieve maximal modularity. We now describe the
component model we used, and then briefly describe each of the
major components.

4.1.1 Component Model
MMTk had previously demonstrated modularity of JVM compo-
nents without sacrificing performance [15]. Rather than statically
define a single, simple interface between all memory managers
(MM) and virtual machines (VM), MMTk assumes each will de-
fine its own set of services and requirements. Then for any particu-
lar MM, VM pairing (mmi, vm j), glue is written in the form of two
‘wedges’, mmvmi j and vmmm ji, where a ‘wedge’ maps require-
ments onto services as optimally as possible given the specifics of
mmi and vm j. This approach has a number of properties. First, it
avoids the lowest common denominator effect of reducing all MM,
VM pairings to use a single, global, statically defined interface.
This property is particularly important given our objective of flexi-
bility. Second, in the Java-in-Java setting, if the binding is statically
determined, it allows an optimizing compiler to optimize across the
glue code. This property lead to the extremely efficient implemen-
tations reported for MMTk [15].

In MMTk, requirements were stated simply in the form of the
static methods of a set of interface classes. MMTk provided ‘stub’
instances of these classes, and peer VMs provided concrete in-
stances which replace the stubs. Although this approach worked
reasonably in the context of MMTk and Jikes RVM, it is brittle, as
there is no way to ensure coherence between the distinct implemen-
tations of the static interfaces—they are simply expected to alias
each other correctly. Moxie applied components very aggressively
and soon this brittleness became unacceptable. So we explored al-
ternative approaches.

1 public static final MMInterface mmInterface;
2

3 static {
4 try {
5 String name = System.getProperty("moxie.mm.factory");
6 Class cl = Class.forName(name);
7 MMFactory mmf = (MMFactory) cl.newInstance();
8 mmInterface = mmf.newMMInterface();
9 } catch (Exception e) {

10 throw new RuntimeException(e);
11 }
12 }

Figure 1. Using the Abstract Factory Pattern To Glue Components

Eventually we established that if carefully applied, the abstract
factory pattern [28] could be used without any loss of performance.
This design pattern uses an abstractly defined interface to avoid the
problem of brittleness described above. For example, MMTk’s re-
quirements of the VM are defined in a series of abstract classes in
the package org.mmtk.vm. Any VM peer must offer an interface
that extends these classes. Singleton instances are used to avoid
static methods, and the final types of these instances (which pins
down the specific VM) is defined at build time. An example of this
is illustrated in Figure 1, where the core component establishes a
concrete instance of a memory manager at initialization time (bind-
ing a specific memory manager to the core). Since the singletons

are declared final, an aggressive optimizing compiler can resolve
the final types and inline the calls at will. We carefully evaluated
this approach in the context of Jikes RVM (which has an aggressive
optimizing compiler and uses MMTk), and found that there was no
loss of performance. We then used this pattern throughout Moxie.
The abstract factory method was then adopted by Jikes RVM for its
interface with MMTk (in about July of 2006). We see the example
of the abstract factory pattern as important, because it is so far re-
moved from orthodox systems programming. Yet it provides great
flexibility, and with suitably powerful tools, can perform optimally.
4.1.2 Component Structure
Each of the Moxie components, except the core, are pluggable and
in most cases may have multiple different pluggable implementa-
tions. Some components have sub-components. The Moxie JVM
currently comprises the following five top-level components.

Core The core includes the class loader, runtime class represen-
tation, scheduler, JNI, JVMTI, object model and utilities. These
sub-components should each be pluggable, but due to time pres-
sure we were only able to make the object model a pluggable sub-
component with distinct instances (see below). Arguably, the cross-
cutting nature of the object model made it the most challenging, and
therefore the best choice for proof-of-concept.

Execution Engine The execution engine abstracts over code ex-
ecution, code generation, code storage, the activation stack, and
exception throwing and handling. Thus an execution engine in-
stance may simply correspond to a trivial JIT (or interpreter), or
to an adaptive hot-spot compilation system with multiple JITs and
optimization levels. Thus the core works as a container for code
providers and JITs implementing these services. Currently Moxie
has two executable code storage modes: in-memory and persis-
tent via a code cache. Two JITs are currently supported, our re-
targetable template-based compiler and Harmony Jitrino [7, 1]. The
implementation of the retargetable compiler and code cache are dis-
cussed below. An important property of the retargetable compiler is
that it generates relocatable code, which is necessary for our code
persistence mechanism. Since Harmony Jitrino cannot generate re-
locatable code, we are unable to use it for code caching.

Memory Manager The memory manager encapsulates allocation
and garbage collection. Initially Moxie had a trivial bump-allocate,
non-collecting memory manager. Subsequently MMTk [15] was
added. Currently Moxie only utilizes the MarkSweep MMTk con-
figuration due to Moxie’s requirements for pinning.

OS Porting Layer The OS porting layer abstracts over OS system
calls and primitives such as synchronization, thread creation, con-
sole IO, file IO, and dynamic library loading. This layer is written
in Java and interacts directly with the OS APIs via our native inter-
face (Section 4.2.3). We have two instances of this component; for
Windows and POSIX. By contrast, Jikes RVM’s OS adapting layer
is the largest non-Java component of the runtime [3].

Bytecode Verifier The Moxie bytecode verifier is a pluggable
component. It is designed to be fully independent of the VM im-
plementation. We currently have one instance of this component,
which is a complete Java port of the Harmony bytecode verifier,
which was written in C. It took one engineer about one month to
complete the port.

In addition to describing the five major components of the Moxie
prototype, we will briefly describe the object model sub-component
of the core component, since the object model is the pervasive and
systemic [10].

Object Model Moxie currently supports two different object
models: ‘plain’ and ‘segregated’. The plain object model is sim-
ilar to the Jikes RVM standard object model [3, 10]. The object

header is at a negative offset from the object references and scalar
fields and array elements are at positive offsets. Our field packing
algorithm described in the Appendix guarantees no storage over-
head for machine word-aligned objects. The ‘segregated’ object
model lays out scalar objects bi-directionally. Reference fields are
at negative offsets to the object header, and primitive fields are at
positive offsets. Our field packing algorithm may be applied to the
scalar part of the object (the reference part is always dense). This
model was proposed by SableVM [27], with the rationale that it
improved locality and simplified object scanning at GC time by
avoiding the need for a type lookup when scanning an object. We
chose to implement this model simply because it is so different to
our ‘plain’ model, and therefore provides a good proof-of-concept.
4.1.3 Component Unit Testing
A fundamental aspect of the Moxie design strategy is systematic
unit testing of components. Unit testing is essential to stability and
agility [11]. While many components are normal Java classes, and
are therefore easy to write tests for, others such as JIT compiled
code, the scheduler, etc, require the target execution environment
in order to perform the test. The bootstrap process (Section 4.2.1)
was designed to achieve this and maintain testing modularity. We
use automatic test control flow analysis to restrict compilation and
data copying to those required for a particular test. Thus there is
no additional burden on the developer. This represents a significant
improvement over the previous state of the art in Java-in-Java JVM
testing and debugging [3, 38].
4.2 Implementation
We now describe some features of the Moxie implementation.
4.2.1 Bootstrap Process
There is always a bootstrap problem when a language implements
itself [8]. Java-in-Java JVMs typically ahead-of-time (AOT) com-
pile a core ‘boot image’ into an executable binary image, and then
load and execute that image at runtime [3, 38]. In the case of
Jikes RVM and Moxie, the JIT compiler has the additional role
of performing this AOT compilation. The image must contain both
code and data for the core classes necessary for bootstrap. Image
construction is performed by executing relevant parts of the JVM
within a host and then using a reflective mechanism to move the rel-
evant code and data into a persistent image. Moxie supports three
modes of execution:

1. Hosted Mode. In this mode, bytecode is executed in a host
JVM (not natively). The Moxie class loader, compiler, and
some utility classes support execution in this mode. This mode
is intended for testing and building the boot image.

2. Hosted Target Mode. This mode is accessible through hosted
mode. It is primarily intended for testing. To prepare the code
for running in this mode, the hosting application allocates (na-
tive) memory for a target JVM heap and compiled code storage.
Then it executes the Moxie compiler within the host to compile
necessary code and it copies objects to the target heap. After
this step, the allocated memory contains a binary image of the
code. The hosting application then can save the memory as the
bootimage or directly transfer the control to the target’s entry
point. This allows building a test image, running it in target en-
vironment, and then analyzing the results of execution, all from
within a host JVM. This has a number of debugging advantages,
including isolating the possibility that the correctness of Moxie
compiler’s execution might be recursively affected by its own
bugs—when running on a host JVM this is ruled out. Neither
Jikes RVM or Ovm support such a mode [3, 38].

3. Target Mode (Self-Hosted). In this mode Moxie is restored
from a bootimage by a simple native image loader and run as
native application.

It is possible to include arbitrary classes in the boot image as
long as the necessary classes are loaded and requisite instances
created at the time boot image creation starts. To create an image,
two distinct procedures are used:

1. Instance Migration. This process is similar to serialization. We
start with a set of seed objects and use reflection to copy the
transitive closure of these seeds into the target heap.

2. Kernel Compiling. This process builds a conservative set of
instantiated classes and called methods. We start with the set
of classes whose instances are copied during instance migration
and a predefined list of entry point methods. The following rules
are then applied iteratively to create a transitive closure:

(a) Each new class is scanned for explicitly annotated entry
point methods;

(b) Each new virtual method is checked for overrides against
the existing list of potentially instantiated classes;

(c) Each new method is conservatively analyzed for method
calls and object instantiation;

(d) Each newly identified potentially instantiated class is checked
for overrides against the existing set of potentially called
virtual methods.

Together, these guarantee that the bootimage will contain all code
necessary for execution. Note that unlike Jikes RVM [3], entry
points are identified in place (via annotations) rather than via an
explicitly enumerated list. This approach is more transparent and
therefore less error prone.

4.2.2 Systems Programming
Moxie began with the org.vmmagic package of unboxed types
and compiler pragmas used by MMTk and Jikes RVM. Two notable
improvements were made. First, Java 1.5 annotations were used to
express pragmas more naturally than idiomatic use of throws and
implements [3, 26]. Second, compiler intrinsics were made less
opaque by using annotations to a) identify them as intrinsic, and b)
specify the intended semantics via a handle. In the example in Fig-

1 package org.vmmagic.unboxed;
2

3 public abstract class Address {
4 ...
5 @MagicMethod(ADDRESS_STORE_CHAR_OFFSET)
6 public void store(char value, Offset offset) {
7 ...
8 }
9 ...

10 }

Figure 2. Making Intrinsic Methods Less ‘Magic’

ure 2, line 5 annotates the store() method of Address to indicate
that it is intrinsic and to specify that its semantics are defined by
the handle ADDRESS_STORE_CHAR_OFFSET. The rest of the code
in the example appears just as it would in Jikes RVM or MMTk.
In addition to increasing transparency for the user of Address, this
approach means that the compiler implements exactly the set of de-
fined intrinsic semantics, allowing unimplemented intrinsic meth-
ods to be discovered by the compiler rather than via spurious be-
havior. Jikes RVM has since adopted both of these innovations in
its org.vmmagic package.

4.2.3 The Native Interface
Java-in-Java JVMs must be able to make low-cost calls to certain
native code, so that they can access OS services, for example. The

problem is even more acute in Moxie, given our decision to use
the Jitrino optimizing compiler, which is written in C/C++. Our
dependence on efficient native calls was consequently significantly
greater than, for example, in Jikes RVM. In such settings, JNI is
infeasible as it is too heavyweight, both in performance and in
requiring native wrappers. Jikes RVM solves the problem with its
own native call mechanism. The system is semi-automated, but
limited, not fully general and it requires stubs to be implemented in
C code (which then call through to the intended library call).

1 /*
2 * JITEXPORT void JIT_init(JIT_Handle jit,
3 * const char* name);
4 */
5 @ExternC
6 static native void JIT_init(Compiler jit, Address name);

Figure 3. Native Interfaces Using Annotations

Given the use of Jitrino, the decision to write the OS portability
layer in Java, and the unsuitability of JNI, it was essential that
Moxie have generic support for efficient native calls. There are
three major concerns with native calls: linking, marshaling and
pinning. Moxie addresses these as follows:

• Linking. Moxie uses annotations on Java native methods to
describe the calling convention (see line 5 of Figure 3). Moxie
lazily resolves each method at runtime, performing its own
dynamic linking via the OS layer. Declarations such as the one
in Figure 3 can be automatically generated by mapping .h files
Java classes populated with such declarations.

• Marshaling. The org.vmmagic unboxed types are used for
parameter types. So any pointer (void *) is described as an
Address, a platform-sized int is a Word or Offset depending
on whether signed. Fixed size numeric types are cast to corre-
sponding Java primitive types.

• Pinning. Unless JNI (or some equivalent form of pointer indi-
rection) is used, any object passed to a native method must first
be pinned. Otherwise the object may be moved by a copying
garbage collector while the native code is referencing it. Moxie
uses MMTk to implement a trivial form of pinning. Currently
this is done by forcing such objects to be allocated into a non-
moving object space in MMTk. Moxie requires that the caller
of the native method retain a reference to any passed object to
ensure that that object is not collected during the call. Memory
required for native data structures is allocated as Java arrays.

This approach does not address the problem of type safety of native
calls. Since all pointers are effectively cast to void* and there are
no composite native data types on Java side, programming to this
interface requires a discipline which is hard to achieve when the na-
tive interface is 100 or more functions wide. The resulting bugs can
be hideous, manifesting as hard to pinpoint crashes. Consequently,
interacting with external native components was the most difficult
and time-consuming part of working with Moxie. General support
for unboxing of compound types in org.vmmagic might alleviate
this problem.

4.2.4 A Retargetable Template Based JIT
Recall that portability was a high priority for Moxie. So although
we could have quickly built a trivial non-optimizing JIT, we de-
cided to evaluate a promising idea for retargetable JITs which
was recently published by Ertl and Gregg [24]. Following their
approach, our compiler consists of two parts: a template-based,
platform-independent compiler framework written in Java, and a
generator capable of generating platform-specific templates. Tem-
plates consist of: a) opaque code (arrays of bytes), and b) patching

procedures for adjusting addresses and offsets in the code. We eval-
uated this system by porting to IA32 and ARM at the outset.

The compiler framework was very portable. Porting to new
ISAs only required the generation of new templates. Unfortunately
we found that template generation was not as easy as we had hoped.
The basic idea is that a pre-existing port to the target ISA (such as
gcc) could be leveraged to automate the generation of templates,
exploiting the ‘labels as pointers’ language extension supported by
gcc [24]. Suitably written templates would allow a parser to extract
sufficient information from the compiled code to produce stitchable
code snippets and patching procedures.

The performance of this approach depended on the C compiler
performing some optimizations. However, the patching process was
brittle to many optimizations. For example, an optimizing compiler
might substitute an addition of a constant with a subtraction of the
compliment of the constant. The result is hard if not impossible
for the template generator’s parser to identify. While it is possible
to modify the template generator to understand such optimizations,
there are many possible optimizations to consider (and the compiler
in question is likely to be a moving target).

The problem arose for both IA32 and ARM. On the ARM,
the addition of a 32-bit constant results in four add immediate
operations if the constant occupies all 32 bits (one add immediate
operation can operate with a register and an 8-bit integer). However,
when the implementation of the template for the addi bytecode
adds a 32-bit integer to the register variable, the compiler cleverly
generates a minimal number of ARM addi instructions, optimized
with shifts when possible. However, our compiler should be able to
compile addi with an arbitrary 32-bit integer, so we need precisely
four ARM addi instructions. The consequence was that we ended
up hand writing every addition within templates in assembly, losing
all opportunity for optimization.

We also had problems using the C goto statement as a tem-
plate separator as suggested [24]. The extensive padding required
in branching templates on the ARM meant that the jump had to
be very long. Padding was implemented as an assembly instruction
and the compiler couldn’t use that information, resulting in longer
jumps than the ARM ISA supports. We ended up using nop in-
structions as template separators. We also note that the template
approach breaks down in cases where the C compiler simply calls
to intrinsic functions in the C runtime. This was a problem for a
number bytecodes such as f2i, ldiv, lrem, etc. We had to con-
clude that templates need to be substantially tuned to the specific
platform, compiler and compiler version and in our experience, this
work is non-trivial.

We conducted some rudimentary performance testing of the
compiler. The compiled code ran at about half the speed of that
produced by Apache Harmony’s ‘JET’ non-optimizing JIT com-
piler [7], but much faster than interpretation in a production JVM.

4.2.5 Code Cache
We implemented a code cache for three reasons: a) as a generaliza-
tion over the ahead-of-time compilation which must occur during
boot image writing for a java-in-java JVM, b) to improve start-up
time for cached applications, and c) to support code preemption,
which may be useful in a memory-constrained context. A gen-
eral implementation of code caching is non-trivial [41]. Our pro-
totype implementation is persistent, performs relocation, supports
preemption, and conducts primitive validity checks via checksums.

Lack of support for code relocation in the Jitrino optimizing
compiler [7, 1] meant that the code cache could only be applied
to baseline compiled code. The code cache will be most effective
when the quality of the retrieved code is high and the cost of regen-
erating that code is high. Without an optimizing compiler, neither
are likely to be true. Nonetheless, we found that the code cache
could produce code on average around seven times faster than the

baseline compiler. However, this only lead to a 10% improvement
in total startup time. We found that this was because the cost of
class loading and other overheads dominate method compilation
when using the baseline compiler.
5. Status and Lessons
With a dedicated team of four to five engineers,3 we were able
to rapidly build a functional prototype from scratch. It took about
three months to get a basic JVM running, although in retrospect
(too) much of this time was devoted to getting the retargetable com-
piler working (without which we could execute nothing). Within
a year we had integrated MMTk and Jitrino, had OS ports to
Windows, Linux and L4 and a baseline compiler port to IA32
and ARM. The prototype JVM was capable of running substan-
tial, complex applications such as the Eclipse IDE. We had practi-
cally demonstrated aggressive modularity, and improved on previ-
ous techniques. We had a complete bytecode verifier, a novel boot
image building mechanism, useful extensions to the systems pro-
gramming model, and an elegant native interface. We felt that we
had advanced the state of the art and created a good basis for next
generation JVM development.

Agile Development The principles of agile development [11] are
very well suited to this technically complex task. We had a small,
tightly integrated, dedicated team of highly experienced engineers
following the agile style. Although our high-level goals were clear,
our specific objectives were very fluid and subject to feedback as
the project progressed. Our focus was on rapid, iterative prototype
development and putting specific ideas to the test. We felt very
productive.

Pluggable Components Our focus on modularization is consis-
tent with agile development and with our desire to promote inno-
vation and both evolutionary and revolutionary development styles.
We found that the ‘wedge’ approach used by MMTk [15] did not
scale well due to the brittleness of statically defined, unchecked in-
terfaces. The abstract factory pattern solved the problem for us and
we were delighted that an aggressive compiler [5] was able to suc-
cessfully devirtualize calls through the interface, yielding us safe
modularity at no penalty. Thus we considered our experiment with
extremely modular JVM design very successful.

Unit Tests Rigorous unit testing of components is fundamental
to the Moxie design and implementation strategy. We found that
it was invaluable to stability and agility, and therefore crucial to
our rapid development style. The difficulty of testing elements of
the runtime such as the JIT and scheduler led us to develop the
hosted target execution mode for harnessing components within a
host while executing natively. We believe the effort and discipline
associated with systemic unit testing paid off many times over.

Java in Java Construction Given prior positive experience with
Jikes RVM and MMTk, and strong endorsement from the experts
we consulted, we were determined to push Java-in-Java implemen-
tation as hard as we could. Of the six Java-in-Java shortcomings we
identify in Section 3.1.2, Moxie made major progress on four, and
generated insight into a fifth. Given the various priorities we were
juggling, we did not find sufficient time to seriously explore the
JVM footprint (item 3). We felt that we made substantial progress
with respect to the challenges of debugging, systems programming
and clean bootstrap (items 1, 4, and 6). In each case we developed
novel techniques and applied them extensively. We explored archi-
tectural portability (item 2) at length although the finding was neu-
tral. A future generalization of our hosted-target execution mode
described below would lead to OS-like VM/application isolation
(item 5).

3 All engineers were expert Java programmers, but none had prior JVM im-
plementation experience due to our desire for a clean-room implementation.

Native Interfaces The implementation of the OS portability layer
in Java and our decision to integrate a significant native component
(the Jitrino JIT) meant we had to take seriously the implementation
of native calls. We are pleased with the resulting mechanism, which
is general, transparent, and can be automated. The weak link in the
chain is that we have no way to type compound types passed across
the interface, but must throw away typing and resort to a ‘void *’.
Extending org.vmmagic’s unboxing to support compound types
would complete an otherwise compelling picture.

Bootstrap Process The Moxie JVM improves over previous Java-
in-Java bootstrap techniques in three ways. First, it offers a ‘hosted-
target’ mode which is invaluable to testing and debugging. Second,
Moxie uses a more transparent image creation algorithm. Finally,
it generalizes over boot-time compilation with a generic code per-
sistence mechanism which also supports code preemption. As fu-
ture work, it would be very interesting to see if the hosted-target
mode could be further generalized to the extent that all JVM ser-
vices could run hosted, while the application ran entirely natively.
This would provide a very rich JVM debugging environment and
a limit-study in VM/application isolation. Under such a model, all
transitions from application to JVM services would become explicit
at some point (like an operating systems trap). In the extreme, the
application could run on a host remote to the VM services. The
hosted VM services would forgo the use of compiler intrinsics
(since the host JVM is not obliged to support them), so services
such as garbage collection would be significantly slowed down.
Nonetheless, it would provide a debugging environment which for
current Java-in-Java developers exists only in their dreams.

Retargetable Compiler We took our goal of portability seriously,
so we persisted with the retargetable template-based compiler de-
spite frustrations. Nonetheless, we were successful in implement-
ing an effective compiler with ports to IA32 and ARM. In retro-
spect our experience was that the holy grail of retargetable com-
pilation still has a way to go. Given the anecdotal evidence of
achieving portability through careful (orthodox) design [14, 39],
the more orthodox route to portability would have been more prag-
matic. Nonetheless, we feel that our experience was useful and
provocative—after all, the goal of the Moxie project was to put
new ideas to the test.

6. Conclusion
The Moxie project set out to pragmatically address the question
‘How would we design a JVM from scratch knowing what we know
today?’ We started by drawing on expertise from industrial and aca-
demic practitioners through two meetings [13, 14], and used that in-
put to drive a year-long prototype development project. By the end
of the project, we had a working prototype JVM capable of running
substantial workloads, and which concretely demonstrated most of
our goals including flexibility, portability and internal modularity.

The project demonstrated that a highly modular, flexible JVM
was attainable using technology which did not sacrifice perfor-
mance. In doing so, we validated the agile programming paradigm,
making great use of modularity, unit tests, a small team, and fluid,
feedback-directed goals. We advanced the state of the art in Java-
in-Java JVM construction, addressing longstanding shortcomings
of previous approaches and using the Java language more naturally
and fearlessly than before. Many of our insights and ideas have al-
ready made their way into other JVMs including Harmony [7] and
Jikes RVM [3].

We thoroughly enjoyed building Moxie and look forward to
making the source code public. We hope that the JVM development
community will benefit from our experience.

Acknowledgments
The moxie project is indebted to each of the participants in the
two ‘think tank’ meetings we held in November 2005 and Jan-
uary 2006, namely: Brian Bershad, Hans Boehm, Michal Cierniak,
Cliff Click, Daniel Frampton, David Gregg, David Grove, Manuael
Hermenegildo, Tony Hosking, Marcus Lagergren, Bernd Mathiske,
Kathryn McKinley, Eliot Moss, Glenn Skinner, Suresh Srinivas,
Darko Stefaovic, Jan Vitek, Greg Wright, and Mario Wolczko. We
would also particularly like to thank Wen-Hann Wang, Steven Chin,
Richard Wirt and Roman Poborchy of Intel, who gave us their back-
ing and the opportunity to pursue the Moxie project. Denis Shary-
pov was invaluable in helping run the project. Robin Garner and
Daniel Frampton provided considerable insightful feedback.

References
[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon,

B. Murphy, M. Serrano, and T. Shpeisman. The StarJIT compiler: A dynamic
compiler for managed runtime environments. Intel Technology Journal,
7(1):19–31, Feb. 2003.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K. L. Johnson, D. Kranz, J. Kubiatowicz,
B.-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife machine:
architecture and performance. In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture, pages 2–13, New York,
NY, USA, 1995. ACM Press.

[3] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM System Journal, 39(1), Feb. 2000.

[4] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber,
M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeño in Java.
In ACM Conference on Object–Oriented Programming Systems, Languages,
and Applications, Denver, CO, Nov. 1999.

[5] B. Alpern, M. Butrico, A. Cocchi, J. Dolby, S. J. Fink, D. Grove, and T. Ngo.
Experiences porting the Jikes RVM to Linux/IA32. In Proceedings of the
2nd Java Virtual Machine Research and Technology Symposium, pages 51–64,
Berkeley, CA, USA, 2002. USENIX Association.

[6] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and
B. Smith. The Tera computer system. In ICS ’90: Proceedings of the 4th
International Conference on Supercomputing, pages 1–6, New York, NY, USA,
1990. ACM Press.

[7] Apache. Apache Harmony, 2006. http://harmony.apache.org/.
[8] A. W. Appel. Axiomatic bootstrapping: a guide for compiler hackers. ACM

Trans. Program. Lang. Syst., 16(6):1699–1718, 1994.
[9] G. Back and W. C. Hsieh. The KaffeOS Java runtime system. ACM Trans.

Program. Lang. Syst., 27(4):583–630, 2005.
[10] D. F. Bacon, S. J. Fink, and D. Grove. Space- and time-efficient implementation

of the Java object model. In ECOOP ’02: Proceedings of the 16th European
Conference on Object-Oriented Programming, pages 111–132, London, UK,
2002. Springer-Verlag.

[11] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas. Manifesto
for agile software development, 2001. http://agilemanifesto.org/.

[12] M. E. Benitez and J. W. Davidson. Target-specific global code improvement:
Principles and applications. Technical report, Charlottesville, VA, USA, 1994.

[13] B. Bershad, S. M. Blackburn, H. Boehm, M. Cierniak, C. Click, D. Frampton,
D. Gregg, D. Grove, X. Li, B. Mathiske, and G. Skinner. First Moxie
brainstorming meeting, Dec. 2005. http://moxie.sf.net/.

[14] S. M. Blackburn, H. Boehm, M. Cierniak, C. Click, D. Grove, M. Hermenegildo,
T. Hosking, K. S. McKinley, J. E. B. Moss, M. Lagergren, S. Srinivas, D. Ste-
faovic, J. Vitek, G. Wright, and M. Wolczko. Second Moxie brainstorming
meeting, Jan. 2006. http://moxie.sf.net/.

[15] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In Proceedings of the 26th
International Conference on Software Engineering, pages 137–146, Scotland,
UK, May 2004.

[16] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In OOPSLA ’06:
Proceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, New York, NY, USA, Oct.
2006. ACM Press.

[17] D. Bruening and J. Chapin. Systematic testing of multithreaded programs.
Technical Report MIT-LCS-TM-607, MIT, May 2000.

[18] M. Cierniak, B. T. Lewis, and J. M. Stichnoth. Open runtime platform:
flexibility with performance using interfaces. In JGI ’02: Proceedings of the
2002 joint ACM-ISCOPE conference on Java Grande, pages 156–164, New
York, NY, USA, 2002. ACM Press.

[19] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In VEE ’05:
Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments, pages 46–56, New York, NY, USA, 2005. ACM Press.

[20] G. Czajkowski, L. Daynès, and B. Titzer. A multi-user virtual machine. In
USENIX 2003 Annual Technical Conference, San Antonio, TX, pages 85–98,
Berkeley, CA, 2003. USENIX Association.

[21] DaCapo Consortium. DaCapo benchmark performance comparison, 2007.
http://cs.anu.edu.au/people/Robin.Garner/dacapo/regression/.

[22] J. Dean, C. Chambers, and D. Grove. Selective specialization for object-oriented
languages. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation, pages 93–102, New
York, NY, USA, 1995. ACM Press.

[23] J. Dean, G. DeFouw, D. Grove, V. Litinov, and C. Chambers. Vortex: An
optimizing compiler for object-oriented languages. In ACM Conference on
Object–Oriented Programming Systems, Languages, and Applications, pages
83–100, San Jose, CA, Oct. 1996.

[24] M. A. Ertl and D. Gregg. Retargeting JIT compilers by using C-compiler
generated executable code. In PACT ’04: Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Techniques, pages 41–
50, Washington, DC, USA, 2004. IEEE Computer Society.

[25] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, , and
S. Levi. Language support for fast and reliable message-based communication
in singularity os. In The first ACM SIGOPS EuroSys conference (EuroSys
2006), pages 177–190, 2006.

[26] C. Flack, T. Hosking, and J. Vitek. Idioms in Ovm. Technical Report CSD-TR-
03-017, Purdue University, 2003.

[27] E. M. Gagnon and L. J. Hendren. SableVM: A research framework for the
efficient execution of Java bytecode. In Java Virtual Machine Research and
Technology Symposium, pages 27–40. USENIX, 2001.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[29] A. Garthwaite and D. White. The GC interface in the EVM. Technical report,
Mountain View, CA, USA, 1998.

[30] N. Glew, S. Triantafyllis, M. Cierniak, M. Eng, B. T. Lewis, and J. M.
Stichnoth. LIL: An architecture-neutral language for virtual-machine stubs. In
Proceedings of the 3rd Virtual Machine Research and Technology Symposium,
May 6-7, 2004, San Jose, CA, USA, pages 111–125, 2004.

[31] J. Gosling, B. Joy, G. Steel, and G. Bracha. The Java Language Specification,
Third Edition. Prentice Hall, 3rd edition, 2005.

[32] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the
future: the story of squeak, a practical smalltalk written in itself. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 318–326, New
York, NY, USA, 1997. ACM Press.

[33] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. van Engelen,
K. Gallivan, J. Hiser, J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho,
and Y. Paek. VISTA: VPO interactive system for tuning applications. Trans. on
Embedded Computing Sys., 5(4):819–863, 2006.

[34] B. Leslie and G. Heiser. Iguana/L4, 2006. http://ertos.nicta.com.au/research/l4/.
[35] T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second

Edition. Prentice Hall, 2rd edition, 1999.
[36] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: new-age components

for old-fasioned Java. In OOPSLA ’01: Proceedings of the 16th ACM
SIGPLAN conference on Object oriented programming, systems, languages,
and applications, pages 211–222, New York, NY, USA, 2001. ACM Press.

[37] Moxie. The Moxie Project, 2006. http://moxie.sf.org/.
[38] K. Palacz, J. Baker, C. Flack, C. Grothoff, H. Yamauchi, and J. Vitek.

Engineering a common intermediate representation for the Ovm framework.
Science of Computer Programming, 57(3):357–378, 2005.

[39] M. Paleczny, C. A. Vick, and C. Click. The Java HotSpot server compiler. In
Java Virtual Machine Research and Technology Symposium. USENIX, 2001.

[40] E. Prangsma. Why Java is practical for modern operating systems. In Libre
Software Meeting, 2005. Presentation only. See www.jnode.org.

[41] M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta. Quicksilver: a quasi-
static compiler for Java. In OOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, pages 66–82, New York, NY, USA, 2000. ACM Press.

[42] J. Shapiro. Programming language challenges in systems codes: why systems
programmers still use C, and what to do about it. In PLOS ’06: Proceedings of
the 3rd workshop on Programming languages and operating systems, page 9,
New York, NY, USA, 2006. ACM Press.

[43] N. Shaylor, D. N. Simon, and W. R. Bush. A Java Virtual Machine architecture
for very small devices. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems, pages
34–41, New York, NY, USA, 2003. ACM Press.

[44] A. Taivalsaari. Implementing a Java virtual machine in the Java programming
language. Technical Report SMLI TR-98-64, Sun Microsystems, Mountain
View, CA, USA, 1998.

[45] D. Ungar and R. B. Smith. Self: The power of simplicity. In OOPSLA ’87:
Conference proceedings on Object-oriented programming systems, languages
and applications, pages 227–242, New York, NY, USA, 1987. ACM Press.

[46] J. Whaley. Joeq: a virtual machine and compiler infrastructure. In IVME
’03: Proceedings of the 2003 workshop on Interpreters, virtual machines and
emulators, pages 58–66, New York, NY, USA, 2003. ACM Press.

Appendix: The Moxie Field Packing Algorithm
The Moxie field packing algorithm lays out object fields of size
2n, aligned on either the field size or machine word boundary,
whichever is smaller. The fields are allocated in order with gaps
immediately filled if a suitable field is encountered later. For each
potential field alignment the algorithm tracks an insertion point.
The insertion point is the smallest offset in the object layout a field
of that alignment can be inserted. By definition there is exactly one
insertion point for each field alignment. Each new field is allocated
at the insertion point corresponding to the field’s alignment, then
all insertion points are updated accordingly.

1 /**
2 * Allocates a new field with machine word alignment
3 * or size alignment whichever is smaller. Offsets
4 * array represent the insertion points for elements
5 * of each alignment. The index in array is the log2
6 * of the alignment size.
7 * @param size of new field
8 * @param offsets insertion points for each alignment
9 * @return the offset of new field

10 */
11 public static int allocateField(int size,
12 int[] offsets) {
13 final int log2size = log2(size);
14 final int base = min(offsets.length - 1, log2size);
15 int res = offsets[base];
16 for (int i = base; i < offsets.length - 1; i++) {
17 if (offsets[i] == res) {
18 offsets[i] = max(offsets[i] +
19 (1 << i), offsets[i + 1]) ;
20 }
21 }
22 if (offsets[offsets.length - 1] == res) {
23 offsets[offsets.length - 1] +=
24 max(1 << (offsets.length - 1), size);
25 }
26 for (int i = 0; i < base; i++) {
27 if (offsets[i] == res) {
28 offsets[i] = offsets[base];
29 }
30 }
31 return res;
32 }

Figure 4. The Moxie Field Packing Algorithm

A gap is continuous unused space in the layout. By definition,
there is always a gap after the last allocated field. A new gap is
created only if there is no existing gap with the same start alignment
as the field about to be allocated. If there were, the insertion point
for corresponding alignment would point to the start of that gap.
After the allocation the insertion point will point to the start of the
new gap. So the number of gaps is smaller than or equal to the
number of insertion points. The size of each gap except the last
is less than machine word size. Each insertion point has an offset
less than or equal to the offset for any insertion point of larger
alignment. So the total size of all gaps except the last one is less
than machine word size. We can assume that the layout ends on
the machine word bound, in the other case we can add and remove
a dummy field to the end of layout. So for machine word aligned
objects the algorithm creates no storage overhead.

The information about insertion points is maintained across the
class inheritance. So a subclass can fill the gaps in its super-class
object layout. The algorithm allows allocating new fields without
a hierarchical lookup to the previously allocated fields. Figure 4
shows an implementation of the field packing algorithm.

