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Abstract
Memory latency limits program performance. Object-oriented lan-
guages such as C# and Java exacerbate this problem, but their
software engineering benefits make them increasingly popular. We
show that current memory hierarchies are not particularly well
suited to Java in which object streams write and read a window of
short-lived objects that pollute the cache. These observations moti-
vate the exploration of transient cacheswhich assist a parent cache.
For an L1 parent cache, transient caches are positioned similarly to
a classic L0, providing one cycle access time. Their distinguishing
features are (1) they are tiny (4 to 8 lines), (2) they are highly asso-
ciative, and (3) the processor may seek them in parallel with their
parent. They can assist any cache level. To address object stream
behavior, we explore policies for read and write instantiation, pro-
motion, filtering, and valid bits to implement no-fetch on write.
Good design points include a parallel L0 (PL0) which improves

Java programs by 3% on average, and C by 2% in cycle-accurate
simulation over a two-cycle 32KB, 128B line, 2-way L1. A tran-
sient qualifying cache (TQ) improves further by a) minimizing pol-
lution in the parent by filtering short-lived lines without temporal
reuse, and b) using a write no-fetch policy with per-byte valid bits
to eliminate wasted fetch bandwidth. TQs at L1 and L2 improve
Java programs by 5% on average and up to 15%. The TQ even
achieves improvements when the parent has half the capacity or as-
sociativity compared to the original larger L1. The one-cycle access
time, a write no-fetch policy, and filtering bestow these benefits.
Java motivates this approach, but it also improves for C programs.
1. Introduction
Because memory latency has and will continue to limit processor
performance, researchers have focused a lot of attention on under-
standing and improving cache memories and their behavior The
vast majority of this work uses classic C and Fortran workloads
with techniques that eliminate and tolerate latency by exploiting
spatial and temporal locality. Programmers are, however increas-
ingly turning to Java and C#, because these languages offer soft-
ware engineering benefits that help them produce higher quality
software faster. A recent Gartner report predicts that by 2008, 80%
of software will be written in Java or C# [10].
This paper examines Java workloads and their interactions with

modern caches to derive new cache designs that work well for Java
and C benchmarks. We first characterize object streams. A typical
Java program creates many short-lived objects [7, 37] that start with
an initializing write, followed by a few reads and writes. Accesses
to these objects create a window of irregular accesses to several

active cache lines that march through memory, similar to a stream
in conventional languages [6, 15, 28, 29, 32] but with a wider and
less regular window of accesses.
Like conventional streams, object streams displace useful data

as they march through memory. Unlike conventional streams, ob-
ject streams cannot be naively discarded because they are irregu-
lar and some fraction of the objects will be reused. Object streams
have the following properties: (1) initializing writes, (2) subsequent
reads and writes with short reuse distance, and (3) then most, but
not all, see no further reuse.
To solve these problems, we propose a family of transient

caches: tiny, highly associative caches that assist a parent cache
by providing single cycle reuse to very short lived (transient) data.
A transient cache is not just another level in the cache hierarchy
because a) the processor seeks it in parallel, b) it is tiny (less
than 2% the capacity of its parent), c) it is highly associative,
and d) it may assist any cache level. Unlike spatial and tempo-
ral caches [14, 18, 22, 36], a transient cache is not intrusive since
it does not require changes to the parent cache or adding other
structures to keep auxiliary state.
The key insight is that due to temporal locality, a tiny tran-

sient cache can bestow benefits on a large fraction of all data ac-
cesses. while employing expensive features such as full associa-
tivity and per-byte valid bits sparingly, coupled with single cycle
access times. Transient caches improve performance in any of four
ways. They a) provide low latency access to hot data, b) filter short-
lived lines to minimize cache displacement, c) eliminate wasted
fetch bandwidth, and d) reduce write traffic.
We implement this cache in a cycle accurate simulator using

SimpleScalar [5, 13] and MicroLib [30] with the SPECjvm98, Da-
Capo, and SPECcpu2000/C benchmark suites. We experiment with
a variety of configurations, showing many improve performance
over the base cache. For a two-cycle, 32KB, 2-way, L1 data cache
with 128 and 64 byte lines we demonstrate that a 512 byte (4 and
8 lines respectively), one-cycle transient cache improves perfor-
mance over a base 32KB two-cycle parent cache by an average of
5% on Java programs, and 3% on C programs. The transient cache
never degrades performance, and improves it up to 15%.
This paper (1) characterizes of the object stream behavior in

Java programs, and (2) proposes a new cache design that exploits
this behavior. Transient caches are a unique combination of fea-
tures and policies that protect the main cache from pollution, elim-
inate write-miss bandwidth, and provide high performance and ef-
ficiency for Java and C workloads.

2. Object Streams
Ample anecdotal and empirical evidence shows that the high allo-
cation rate of modern object-oriented programs degrades the per-
formance of modern memory hierarchies [7, 8, 37]. We refer to the
disruptive behavior as object streams, by analogy to data streams.
This section quantifies this effect to motivate our design. Section 4
further characterizes Java memory behavior, and shows differences
between Java and C programs.
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(a) Source of L1 Data Cache Residency as a
Function of Lifetime
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(b) Source of L1 Data Cache Live-time as a
Function of Lifetime

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Log of lifetime measured in misses to whole cache 

C
u

n
u

la
ti

v
e

 S
o

u
rc

e
 o

f 
D

is
p

la
c

e
m

e
n

t

(c) Source of L1 Data Cache Displacement as a
Function of Lifetime

Figure 1. Short Lived Data Displaces the Cache

To characterize object streams, we develop an analysis using
the Cachegrind simulator [26] and modifications to Jikes RVM [2].
We modify the memory manager only for this analysis to never
reuse memory or move objects. We modify Cachegrind to track
cache line, noting a) instantiations, b) evictions, and c) the last
use before eviction. We aggregate statistics to compute: 1) the
total time each line is resident in the cache, 2) the total live time
(instantiation to last use), and 3) the total time dead (last use to
eviction). We compute a displacement metric to identifies lines that
displace live lines, the program reuses. The displacement metric
records the number of times the victim line is re-instantiated before
the displacing line is evicted. We measure time in terms of misses
to a a 32KB, 2-way set associative, 128 byte line, L1 data cache (an
IBM PowerPC [28] design we use throughout the paper)
All freshly allocated objects are instantiated with a write, and

most new objects (and thus cache lines) are short lived [7]. Fig-
ure 1 quantifies this effect on cache behavior. It shows the geo-
metric mean of the residency, lifetime, and displacement metrics
for the SPECjvm98 benchmark suite. Each figure is a histogram of
lifetimes on a log2 scale, accumulating all lines with a lifetime less
than or equal to 2N in bucket N.
Figure 1(a) shows the distribution of all cache residency as a

function of line lifetime. Just over half of all cache residency (50th
percentile) is due to lines that live for no more than 16 (24) misses
to the whole cache. Figure 1(b) shows the distribution of live-time
(i.e., time the line is live: residency minus dead time for each line).
Lines that are live for no more than 16 (24) misses to the whole
cache account for less than 5% percent of the aggregate live-time of
the cache. The 50th percentile for live time is not reached until we
include lines which have seen 512 (29) misses to the whole cache.
The impact of short-lived lines on residency is therefore skewed by
a factor of 32 (29/24) compared to their lifetime.
Not only do short-lived lines occupy the cache for a dispropor-

tionate time, but Figure 1(c) shows that they evict important data
at an even more disproportionate rate. More than half of displace-
ments are due to lines which are live in the cache for four or fewer
misses to the whole cache. In this case, the 50th percentile is out of
proportion to cache liveness by a factor of 128 (29/22)!

3. Transient Caches
We define transient caches as a family of small, highly associative
caches that assist a parent cache by servicing loads and/or stores
to short lived (transient) data. Unlike an orthodox L0, a transient
cache is not just another level in the hierarchy because a) the
processor may seek it in parallel with its parent, b) it is tiny (less
than 2% the capacity of its parent), c) it is highly associative, and
d) it can assist any cache level. The basis of transient cache design
is that temporal locality allows a tiny structure to bestow benefits
on a large fraction of all data accesses. Section 4 shows that 60%
of reads and 90% of writes hit in a transient cache with less than
2% the capacity of its parent L1. Thus, transient caches can apply

expensive features such as full associativity and per-byte valid bits
sparingly and couple them with single cycle access times to provide
substantial benefits. Transient caches improve performance in any
of four ways. They a) provide low latency access to hot data,
b) filter short-lived lines to minimize displacement, c) eliminate
wasted fetch bandwidth, and d) reduce write traffic.

3.1 Background
We first discuss inclusion, write policies, write buffers and L0
designs to provide the backdrop for our work.

Inclusion Policies A cache may be inclusive or exclusive with
respect to the cache below it in the hierarchy. An inclusive cache
includes the same line in both levels, while an exclusive policy in-
cludes a line at only one level. Exclusive cache hierarchies increase
total capacity and associativity by avoiding duplication, but gener-
ate more data movement (all victims must be propagated) and re-
quire more complex snooping in an multiprocessor setting [38, 17].

Write Policies Write policies determine when and how the cache
propagates changes. They determine (1) whether writes are imme-
diately propagated through to lower levels of the hierarchy (write-
through) or only propagated when a line is evicted (write-back),
(2) whether a new line is instantiated upon a write miss (write-
allocate) or not (write-no-allocate), and (3) whether the backing
data is fetched before writing to a new line (fetch-on-write), or not
(no-fetch). A no-fetch policy requires validity bits for each line
to prevent reads to uninitialized data. Previous work found that
write-allocate-no-fetch is an ideal policy for highly allocating lan-
guages [8]; we confirm that 24 Java and C programs almost never
read unwritten bytes after a write miss (99.9%). However, validity
bits increase cache area by more than 10% [8, 16] and so no modern
cache implements a no-fetch policy [16].
Previous work [12] argues that a no-allocate policy is a poor

choice for object oriented languages since the line subject to the
write miss is typically accessed again immediately. However, since
a no-fetch policy is impractical, the alternative to no-allocate is
fetch-on-write. A fetch-on-write policy always fetches the backing
data, while a no-allocate policy only fetches the backing data if
there is a subsequent read. Furthermore, subsequent reads may
be satisfied by store-to-load forwarding in modern out-of-order
processors, bypassing the need for a fetch altogether. We find a
write-through-no-allocate reduces L1 misses by 6% on average and
up to 18% for C and Java benchmarks compared to both write-
back and write-through-allocate, but this does not translate to any
significant performance advantage in cycle accurate simulation.

Write Buffers The primary function of the write buffer is to miti-
gate the bandwidth demands of a write-through cache by coalescing
multiple stores to the same line [16, 33]. Write-through no-allocate
with a write buffer is a popular choice for L1 caches [28, 35, 9, 11].
A typical write buffer has 8-entries with valid bits that insure only
valid data is written to lower levels of the memory hierarchy. The



L0 PL0 RQ RM WB WC TM TQ
mechanism read qualifying read miss write buffer write cache r/w miss r/w qualifying
parallel seek Yes Yes Yes Yes Yes Yes

filtering Yes Yes Yes Yes Yes
satisfies reads Yes Yes Yes Yes Yes Yes Yes

instantiate on parent read hit Yes Yes Yes Yes
instantiate on parent read miss Yes Yes Yes Yes Yes Yes

instantiate on write miss Yes Yes Yes Yes
write buffering Yes Yes Yes Yes
write-no-fetch Yes Yes Yes

Table 1. Transient Cache Features and Names

write buffer works in parallel with its parent cache. Since it does not
satisfy reads, such systems are inclusive: they duplicate write hits
in the buffer and L1. A write-miss followed by a read to the same
word requires the system to push the line out of the write-buffer,
fold it together, and place it in the L1. A write-through allocate
policy eliminates this problem [15].

L0 Cache Figure 2 shows an inclusive L0 design in which the
processor first seeks in the L0 and fetches on a miss [20]. On
an L0 read miss, the memory system forwards the request to the
L1 which responds immediately on a L1 hit. On an L1 miss, the
cache hierarchy populates both the L1 and the L0, for an access
time of at least the L0 plus the L1 latency. L0 designs are typically
motivated by power savings, but if searched in parallel rather than
sequentially, an L0 cache can offer performance advantages [34]. A
classic L0 is typically write back. In a write-back allocate fetch-on-
write design, the L0 first propagates dirty victims to the L1 before
fetching on a miss. A write buffer could mitigate write traffic in
a write through design, but putting two similarly sized structures
in front of the L1 is an odd choice. Most L0 implementations are
too large and not sufficiently associative to be considered transient
caches [20, 34].

3.2 Transient Cache Mechanisms
Table 1 summarizes the transient cache mechanisms and configura-
tions we discuss below, including the two orthodox design points:
a sequential seek L0 (“L0”) and a write buffer (“WB”).

Parallel Seeking. When servicing reads, the processor can seek a
transient cache and its parent sequentially or in parallel. Parallel
seeking requires an extra data path and more power, but offers
performance advantages. Since a transient cache is tiny it can attain
one cycle access time and deliver data much faster than its parent.
Agarwal et al. use Cacti to show that up to a 1KB highly associative
cache will be a single cycle in current and future technologies [1].

Filtering. A transient cache may filter instantiations to its parent
to mitigate the displacement effect of short-lived data. Figure 4
shows the mechanism in which the only path from the L2 into the
L1 is via the transient cache, and that path is gated by a “Keep?”
function. A miss the parent is instantiated in the transient cache
and only conditionally instantiated in the parent upon eviction from
the transient cache. Transient caches are therefore neither strictly
inclusive or exclusive. When a line is instantiated in the parent
cache, it is placed in the MRU position in the appropriate set.
Filtering is implemented by conditionally setting a keep-me bit

associated with each transient cache line. We use two heuristics.
First, we always set the keep-me bit for write-instantiated transient
cache lines that were resident in the parent cache at the time of the
write. Otherwise, the transient cache initializes the keep-me bit to
zero when it instantiates the line. Second, we want to promote lines
into the parent if they will be reused soon. We use accesses to the
transient cache to predict future reuse.

We govern this prediction with a keep-me filter threshold. On
each read, we set the keep-me bit for a line if it is below the thresh-
old position. We thus promote lines to the parent if the program
reads them in the transient cache, but otherwise do not put them
in the parent. A filter threshold of zero (F0) is conservative; if the
line is ever read while in the transient cache after the reference that
instantiates it, we promote it to the parent. Higher thresholds (F1
to the size of the transient cache) are more discriminating. Note
that the filtering bit and policy are isolated to the transient cache
logic and do not intrude on the parent cache, in contrast to prior
approaches [14, 18, 22, 36].
Read Instantiation We explore three instantiation policies when
the transient cache suffers a read misses: (a) always instantiate, (b)
instantiate only if it also misses the parent, and (c) never instanti-
ate. The L0, PL0, read qualifying (RQ) and read/miss qualifying
(TQ) designs follow policy (a); the miss cache designs, read miss
(RM) and read/write miss (TM), follow (b); and the write cache
(WC) follows policy (c). Policy (a) maximizes the likelihood of a
transient cache hit, but policy (b) may filter better, reducing parent
cache pollution and thus improving parent cache hit rates. Policy
(c) is the simplest design, and often effective (in Table 4 WC out-
performs RM).
Write Instantiation We implement a write-through no-allocate
policy in the transient cache designs which do not perform write
buffering (L0, PL0, RQ and RM) which simplifies implementation
and as outlined in Section 3.1 does not impact performance.
Write Buffering The WC, TM and TQ designs all subsume write
buffer functionality. We implement a retire-at-N write buffer [33]
with a most-recently-written (MRW) ordering. The WC design
simply adds the capacity to service reads from the write buffer
and parallel seeking without changing the instantiation policy or
the MRW ordering. Since the role of the write buffer is to mitigate
write traffic, its utility falls as write bandwidth to the next level in
the cache rises.
Write-No-Fetch We use validity bites on transient cache lines
to implement a write-no-fetch policy [8, 16]. We found that this
reduced the number of fetches due to write misses by 99.9% across
both Java and C benchmarks. Since we only apply the validity
bits to the transient cache, the overhead is tiny (around 1% of the
overhead of applying validity bits to the entire parent cache).
3.3 Design Options
We now briefly describe how the new transient cache designs com-
bine these mechanisms, summarized in Table 1. The RQ design
adds filtering to the PL0, and performs almost identically. The RM
design only instantiates lines which miss the parent cache, and is
thus strictly exclusive and therefore cannot reduce access times to
lines resident in the parent cache.
The WC extends the WB by servicing reads which hit in the

write buffer, using validity bits to implement a write-no-fetch pol-
icy, and filtering instantiations to the parent cache. Since reads



L2 writes reads

L1 cache

L0 cache

writes readsCPU

Figure 2. L0: Classic L0 Data Cache Design

cache ....

CPU

L2

buffer

reads

reads

write

writes

writes

Figure 3. WB: Classic Write Buffer for Write Through L1

reads

reads

cache ....

L2

transient
cache

reads
writes

CPU writes

writes

? Keep?

Figure 4. A TQ Cache for a Write Through L1

often immediately follow writes, the WC services many read re-
quests. The write-no-fetch policy dramatically reduces the number
of fetches due to write misses. By using read access patterns to
guide filtering, the WC reduces parent cache instantiations due to
write misses.

3.4 TQ and TM Transient Cache Implementation.
The transient qualifying (TQ) and miss (TM) caches differ only
in their instantiation policies, and are otherwise are identical. We
therefore describe the TQ implementation in detail, and conclude
with the single modification needed for the TM.
Figure 4 shows the data paths for a TQ design assisting the

L1 between the CPU and the L2. It has a valid bit per byte and
a keep-me bit per cache line. The TQ services reads in parallel
with the parent cache. The TQ is structured as two logically distinct
parts: a write component and a read component. The purpose of this
division is to preferentially keep write instantiated lines longer than
a traditional cache, making them available to satisfy reads from

object streams, but to do so without polluting the parent cache. The
TQ puts read misses in the read component, and write misses in the
write component. The TQ services reads from both components.
A read to an invalid byte triggers a fetch from the next level of
the memory hierarchy, correctly implementing the write no-fetch
policy. The proportion of lines devoted to each is a policy choice,
and may be adaptive.

Write Component. The write component functions as a write
buffer and is maintained as a MRW queue. Its victims cascade di-
rectly into the top of the read component. It uses write misses to
help predict short-lived lines; thus it differentiates a write hit to the
parent cache by setting the line’s keep-me bit, and otherwise initial-
izes the keep-me bit to zero. On a write miss, the TQ instantiates a
new line in the MRW position of the write component. It may need
to first stall if the previous retirement is not complete. It sets the
valid bits, and initiates the retirement of the last line in the write
component. The miss also causes the last line in write component
(which is guaranteed to be retired) to fall into the read component,
and the last line in the read component is then promoted to the par-
ent cache or discarded. It only promotes valid lines to the parent.
Lines that are never written do not appear in the write com-

ponent. If the program writes a line in the TQ, the TQ promotes
the line to the MRW position in the write component and shifts
down the intervening lines. It also sets the necessary valid bits in
the new line. When a line progresses to the last entry in the write
component, the TQ retires it, writing it to the next level of memory
hierarchy. This policy reflects a standard write buffer retirement
policy [33]. Reads to lines that are being retired must stall [33].
However, unlike a write-buffer, the TQ keeps the line after retire-
ment, thus making it available to satisfy reads until it falls out of
the read component.

Read component. The read component is a least-recently-read
(LRR) queue. When a read misses the TQ, it fetches and instanti-
ates the line at the top of the read component and evicts the bottom
entry of the read component and sets the valid bits. For lines that
fall into the read component from the write component, it maintains
their valid bits. When the program writes a line in the read compo-
nent, it instantiates the line in the MRW position of the write com-
ponent and slides the other lines down in the cache. The write com-
ponent eventually retires all written lines. This policy means read
component lines are never dirty and need never be written back.
When the TQ evicts from the read cache, it promotes the line to the
parent if its keep-me bit is set. Otherwise, it discards the line.
The TM differs from the TQ only in its read miss instantiation

policy. The TM will only instantiate a line which misses the TM if
that line also misses the parent cache. This removes the need for a
data path from the parent cache to the TM.

4. Results
This section presents our methodology, cycle accurate results of
various transient cache and L0 configurations, and an analysis of
how it achieves these improvements. We organize the cycle count
comparisons into four parts: (1) upper bounds for improvement,
and comparisons of L1 write policies, L0, and PL0 designs; (2)
comparisons across all the read, write, and qualifying L1 transient
caches, and variations of the filtering thresholds; (3) reducing the
line size to 64B; and (4) L1 and L2 transient qualifying (TQ)
caches. We show many configurations that improve performance
(from 3 to 5% on average and up to 15% on Java, and 7% on C), and
are robust (i.e., never degrade performance), and they still improve
over the original cache, even when hampered by a smaller parent
or parent with less associativity (we reduce the size by half, and
associativity from 2-way to direct-mapped).

Methodology. We implement our system in MicroLib [30], a
cycle-accurate simulator infrastructure. Since the MicroLib simu-



Parameter Value
Processor Core

Fetch, Decode, issue width 4
Load-Store queue 8

Memory System
L1 TC latency 1 cycle
L1 TC capacity 512 bytes (4 × 128 or 8 × 64)
L1 TC associativity fully
L1 Data latency 2 cycles
L1 Data capacity 32 KB
L1 Data line size 128 byte
L1 Data associativity 2-way
L1 Data allocate policy write no-allocate
L1 Data ports 2
L1 MSHR 8
L1 Write policy write back
L1 Write buffer size 0
L1 Instruction capacity 32 KB
L1 Instruction latency 2 cycles
L2 TC latency 2 + 1 cycles
L2 TC capacity 2KB (16 × 128 or 32 × 64)
L2 TC associativity fully
L2 unified latency 2 + 11 cycles
L2 unified capacity 512 KB
L2 unified line size 128 btye
L2 unified associativity 8-way

Bus
Frequency 0.5 × CPU
Width 128 bits

SDRAM (memory cycles)
Banks 4
Rows 8192
Columns 1024
RAS to RAS 2
RAS to CAS 5
CAS latency 3
RAS precharge 5
RAS active 8
RAC cycle 11

Table 2. Base and Transient Cache Processor Configurations

lator could not execute Java programs (which dynamically generate
code), we ported the MicroLib memory model sub-system to Dy-
namic SimpleScalar which supports systems calls and instructions
used by Java as well as dynamic code generation [5, 13] in Jikes
RVM [2]. We further modularized the MicroLib to generalize and
configure existing cache components and include transient caches.
Building this infrastructure to faithfully simulate C and Java pro-
grams was a substantial engineering feat, that possibly was a barrier
to such work to date. We will make our simulation infrastructure
publicly available.
Table 2 shows the hardware configurations we use for our cy-

cle accurate simulation. These represent a current aggressive out-
of-order processor model and corresponding memory system. We
closely modeled the memory system of the IBM PowerPC 970 [28,
35]. We use this as our base configuration, but without its 8-entry
64B write buffer [27]. We use in a uniprocessor setting and Sec-
tion 5 briefly discusses multiprocessors issues.
We use gcc v3.3 to compile 10 of the SPECcpu2000 bench-

marks for the PPC. We use the minnespec reduced input set [21],
available from SPEC. For executing 14 SPECjvm98 and Da-
Capo [4] benchmarks, we use Jikes RVM 2.4.1 [2] for PPC. For
our cycle accurate simulations, we limit execution to 2 billion
instructions, which does not effect the reduced input set SPEC-
cpu2000 benchmarks, but reduces the length of 13 out of 14 Java
benchmarks.
We configure Jikes RVM to use a high performance generational

copying 4MB bounded nursery and a mark-sweep older space, with
a heap size of three times the minimum in which the application ex-
ecutes [3]. We use replay compilation which deterministically ap-
plies the optimizing compiler to frequently executed methods cho-
sen by the adaptive just-in-time (JIT) compiler in previous (offline)

runs. This configuration produces a realistic mixture of optimized
and unoptimized code, but eliminates variations due to sample-
driven application of the dynamic optimizing compiler. We report
this first run for the DaCapo benchmarks, because of implementa-
tion issues which we will resolve for the final version. We report
only application time using the second run, a better metric, on the
SPECjvm benchmarks. We run one iteration of the application with
replay compilation, and then turn off the compiler. Eeckhout et al.
previously showed that including the JIT compilation can dominate
the application time, and obscure differences between benchmarks.

Bounds, Write Policies, and Conventional Policies. Table 3 sep-
arates the results and geometric means for C and Java programs.
The second column shows the simulated cycle count in millions
of the base PPC system. We normalize all results in the paper to
this base for ease of explanation. Column three presents an upper
bound—a perfect 2 cycle L1. These configurations show that Java
programs lose slightly more performance due to cache effects than
C programs: 11% average potential improvement for Java, and 9%
for C. Importantly, this places a hard upper bound on the effect
of L1 miss reductions—a 100% reduction in misses is required to
yield 10% in performance. However, column four shows that if we
could halve the access time of the 32KB cache to one cycle, we
could get within 2% of a perfect caches for both C and Fortran.
One interesting result is that for programs like jess, a one-cycle
cache provides more improvement than a perfect two-cycle cache.
These results demonstrate that there is room for improvement, and
that one-cycle access has the potential to bestow good performance
improvements. Indeed, Table 7 (explained below) shows the im-
provements comes from one-cycle access times as well as filtering.
Our bottom line 5% average improvement is substantial relative to
these bounds.
Columns five through seven show write through (WT) and write

through allocate (WTA); and a write buffer (WB) relative to the
write back no-allocate base. These choices do not impact perfor-
mance much. This insensitivity is due in part to high bandwidth
between the L1 and L2, modeling the PPC, and the effectiveness of
the load-store queue in satisfying short distance read after write.
The last two columns shows the relative performance compared

to PPC of adding a write-through no-allocate L0 with conventional
policies, including sequential seek, and a PL0 whose only differ-
ence is a parallel seek. These caches are just 4 × 128B lines. A
serial L0 degrades performance systematically between 2 and 10%
for C and Java programs, which is consistent with prior work [20].
However, a PL0 improves average performance by 3% and up to
12% on Java, and 2% on C. Unfortunately, the PL0 is not com-
pletely robust with respect to the original, as it slows down javac
and pseudojbb.

L1 Transient Cache Policies and Filtering. This section shows
that two L1 transient cache configurations (TM with default filter-
ing, and TQ with more aggressive filtering) attain the same average
performance as the PL0, but are more performance robust. Columns
three though eight in Table 4 show the new transient cache designs:
write cache (WC), read miss cache (RM), read qualifying (RQ),
transient (read/write) miss (TM), and transient (read/write) qualify-
ing (TQ), each applied only to the L1, with a default write back Le.
All contain just 4 × 128B lines. TQ and TM use two lines each for
their write and read components. These results use a conservative
keep-me which puts the line in the parent if it is ever read again af-
ter entering the assisting cache. The last three columns change this
policy to keep less: the line must be read at least once after it is not
in the most recently used (MRU) cache position.
The first result to note is that the RQ with default filtering and

PLO both perform and behave well and almost identically. Since
the RQ is slightly more robust, and generalizes over PL0, we use



Base L1: 128B, 32KB, 2-way, 2 cycle 4-lines, ∼512B
cycles(M) serial parallel

program PPC perfect 1 cycle WT WTA WB L0 PL0
Java

201 compress 1701 0.81 0.83 1.00 1.00 1.00 1.02 0.88
202 jess 2061 0.95 0.88 1.00 1.00 1.02 1.06 0.95

205 raytrace 2260 0.88 0.89 1.00 1.00 1.01 1.09 0.97
209 db 2593 0.51 0.92 0.99 0.99 1.00 1.06 0.99

213 javac 2430 0.96 0.96 1.00 1.00 1.00 1.03 1.01
222 mpegaudio 1520 0.99 0.85 1.00 1.00 1.01 1.06 0.92

228 jack 2667 0.99 0.95 1.00 1.00 1.03 0.99
antlr 369 0.96 0.92 1.00 1.00 1.00 1.04 0.96
fop 2424 0.96 0.93 1.00 1.00 1.05 0.98

hsqldb 2665 0.95 0.94 1.00 0.99 1.04 0.97
pmd 2518 0.92 0.92 1.00 1.00 1.05 0.99
ps 2085 0.94 0.90 1.00 1.00 1.08 0.97

xalan 2328 0.79 0.91 1.00 1.00 1.00 1.03 0.95
pseudojbb 2115 0.98 0.96 1.00 1.00 1.01 1.04 1.01

max 2667 0.99 0.96 1.00 1.00 1.02 1.09 1.01
min 369 0.51 0.83 0.99 0.99 1.00 1.02 0.88

geomean 1961 0.89 0.91 1.00 1.00 1.00 1.05 0.97
C

bzip2 1255 0.80 0.91 1.00 1.00 0.99 1.08 0.97
crafty 46 0.96 0.96 1.00 1.00 1.00 1.02 0.99
gap 755 0.94 0.92 1.00 1.00 1.00 1.03 0.97
gcc 21 0.98 0.96 1.00 1.00 1.00 1.06 0.99
gzip 952 0.82 0.92 0.99 1.00 0.99 1.06 0.96

parser 1799 0.88 0.93 1.00 1.00 1.00 1.07 0.98
twolf 962 0.95 0.94 1.00 1.00 1.00 1.06 0.99
vortex 1365 0.97 0.91 1.00 1.00 1.00 1.10 0.98
max 1799 0.98 0.96 1.00 1.00 1.00 1.10 0.99
min 21 0.80 0.91 0.99 1.00 0.99 1.02 0.96

geomean 462 0.91 0.93 1.00 1.00 1.00 1.06 0.98

Table 3. L0 Variations: 4 lines (∼512B); default L1: 128B line, 32KB, 2-way, 2-cycle; L2: write back .

RQ in the remainder of the discussion. An RQ with aggressive fil-
tering is a poor choice. The write component (in WC, TM and TQ)
only instantiates on a write miss, which compared to a read com-
ponent, (a) gives lines more time to age before filtering, and (b)
more closely matches the properties of object streams, which are
initiated with a write. Thus WC, TM and TQ perform better with
aggressive filtering than RQ. Similarly, RM does not bestow tem-
poral locality on write instantiated lines, and although it improves
performance by 1% on average, it is not performance robust and at
best improves by 4%.
With default filtering the TM outperforms the TQ because it has

reduced traffic through it, giving the write and read lines sufficient
time to provide locality, and if they do, the line goes into the parent.
When the TQ uses the less aggressive filtering, its increased traffic
compared to the TM causes some lines to get replaced before they
can provide locality, but since the filtering is not too aggressive they
quickly come back into the TQ. More aggressive filtering reverses
this effect; the TM performs less well with aggressive filtering
because its traffic is already reduced by only instantiating on a miss
to its parent. TMwith default filtering and TQwith more aggressive
filtering are both better design points than PL0/RQ because they are
more robust, although all have the same average performance.

Reduced Line Size. The data in Table 5 show that these designs
are more effective when the cache line size is 64B which enables
better filtering through the extended opportunity for aging gained
by the increase in line count. All numbers are normalized to the
original PPC. As in Table 5, these configurations are applied only
to the L1, with a default write-back L2. The second column (64B),
shows that compared to the PPC, this cache performs the same
as 128B lines, but improves db by 6%. however, all the transient
caches (RQ, TM, TQ, TQ2/6) offer further improvements for db, as
well as the other benchmarks. TQ2/6 splits the write:read compo-

nents 2:6 instead of the default 4:4. The improvements range from
3% for TM, 4% for RQ, up to an average of 5% for the TQ designs.
The best result improves performance by 13% with these configu-
rations.
L1 & L2 Transient Caches and Protection Against Reduced Total
Size and Associativity. The first results to note in Table 6 are in
columns seven (128B line) and eleven (64B line), marked 2-way,
32KB. These columns show that a TQ L1 coupled with a TQ L2
offers a 1% further performance improvement over just a L1 TQ,
but increasing the best result to 12% (and 15%). All improvements
in this table are still normalized against the original PPC cache.
Columns five and six of Table 6 show the effect of halving the

L1 cache capacity (L1 – 16KB) and halving the L1 associativity
(L1 – Direct Mapped D-M). These configurations also use a two-
cycle parent cache latency. Not surprisingly, they slow down the
system without transient caches (4% on average). However, tran-
sient caches at the L1 and L2 on these two reduced configurations
still improve performance over the base 32KB, 2-way L1! Columns
eight and nine show that improvement is 2% on average for 128B
lines, and the last two columns show that improvement is 4 and 5%
on average. We found these results very encouraging.
Why the Transient CacheWorks. Table 7 breaks down the details
of the benchmark behaviors on the base system and compares it to
one of the best transient cache configurations (64B lines; L1 TQ8
F1; L2 TQ32 F1) whose performance improvement is repeated here
in column eight.
These results also reveals some differences and similarities be-

tween Java and C program behavior. Column two shows the in-
structions per cycle (IPC). Both C and Java have close to the same
range of IPC values, but the average for Java is 10% lower than C,
which is not surprising considering that even with aggressive in-
lining, Java programs typically have smaller methods and smaller



Default Filtering (F0) Agressive Filtering (F1)
program PPC WC RM RQ TM TQ RQ TM TQ

Java
201 compress 1701 0.92 0.96 0.88 0.90 0.90 1.40 0.90 0.90

202 jess 2061 0.98 0.99 0.96 0.98 0.97 1.54 0.98 0.97
205 raytrace 2260 0.98 0.99 0.97 0.98 0.97 1.65 0.98 0.97

209 db 2593 0.99 1.00 0.99 0.97 0.99 1.50 0.99 0.97
213 javac 2430 0.99 0.99 0.97 0.98 1.02 1.36 1.02 0.97

222 mpegaudio 1520 0.99 0.99 0.93 0.99 0.96 1.85 0.99 0.96
228 jack 2667 1.00 1.01 0.99 0.98 1.00 1.30 1.00 0.98

antlr 369 0.98 0.99 0.97 0.98 0.97 1.36 0.98 0.97
fop 2424 0.99 1.00 0.98 1.41 0.99 0.98

hsqldb 2665 0.98 1.00 0.97 0.98 0.97 1.34 0.98 0.98
pmd 2518 0.99 0.99 0.98 0.99 0.99 1.43 0.99 0.98
ps 2085 0.99 0.98 0.97 0.98 0.97 1.86 0.98 0.97

xalan 2328 0.97 0.99 0.96 0.98 0.96 1.26 0.97 0.97
pseudojbb 2115 1.02 1.03 1.01 0.98 1.01 1.29 1.01 0.98

max 2667 1.02 1.03 1.01 0.99 1.02 1.86 1.02 0.98
min 369 0.92 0.96 0.88 0.90 0.90 1.26 0.90 0.90

geomean 1961 0.98 0.99 0.97 0.97 0.98 1.46 0.98 0.97
C

bzip2 1255 0.98 0.98 0.97 0.98 0.97 1.50 0.98 0.98
crafty 46 1.00 0.99 0.99 0.99 0.99 1.17 0.99 0.99
gap 755 0.99 1.00 0.97 0.99 0.98 1.31 0.99 0.98
gcc 21 0.99 1.00 0.99 0.99 0.99 1.25 0.99 0.99
gzip 952 0.98 0.99 0.96 0.97 0.97 1.38 0.97 0.97

parser 1799 0.98 0.99 0.98 0.98 0.99 1.36 0.98 0.99
twolf 962 0.99 0.99 0.99 0.99 0.99 1.46 0.99 0.99
vortex 1365 0.98 0.99 0.98 0.98 0.97 1.51 0.98 0.97
max 1799 1.00 1.00 0.99 0.99 0.99 1.51 0.99 0.99
min 21 0.98 0.98 0.96 0.97 0.97 1.17 0.97 0.97

geomean 462 0.99 0.99 0.98 0.98 0.98 1.36 0.98 0.98

Table 4. L1 Transient Cache Policies: 4 lines (∼512B); default L1: 128B line, 32KB, 2-way, 2-cycle; L2: write back

basic blocks than C, and indirect method calls. These features make
it less predictable and therefore Java must relies more on hardware
speculation to achieve instruction level parallelism.
C and Java differ substantially on their relative mix of load and

store instructions (columns three and four). Java performs slightly
more memory operations on average than (38% versus 34% of total
operations), but only 25% of memory operations in Java are stores,
whereas in C, 33% are stores. This result is consistent with C’s
reuse of temporary storage, whereas Java allocates a new object,
writes, reads, and discards it. This result also indicates why filter-
ing write instantiated misses is relatively more effective on Java
than C–in C these lines are relatively more likely to be misses than
in Java. Columns five through seven show miss rates and store for-
warding, where C and Java behave similarly, although Java shows
enormous variability in L2 miss rate. Together with the load/store
behavior, these results indicate that for the most part, it is the par-
ticular access patterns, rather than the gross statistical properties of
these workloads that make Java amenable to improvements from
transient caches (except for the outlier, db which has a 13.6% L2
miss rate).
The rel m/r columns show the relative L1 and L2 miss rates of

the parent cache with a transient cache as a fraction of the base
PPC cache. The transient cache both usually improves the L1 miss
rate, but sometimes degrades the L1 miss rate, and often degrades
the L2 miss rate. Performance is tolerate to this variation because
of the high hit rates in the in the L1 transient cache for both reads
(63% for Java and C) and writes (92% for Java and 89% for C).
These hits of course provide single cycle access time.
The L2 transient cache has a substantially different behavior.

Writes hit in the L2 TQ 85% of the time, and reads hit 28% for
Java, but only 1% for C programs. These results are consistent with
the wider window of access due to object streams that may not get

captured due to filtering at the L1 TQ, but are then quickly brought
closer to the CPU. These results suggest exploring the addition of
victim cache functionality of the L2 transient cache, by including a
pathway for instantiating L1 victims. The columns labeled filter,
show that the percent of lines the filtering mechanism actually
excludes from the parent cache is low (2% for Java, 3% for C in the
L1) and higher for the L2 (4% for Java, and 10% but up to 30% for
C). These results show that even F1, the more aggressive filtering,
is pretty conservative and leaves open the door for an accurate but
more aggressive policy.
We also measured how the behavior of the no-fetch policy

implemented with validity bits in the transient cache (not in the
table). Lines instantiated on a write misses almost never (< 0.1%)
require a fetch for the reaming bytes for both C and Java. Even for
C programs that have slightly fewer write hits in the TQ, programs
virtually never read unwritten data from a write miss line.
In summary, these results show that in our PPC model most of

the benefits come from the direct benefits of one-cycle access times,
and there are modest gains from improved cache efficiency due the
filtering policies that prevent pollution of the parent caches. In a
system with more modest L1 to L2 bandwidth, the benefits of write
buffering (which was neutral in our model) and write-no-fetch may
be more pronounced.

5. Related Work
This section differentiates our work from prior work on cache
design and object streams.

Level-0 Caches. Kin et al. show that adding a tiny 128 to 256
byte direct-mapped L0 cache in front of a traditional L1 reduces
energy consumption substantially [20]. This savings comes at re-
duced performance. A fully-associative L0 improves performance
over a direct-mapped L0, but uses more power. The combination
does not attain energy reductions or performance improvements



Default Filtering (F0) Agressive Filtering (F1)
program 64B RQ TM TQ8 TQ2/6 TM TQ8 TQ2/6

Java
201 compress 1.00 0.86 0.88 0.88 0.87 0.88 0.88 0.87

202 jess 1.00 0.95 0.97 0.94 0.94 0.97 0.94 0.94
205 raytrace 1.01 0.98 0.99 0.97 0.97 0.99 0.97 0.97

209 db 0.94 0.92 0.93 0.90 0.90 0.93 0.93 0.90
213 javac 1.00 0.96 0.96 0.95 0.95 1.01 0.96 0.95

222 mpegaudio 1.00 0.92 0.98 0.94 0.93 0.98 0.94 0.93
228 jack 1.00 0.99 1.00 0.97 0.97 1.00 0.99 0.97

antlr 1.00 0.96 0.97 0.96 0.96 0.97 0.96 0.96
fop 0.97 0.96 0.97

hsqldb 1.00 0.97 0.98 0.97 0.97 0.98 0.97
pmd 1.01 0.97 0.99 0.98 0.97 1.00 0.98 0.97
ps 0.99 0.96 0.97 0.96 0.96 0.97 0.96 0.96

xalan 1.02 0.99 1.00 1.00 0.99 1.00
pseudojbb 1.00 1.00 1.01 0.97 0.98 1.01 1.00 0.97

max 1.02 1.00 1.01 0.98 1.00 1.01 1.00 1.00
min 0.94 0.86 0.88 0.88 0.87 0.88 0.88 0.87

geomean 1.00 0.96 0.97 0.95 0.95 0.97 0.96 0.95
C

bzip2 0.99 0.93 0.96 0.95 0.95 0.96 0.95 0.95
crafty 1.00 0.98 0.99 0.99 0.99 0.99 0.99 0.99
gap 1.01 0.98 1.00 0.98 0.98 1.00 0.98 0.98
gcc 1.00 0.98 0.98 0.98 0.98 0.98 0.98 0.98
gzip 1.00 0.96 0.97 0.96 0.96 0.97 0.96 0.96

parser 1.03 1.01 0.99 0.99 0.99 0.99 0.99 0.99
twolf 1.01 0.99 0.99 0.99 0.99 1.00 0.99 0.99
vortex 0.99 0.96 0.96 0.96 0.97 0.96 0.96 0.97
max 1.03 1.01 1.00 0.99 0.99 1.00 0.99 0.99
min 0.99 0.93 0.96 0.95 0.95 0.96 0.95 0.95

geomean 1.00 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 5. L1 Transient Caches with 64B line: 8 lines (∼512B); L1: 64B line, 32KB, 2-way, 2-cycle; L2: write back

over the base cache. Our work uses a similarly sized structure, but
attains performance improvements instead of degradations due to
seeking it in parallel (which is less power efficient) and filtering. In
addition, the per-word valid bits save fetch bandwidth.
A technical report by Srinivasan et al. suggests seeking in par-

allel on a relatively large (4KB 2-way) one-cycle L0 with conven-
tional L0 inclusive replacement policies [34]. The one-cycle access
time goal is the same, but transient caches add per-byte tags, full
associativity, and filtering to attain similar or higher improvements
with a much smaller structure (1/8 the size).

Spatial and Temporal Caching. Cache designers have long dif-
ferentiated temporal and spatial locality to improve performance
with stream buffers [24] and prefetching [15]. A number of re-
searchers have proposed tracking locality and exploiting spatial and
temporal locality differently to improve performance by improving
efficiency in each structure [14, 18, 22, 36]. Most of these do not
use cycle accurate simulation. All of these approaches differ sub-
stantially from our work because they require modifying all levels
of the hierarchy to include history bits on cache lines and/or tables
that track program history. Transient caches do not strictly define a
type of locality. Transient caches keep limited state only in the tran-
sient cache itself, are localized, require only additional logic for the
parent, and require no additional state in the parent.

Object Streams. Because the collector is a key part of Java per-
formance, researchers have examined its performance separately
and together with the application [3, 19, 31]. For example, gener-
ational collectors with copying nurseries provide good locality as
well as object stream behavior [3]. The collector itself has object
stream behavior coupled with a higher miss rate than the applica-
tion because when invoked, it touches reachable data that may not
be in the program’s current working set [19, 31].
Diwan et al. first noted that highly allocating ML programs

with contiguous nursery allocation benefit from write through allo-

cate no-fetch policy, as found in DECStation 5000/200 [8]. Jouppi
found that even C programs benefited from this structure [16], and
per-word valid bits in a write-buffer could attain some of the bene-
fits of write through no-fetch while avoiding the prohibitive cost of
valid bits in the cache itself. Transient caches subsumes these ben-
efits and satisfy reads for one-cycle access times. Hölzle and Un-
gar [12] confirm Diwan et al. results for object-oriented programs,
and suggest write-no-allocate is a bad idea, which we contradict.
They suggest that object oriented programs behave similarly to C
and thus require no special architectural features, whereas we find
differences that new memory system features can exploit.
Another approach to object streams is using special instructions.

For example, PowerPC dcbz instruction clears a cache line and the
memory allocator and compiler can use it when it can guarantee
the entire line will always be written before read. This approach
exposes the problem to both the underlying VM and the architec-
ture, and thus limits its applicability. The transient cache designs
achieve the same effect without a special instruction, can achieve
this effect when the compiler can not make the guarantee (e.g., in
C programs with free-list allocators), and applies judicious filtering
which further improves over a special instruction.

Cache Coherency in Multiprocessors. Marden et al. find a pro-
cessor consistency model, in which a write-miss proceeds without
stalling and only fetches on a read miss to an invalid word, attains
better performance than sequential consistency [23]. Implementing
our design in multiprocessors requires a similar consistency model.
Mounes-Toussi and Lilja consider write buffer design for a cache-
coherent multiprocessor, and show that a write through L1 cache
with a write buffer offers a good performance point, and is not in-
consistent with attaining cache coherence [25]. Thus a multipro-
cessor design, with valid bits and a processor consistency model
that does not require a fetch on a write-miss, is compatible with our



128B line size 64B line size
PPC Perfect Reduced L1 L1 TQ4 F1; L2 TQ16 F1 L1 TQ8 F1; L2 TQ32 F1

2-way D-M 2-way 2-way D-M 2-way 2-way D-M
programs cycle(M) L1 L2 16KB 32KB 32KB 16KB 32KB default 32KB 16KB 32KB

Java
201 compress 1701 0.81 0.99 1.11 1.02 0.88 0.93 0.89 1.00 0.86 0.89 0.86

202 jess 2061 0.95 0.99 1.04 1.05 0.97 1.01 1.01 1.00 0.95 0.97 0.96
205 raytrace 2260 0.88 0.97 1.02 1.02 0.97 0.99 0.98 1.01 0.96 0.98 0.97

209 db 2593 0.51 0.62 1.04 1.05 0.91 0.90 0.92 0.94 0.85 0.83 0.85
213 javac 2430 0.96 0.98 1.04 1.07 0.97 0.98 0.99 1.00 0.95 0.95 0.96

222 mpegaudio 1520 0.99 1.00 1.01 1.06 0.96 0.96 0.96 1.00 0.94 0.94 0.94
228 jack 2667 0.99 0.98 1.04 1.04 1.00 1.01 1.02 1.00 0.99 0.99 1.00

antlr 369 0.96 0.98 1.01 1.02 0.97 0.98 0.97 1.00 0.95 0.97 0.97
fop 2424 0.96 0.97 1.02 1.03 0.99 0.99 0.97 0.97

hsqldb 2665 0.95 0.97 1.01 1.02 0.98 0.99 1.00 0.96 0.97 0.97
pmd 2518 0.92 0.95 1.04 1.04 0.99 1.00 1.00 1.01 0.97 0.98 0.99
ps 2085 0.94 0.98 1.09 1.05 0.98 1.02 1.00 0.99 0.96 1.00 0.98

xalan 2328 0.79 0.85 1.01 1.03 0.98 0.96 1.02 0.97 0.99 0.98
pseudojbb 2115 0.98 0.97 1.05 1.05 1.00 0.98 1.01 1.00 0.99 0.97 1.00

max 2667 0.99 1.00 1.11 1.07 1.00 1.02 1.02 1.02 0.99 1.00 1.00
min 369 0.51 0.62 1.01 1.02 0.88 0.90 0.89 0.94 0.85 0.83 0.85

geomean 1961 0.89 0.94 1.04 1.04 0.96 0.98 0.98 1.00 0.95 0.96 0.95
C

bzip2 1255 0.80 0.85 1.02 1.05 0.99 1.00 1.00 0.99 0.92 0.93 0.93
crafty 46 0.96 0.98 1.05 1.02 0.98 1.00 1.00 1.00 0.98 1.00 0.99
gap 755 0.94 0.96 1.01 1.03 0.97 0.98 0.98 1.01 0.97 0.97 0.98
gcc 21 0.98 1.00 1.03 1.01 0.99 1.02 1.00 1.00 0.99 1.00 1.00
gzip 952 0.82 1.00 1.05 1.03 0.97 1.01 0.98 1.00 0.96 1.01 0.97

parser 1799 0.88 0.94 1.02 1.02 0.96 0.98 0.98 1.03 0.96 0.98 0.97
twolf 962 0.95 1.00 1.04 1.05 0.99 1.02 1.01 1.01 0.99 1.02 1.00
vortex 1365 0.97 0.99 1.02 1.03 0.97 0.99 0.99 0.99 0.96 0.97 0.97
max 1799 0.98 1.00 1.05 1.05 0.99 1.02 1.01 1.03 0.99 1.02 1.00
min 21 0.80 0.85 1.01 1.01 0.96 0.98 0.98 0.99 0.92 0.93 0.93

geomean 462 0.91 0.96 1.03 1.03 0.98 1.00 0.99 1.00 0.97 0.99 0.98

Table 6. L1 & L2 Transient Caches: default L1: 32KB, 128B line, 2-way, 2-cycle; L2: write through, 512KB, 128B line, 8-way

design. However, we leave a detailed exploration of the transient
cache design for cache-coherent multiprocessors to future work.

6. Conclusion
This paper examines the interaction of modern programming lan-
guages and modern architectures. We introduce the term object
stream to describe how Java programs march through memory cre-
ating a stream of short-lived objects that programs write and read in
quick succession, and then often never access again. These results
motivate a new cache design with a policy that instantiates write
and read misses, but only promotes them to the parent cache if they
demonstrate a degree of reuse beyond their initial miss. Because
these lines live in the transient cache, rather than for instance, at
the head of a stream buffer, they can have richer reuse patterns than
stream buffers. Extensive experimental results show that the tran-
sient cache is so effective that the parent cache can shrink to half
its original capacity or half its associativity, and yet the transient
cache can still achieve performance improvements compared with
the original larger cache.
By choosing a base architecture with a two-cycle L1 latency, we

have been conservative about the potential value of a single-cycle
transient cache. We performed (but did not report here) experiments
for three-cycle and five-cycle L1 latencies, where as exepected:
these mechanisms perform even better. It is unclear whether or not
technology trends will lead to higher latency L1 caches, but the
trends at the L2 do seem to be for larger higher access times. Our
design complicates processor pipeline design a bit, since a transient
cache load hit is a single cycle and the L1 in two or more, and al-
ways predicting the shorter latency for loads is slightly problematic
since about 62% hit. Although we focused our policy exploration
on the L1 here, we also showed configurataions that are effective

at L2, where it may become increasingly important. Trends toward
higher latency caches and memory, and toward languages such as
Java and C# suggest that these types of mechanisms for mitigating
the effects of object streams will be increasingly important.

References
[1] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus

IPC: The end of the road for conventional microarchitectures. In International
Symposium on Computer Architecture, pages 248–259, June 2000.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber,
M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeño in java.
In ACM Conference Proceedings on Object–Oriented Programming Systems,
Languages, and Applications, Denver, CO, Nov. 1999.

[3] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities: The
performance impact of garbage collection. In Proceedings of the ACM
Conference on Measurement & Modeling Computer Systems, pages 25–36,
NY, NY, June 2004.

[4] S. M. Blackburn, K. S. McKinley, J. E. B. Moss, S. Augart, E. D. Berger,
P. Cheng, A. Diwan, S. Guyer, M. Hirzel, C. Hoffman, A. Hosking, X. Huang,
, R. Garner, A. Khan, P. McGachey, D. Stefanović, and B. Wiedermann. The
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Base L1 Cache (%) Transient Caches: L1 TQ8 F1; L2 TQ32 F1
load store L1 L2 store rel L1 (%) L2 (%)
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